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Abstract: The control strategy of electric vehicles mainly depends on the power battery state-of-charge estimation. One of 

the most important issues is the power lithium-ion battery state-of-charge (SOC) estimation. Compare with the extended 

Kalman filter algorithm, this paper proposed a novel adaptive square root extended Kalman filter together with the Thevenin 

equivalent circuit model which can solve the problem of filtering divergence caused by computer rounding errors. It uses 

Sage-Husa adaptive filter to update the noise variable, and performs square root decomposition on the covariance matrix to 

ensure its non-negative definiteness. Moreover, a multi-scale dual Kalman filter algorithm is used for joint estimation of 

SOC and capacity; the forgetting factor recursive least-square method is used for parameter identification. To verify the 

feasibility of the algorithm under complicated operating conditions, different types of dynamic working conditions are 

performed on the ternary lithium-ion battery. The proposed algorithm has robust and accurate SOC estimation results and 

can eliminate computer rounding errors to improve adaptability compared to the conventional extended Kalman filter 

algorithm. 
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1. Introduction

In order to deal with environmental problems, clean energy related research has become a hot spot in recent years.

The lithium-ion battery (LIB) is becoming increasingly popular[1, 2]. LIB plays an important role in power supply 

applications such as electric vehicles (EV), underwater vehicles, and distributed energy storage system [3]. The safety 

of the LIB is still an issue, which affects the utilization efficiency of its capacity and life directly, leading to accidents 

in several cases [4]. To ensure safe and reliable operation, LIB needs to be monitored and managed by the Battery 

Management Systems (BMS) [5]. The accurate SOC estimation by the BMS is necessary for the power application 

LIB[6]. However, the technical bottleneck of the accurate SOC estimation is an insurmountable problem [7], due to 

the immature management of the associated BMS equipment. It is used for the energy supply, which has stability and 

reliability requirements [8], aiming to avoid safety issues by monitoring battery status.  



Many researchers have studied the LIB and proposed many methods to estimate the SOC until now. Most of 

existing SOC estimation methods can be divided into the following categories: (1) direct measurement method; (2) 

data-driven estimation method; (3) model-based estimation method [9, 10]. 

(1) Direct measurement method: The direct measurement method mainly includes the coulomb counting method

and open-circuit voltage (OCV) method. The SOC value can be obtained by integrating the current when the

initial value of the SOC is known. This method is called the coulomb counting method or ampere-hour integral

method which is an open-loop method. It is sensitive to the initial value of SOC, and will cause uncorrectable

cumulative errors. The relationship between OCV and SOC can be obtained by a fixed discharge rate, and then

the value of the corresponding SOC is found in the relationship curve using the known OCV [11]. This method

is called the OCV method [12]. Although the method can measure the value of SOC [13], the battery must be

allowed to stand for more than one hour to start measuring, and the battery itself is susceptible to temperature

and reproductive quality [14, 15]. Therefore, it is not suitable for SOC estimation in operation.

(2) Data-driven estimation method: Data-driven estimation methods use the input-output data of the system to

develop an estimator. Since these methods do not require an accurate plant model, the estimations and

assumptions introduced in the plant modeling step are omitted[9]. The typical algorithms include the fuzzy

controller, the neural network[16-19], and the support vector machine(SVM)[20]. But data-driven estimation

method suffers from problems like extensive training, difficult online adaption, and high computational

effort[21].

(3) Model-based estimation method: With the development of battery research, many battery models for the

power LIB have been proposed[22-26]. Commonly used models can be roughly summarized into three types:

electrochemical models (EM), equivalent circuit models (ECM), and electrochemical impedance models (EIM).

In the model-based estimation method, the battery model is generally expressed as state equations. Several state

observers have been applied to the models separately, including extended Kalman filter (EKF), unscented

Kalman filter (UKF) sliding mode observer (SMO), particle filter (PF), H-infinity observer, and their improved

algorithms [10, 18, 27-34].

