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Toward an Ensemble of Object Detectors

Truong Dang1, Tien Thanh Nguyen1, and John McCall1 �

School of Computing, Robert Gordon University, Aberdeen, UK

Abstract. The field of object detection has witnessed great strides in
recent years. With the wave of deep neural networks (DNN), many break-
throughs have achieved for the problems of object detection which previ-
ously were thought to be difficult. However, there exists a limitation with
DNN-based approaches as some architectures are only suitable for partic-
ular types of object. Thus it would be desirable to combine the strengths
of different methods to handle objects in different contexts. In this study,
we propose an ensemble of object detectors in which individual detectors
are adaptively combine for the collaborated decision. The combination
is conducted on the outputs of detectors including the predicted label
and location for each object. We proposed a detector selection method
to select the suitable detectors and a weighted-based combining method
to combine the predicted locations of selected detectors. The parameters
of these methods are optimized by using Particle Swarm Optimization in
order to maximize mean Average Precision (mAP) metric. Experiments
conducted on VOC2007 dataset with six object detectors show that our
ensemble method is better than each single detector.

Keywords: Object detection · Ensemble method · Ensemble learning ·
Evolutionary Computation · Particle Swarm Optimization

1 Introduction

Object detection is a problem in which a learning machine has to locate the
presence of objects with a bounding box and types or classes of the located
objects in an image. Before the rise of Deep Neural Networks (DNN), traditional
machine learning methods using handcrafted features [13,22] were used with only
modest success since these extracted features are not representative enough to
describe many kinds of diverse objects and backgrounds. With the successes
of DNN in image classification [11], researchers began to incorporate insights
gained from Convolutional Neural Networks (CNN) to object detection. Some
notable results in this direction include Faster RCNN [7] or You Look Only Once
(YOLO) [16]. However, some object detectors are only suitable for specific types
of objects. For example, YOLO struggles with small objects due to strong spatial
constraints imposed on bounding box predictions [15]. In this study, we propose
to combine several object detectors into an ensemble system. By combining
multiple learners for the collaborated decision, we can obtain better results than
using a single learner [20]. The key challenge of building ensembles of object
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detectors is to handle multiple outputs so that the final output can determine
what objects are in a given image and where they are located.

The paper is organized as follows. In section 2, we briefly review the existing
approaches relating to object detection and ensemble learning. In section 3,
we propose a novel weight-based ensemble method to combine the bounding
box predictions of selected base detectors. The bounding boxes for combination
are found by a greedy process in which boxes having Intersection-over-Union
(IoU) values with each other higher than a predetermined threshold are grouped
together. We consider an optimisation problem in maximizing the mean Average
Precision (mAP) metric of the detection task. The parameters of combining
method are found by using an evolutionary computation-based algorithm in
solving this optimisation problem. The details of experimental studies on the
VOC2007 dataset [6] are described in section 4. Finally, the conclusion is given
in section 5.

2 Background and Related Work

2.1 Object Detectors

Most early object detection systems were based on extracting handcrafted fea-
tures from given images then applying a a conventional learning algorithm such
as Support Vector Machines (SVM) or Decision Trees [13,22] on those features.
The most notable handcrafted methods were the Viola-Jones detector [21] and
Histogram of Oriented Gradients (HOG) [5]. However, these methods only man-
aged to achieve modest accuracy while requiring great expertise in handcrafting
feature extraction. With the rise of deep learning, in 2014 Girshick et al. pro-
posed Regions based on Convolutional Neural Network (CNN) features (called
RCNN), the first DNN-based approach for object detection problem [8]. This
architecture extracts a number of object proposals by using a selective search
method and then each proposal is fed to a CNN to extract relevant features
before being classified by a linear SVM classifier. Since then, object detection
methods have developed rapidly and fall into two groups: two-stage detection
and one-stage detection. Two-stage detection such as Fast-RCNN [7] and Faster-
RCNN [17] follows the traditional object detection pipeline, generating region
proposals first and then classifying each proposal into each of different object
categories. Even though these networks give promising results, they still struggle
with objects which have a broad range of scales, less prototypical images, and
that require more precise localization. One-stage detection algorithms such as
YOLO [15] and SSD [12] regard object detection as a regression or classification
problem and adopt a unified architecture for both bounding box localization and
classification.

2.2 Ensemble methods and optimization

Ensemble methods refer to the learning model that combines multiple learners
to make a collaborated decision [18,20]. The main premise of ensemble learning
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is that by combining multiple models, the prediction of a single learner will likely
be compensated by those of others, thus making better overall predictive perfor-
mance. Nowadays, many ensemble methods have been introduced and they are
categorized into two main groups, namely homogeneous ensembles and hetero-
geneous ensembles [20]. The first group includes ensembles generated by training
one learning algorithm on many schemes of the original training set. The sec-
ond group includes ensembles generated by training several different learning
algorithms on the original training set.

Research on ensemble methods focuses on two stages of building an ensemble,
namely generation and integration. For the generation stage, approaches focus
on designing novel architectures for the ensemble system. Nguyen et al. [19]
designed a deep ensemble method that involves multiple layers of ensemble of
classifiers (EoC). A feature selection method works on the output of a layer to
obtain the selected features as the input for the next layer. In the integration
stage, besides several simple combining algorithms like Sum Rule and Major-
ity Vote [10], Nguyen et al. [20] represented the predictions of the classifiers in
the form of vectors of intervals called granule prototypes by using information
granules. The combining algorithm then measures the distance between the pre-
dictions for a test sample and the granule prototypes to obtain the predicted
label. Optimization methods have been applied to improve the performance of
existing ensemble systems in terms of ensemble selection (ES) which aims to
search for a suitable EoC that performs better than using the whole ensemble.
Chen et al. [2] used ACO to find the optimal EoC and the optimal combining
algorithm.

3 Proposed Method

3.1 General Description

In this study, we introduce a novel ensemble of object detectors to obtain higher
performance than using single detectors. Assume that we have T base object
detectors, denoted by ODi(i = 1, ..., T ). Each detector works on an image to
identify the location and class label of objects in the form of prediction results

Ri = {Ri,j}, Ri,j =

(
BBi,j , (li,j , confi,j)

)
, (i = 1, ..., T ; j = 1, ..., ri where ri is

the number of objects detected by ODi). The elements of Ri,j are detailed as:

• Bounding box BBi,j =
(
xi,j , yi,j , wi,j , hi,j

)
identifies the location of a de-

tected object where xi,j , yi,j , wi,j and hi,j are the top-coordinates and the
width and height of the bounding box

• Prediction
(
li,j , confi,j

)
where li,j is the predicted label and confi,j is the

confidence value, which is defined as the probability for the prediction of this
label

Our proposed ensemble algorithm deals with the selection of suitable de-
tectors among all given ones, as well as combining the bounding boxes of the
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selected detectors. In order to select suitable detectors, we introduce a num-
ber of selection variables αj ∈ {0, 1}, j = 1, ..., T with each binary variable αj
representing whether detector ODj is selected or not. The combining process is
conducted after the selection process. To combine the bounding boxes made by
the selected detectors, we need to know which bounding box of each detector
predicts the same object. Our proposed method consists of two steps:

– Step 1: Measure the similarity between pairs of bounding boxes between the
detection results from different detectors to create groups of similar bounding
boxes

– Step 2: For each group, combine the bounding boxes

The similarity between bounding boxes is measured using Intersection over
Union (IoU), which is very popular in object detection research [22]. With two
bounding boxes BBi,j and BBp,q, the IoU measure between them is given by:

IoU(BBi,j , BBp,q) =
area(BBi,j ∩BBp,q)
area(BBi,j ∪BBp,q)

(1)

This measure is compared to a threshold θ (0 ≤ θ ≤ 1). If the IoU > θ
then they are grouped together, eventually forming a number of box groups
G = (g1, g2, ..., gK), where K is the number of groups. Note that we do not
consider the IoUs between boxes made by the same detector (i 6= p) since we
combine bounding boxes of different detectors. We also combine bounding boxes
that have the same predicted label. For each group, we perform combination of
the bounding boxes. Let W x

i ,W
y
i ,W

w
i ,W

h
i ∈ [0, 1] be the weights of detector

ODi(i = 1, ..., T ). Then the combined bounding box for group gk will be BBk =
(xk, yk, wk, hk) in which:

coordk =

∑
BBpl(k),ql(k)∈gk I[αpl(k) = 1]W coord

pl(k)
coordpl(k),ql(k)∑

BBpm(k),qm(k)∈gk W
coord
pm(k)

, (2)

where I[.] is the indicator function, and coordk ∈ {xk, yk, wk, hk}. Therefore,
our ensemble is completely determined by the following parameters: (W x

i ,W
y
i ,

Ww
i ,W

h
i , αj , θ), i, j = 1, ..., T

3.2 Optimisation

The question that arises from the proposed method is how to search for the best
parameters (W x

i ,W
y
i ,W

w
i ,W

h
i , αj , θ), i, j = 1, ..., T for each situation, where

W x
i ,W

y
i , W

w
i ,W

h
i are the bounding box weights, αj are the selection variables,

and θ is the IoU threshold. We formulate an optimisation problem which we
can solve to find the optimal value for these parameters. The fitness function
is chosen to be the mean Average Precision (mAP), which is defined as the
average of Average Precision for each class. In order to calculate APc, we need
to calculate the precision and recall. Precision and recall are defined as follows:
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Algorithm 1 Combining object detectors

Input: Bounding box results by the detectors (BBi), the prediction labels (li), con-
fidence values (confi), index of detector (deti) (i = 1, ..., nbb) with nbb being
the total number of bounding boxes, bounding box weights for each detector
(W x

j ,W
y
j ,W

w
j ,W

h
j ), the threshold for choosing each detector αj and IoU threshold

θ
Output: The combined bounding boxes
1: Remove detectors that does not satisfy αj ≥ 0.5. Sort the bounding boxes

in descending order of confidence value. Set G ← {}, E ← {}, Assign ←
{assign1, assign2, ..., assignnbb} where assigni is the group which BBi is assigned
to, and initialize assigni to 0. Set group idx← 1.

2: for i← 1 to nbb do
3: if assigni 6= 0 then
4: continue
5: assigni ← group idx
6: for j ← i+ 1 to nbb do
7: if assignj 6= 0 or deti == detj or li 6= lj then
8: continue
9: if IoU(BBi, BBj) > θ then

10: assignj ← group idx
11: group idx← group idx+ 1
12: K ← groupd idx− 1
13: G← {g1, g2, ..., gK} where gk = {BBi} such that assigni == k
14: for k ← 1 to K do
15: Combine boxes in gk to get BBk = (xk, yk, wk, hk) by using Eq. 2,
16: E.insert(BBk)
17: return E

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(3)

where TP (True Positive) is the number of correct cases, FP (False Positive) is
the number of cases where a predicted object does not exist, FN (False Negative)
is the number of cases where an object is not predicted. The IoU measure be-
tween a predicted bounding box and a ground truth box determines whether the
ground truth box is predicted by the algorithm. The AP summarises the shape
of the precision/recall curve, and is evaluated by firstly computing a version of
the measured precision/recall curve with precision monotonically decreasing, by
setting the precision for recall r to the maximum precision obtained for any re-
call r

′ ≥ r. Then the AP is calculated as the area under this curve by numerical
integration. This is done by sampling at all unique recall value at which the
maximum precision drops. Let pinterp be the interpolated precision values. Then
the average precision is calculated as follows:

AP =
∑
n

(rn+1 − rn)pinterp(rn+1), pinterp(rn+1) = maxr1≥rn+1(p1) (4)

Thus with T detectors, the optimisation problem is given by:
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maxw=(Wx
i ,W

y
i ,W

w
i ,W

h
i ,αj ,θ)mAP (w)

s.t. W x
i ,W

y
i ,W

w
i ,W

h
i ∈ [0, 1] , αj ∈ {0, 1}, θ ∈ [0, 1] , i, j = 1, · · · , T

(5)

We use PSO [3, 9] to find the optimal values for (W x
i ,W

y
i ,W

w
i ,W

h
i ,αj , θ).

Compared to other optimisation algorithms, PSO offers some advantages. Firstly,
as a member of the family of evolutionary computation methods, it is well suited
to handle non-linear, non-convex spaces with non-differentiable, discontinuous
objective functions. Secondly, PSO is a highly-efficient solver of continuous op-
timisation problems in a range of applications, typically requiring low numbers
of function evaluations in comparison to other approaches while still maintain-
ing quality of results [14]. Finally, PSO can be efficiently parallelized to reduce
computational cost. To work with continuous variables in PSO, we convert each
αj into a continuous variable belonging to [0, 1]. If αj is higher than 0.5, the
corresponding detector is added to the ensemble. The average mAP value in a
5-fold cross-validation procedure is used as the fitness value.

The combining and training procedures are described in Algorithm 1. Al-
gorithm 1 receives inputs including the bounding boxes made by the detec-
tors (BBi), confidence values (confi), prediction labels (li) and the parameters
(W x

i ,W
y
i ,W

w
i , W

h
i , αj , θ). Each bounding box (BBi) also has an associated vari-

able (deti) which delineates the index of the detector responsible for (BBi). For
example, if (BBi) is predicted by the detector (ODj) then deti = j. Line 1
sorts the selected bounding boxes in decreasing order of confidence value. Line
3-10 assigns each bounding box to a group. For each bounding box BBi we first
check if it has been assigned to one of the existing groups before assigning it to
the new group group idx (line 3-5). Then with each unassigned bounding box
BBj that is not made by the same detector as that of BBi and have the same
prediction we add BBj to group group idx if its IoU value with BBi is greater
than θ (line 6-10). After all boxes are grouped, lines 12 to 17 combine the boxes
in each group and returns the combined bounding boxes.

4 Experimental Studies

4.1 Experimental Setup

In the experiments, we used a number of popular object detection algorithms
as base detectors for our ensemble method. The base detectors used are SSD
Resnet50, SSD InceptionV2, SSD MobilenetV1 [12], FRCNN InceptionV2, FR-
CNN Resnet50 [17], and RFCN Resnet101 [4]. We used the default configuration
for all of these methods. Training process was done for 50000 iterations. For the
PSO algorithm, the inertial weight a was set to 0.9 while two parameters C1 and
C2 were set to 1.494. The number of iterations was set to 100 while the popula-
tion size was set to 50. The dataset VOC2007 was used in this paper containing
5011 images for training and validation, and 4952 images for testing. The evalu-
ation metric used in the paper was mAP (mean Average Precision). Among the
9963 images in the VOC2007 dataset, there are 2715 images having at least one
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Table 1. Left: mAP result for the base detectors and the proposed method. Right:
Weights for the bounding boxes of each base detectors (x, y, w, h, α)

Detector mAP (%)
RFCN-Resnet101 64.67

FRCNN-InceptionV2 62.02
SSD-InceptionV2 41.96

SSD-Mobilenet-V1 38.4
SSD-Resnet50 39.93

FRCNN-Resnet50 64.34
Proposed method 67.23

Detector
Weights

x y w h α

RFCN-Resnet101 0.77 0.56 0.32 0.33 0.76
FRCNN-InceptionV2 0.77 1.00 1.00 0.71 0.53

SSD-InceptionV2 0.49 0.71 0.22 0.30 0.93
SSD-Mobilenet-V1 0.35 0.93 0.25 0.00 0.42

SSD-Resnet50 0.00 0.00 0.94 0.58 0.73
FRCNN-Resnet50 0.89 0.80 0.29 1.00 0.99
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Fig. 1. A comparison of AP result for each class between the proposed method and
RFCN-Resnet101

object of difficult tag. Because we focus on the improvements of combining the
results of bounding boxes from each detector, the difficult examples have been
included into the evaluation.

4.2 Result and discussion

Table 1 (left) shows the mAP result of the proposed method and the base de-
tectors. The proposed method has mAP value of 67.23%, which outperforms
the best base detector RFCN-Resnet101 by 2.56%. Figure 1 shows a detailed
comparison of AP values between the two methods for each class. It can be seen
that the proposed method achieves a remarkable increase for the ”dining table”
object, from 35.04% to 56.17%. This is followed by ”sofa” with an increase of
9.08% from 54.19% to 63.27%. Other objects such as ”dog” or ”train” also saw a
modest increase. On the other hand, ”bicycle” and ”bottle” saw a decrease, from
72.73% to 70.31% and from 49.26% to 45.98% respectively. It should be noted
that ensemble methods ensure that the overall result is better, even though some
cases might be worse than the base learners. In total, there are 14 object types
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Fig. 2. Example result of selected base detectors and proposed method

that saw an increase due to the proposed method. Table 1 (right) shows the
weights for the bounding boxes for each of the base detectors. The first and sec-
ond columns show the weights of the top-left coordinates, while the third, fourth
and fifth columns show the width, height weights and selection threshold respec-
tively. From the table, it is clear that the algorithm automatically chooses the
better base detectors for combining the bounding boxes, since most of the con-
tributions of weights are from RFCN-Resnet10 (64.67%), FRCNN-InceptionV2
(62.02%) and FRCNN-Resnet50 (64.34%).

Figure 2 provides a comparison between the selected base detectors (those
with αi ≥ 0.5 after optimisation) and the proposed method. It can be seen that
RFCN-Resnet101, SSD-Resnet50, and FRCNN-Resnet50 correctly identify two
bicycles, but wrongly predicts another bicycle that spans the two real bicycles.
On the other hand, FRCNN-Resnet50 wrongly predicts three person objects in
the image. Due to the combination procedure, the redundant bicycle and person
objects have been removed. Also, the bounding box for the left person by SSD-
InceptionV2 is slightly skewed to the right, but after applying weighted sum of
bounding boxes of the base detectors, the combined box has been positioned
more accurately.

5 Conclusion

In this paper, we presented a novel method for combining a number of base
object detectors into an ensemble that achieves better results. The combining
method is constructed using PSO algorithm to search for a defining parameter
set that optimise mAP. Parameters are selective indicators which show whether
detectors are selected or not. The bounding boxes of selected detectors then
are combined based on a weights-based combining method. Our results on a
benchmark dataset show that the proposed ensemble method is able to combine
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the strengths and mitigate the drawbacks of the base detectors, resulting in an
improvement compared to each individual detector.
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