The battery characteristics are obtained by performing capacity and hybrid pulse power characteristic (HPPC) 

experiments on the battery at different temperatures, and analyzing the open-circuit voltage, ohmic internal resistance, 

and polarization resistance of the LIB under different states of charge and temperature. The parameters identification 

of the LIB model is carried out by the forgetting factor recursive least square (FFRLS) method. Co-estimate capacity 

and SOC based on a multiscale framework with EKF. Because all algorithm programs run on the computer, the 

realization of the Kalman filter maybe have numerical problems which can be proved by some papers [35, 36]. There may be 

calculation errors due to the limited word length of the computer. When the error accumulation is serious, the error 

variance matrix Pk can gradually lose its positive definiteness or symmetry, leading to Kalman filter divergence. To 



solve this problem, the square root decomposition is used to improve the EKF algorithm for the estimation of SOC. 

The Kalman algorithm and the EKF algorithm both treat system noise like white noise and ignore the noise 

characteristics in practical applications, thereby leading to the noise affecting the accuracy of the SOC estimation. An 

extended Kalman filter method based on adaptive covariance matching algorithm is used in some paper [34]. The 

noise is adjusted by Sage-Husa adaptive filtering and the adaptive square root extended Kalman filter (ASREKF) is a 

combined algorithm in this paper. 

The rest of this paper is organized as follows. The mathematical theoretical analysis is conducted in section 2 

including a definition of SOC, modeling of the LIB, and proposed ASREKF algorithm. In section 3, the experiments 

are illustrated as well as their estimation results. The conclusions is finally reported in Section 4. 

Nomenclature 

SOC state-of-charge EV Electric vehicle 

LIB lithium-ion battery ECM Equivalent circuit model 

KF Kalman filter EM Electrochemical model 

FFRLS forgetting factor recursive least-square EIM Electrochemical impedance model 

PF Particle filter RC Resistor-capacitor 

EKF Extended Kalman filter UKF Unscented Kalman filter 

HPPC Hybrid Pulse Power Characteristic ANN Artificial neural network 

ASREKF Adaptive square root extended Kalman filter CC-CV Constant current-constant voltage

BBDST Beijing Bus Dynamic Stress Test OCV Open circuit voltage 

MAE Mean Absolute Error RSME Root mean square error 

DOD depth of discharge SVM support vector machine 

2. Mathematical analysis

2.1. Definition of SOC 

The SOC characterizes the remaining capacity of LIB, and is defined as the ratio of the remaining capacity to the 

maximum available capacity which can be expressed as Eq. (1)[10]. 
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In Eq. (1), SOCt is the current estimated SOC, DODt is the depth of discharge, Ct is the remaining battery capacity, 

Cmax is the maximum available capacity when the battery is fully charged, SOC0 is the initial SOC when the estimation 

process starts, η denotes the Coulombic efficiency, and i(t) is the load current (assumed discharging is positive). 

2.2. Modeling of LIB 

At present, there are some equivalent models for LIB which are proposed. Since the equivalent circuit model has the 

advantages of simple calculation and clear physical meaning, it is the most widely used. The simple model is easy to 



calculate, but it can not accurately describe the working characteristics of the battery. The complex model can better 

characterize the charge and discharge characteristics of the battery, but the calculation amount is greatly increased. 

Therefore, it is necessary to comprehensively consider accurate modeling and model simplicity. Many researchers 

choose the Thevenin equivalent circuit model [21, 34, 37, 38] or second-order equivalent circuit model [39, 40] after 

considering the model complexity and accuracy. Lai compared the influence of different order equivalent circuit 

models on the SOC estimation effect [41]. The results show that in the use of the second-order equivalent circuit, the 

accuracy of the model does not increase significantly, but the number of calculations based on the number of 

parameters increases. Considering the needs of engineering applications, the dynamic characteristics of LIB should be 

characterized by an uncomplicated equivalent model, so the Thevenin equivalent circuit model is selected. This paper uses the 

Thevenin equivalent circuit model shown in Fig.1.   

UOC
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CP UL

+

-
i

Fig. 1  Thevenin equivalent circuit model 

In Fig.1, Uoc represents the OCV of the LIB, RO represents the ohmic internal resistance, RP represents the 

polarization resistance of the lithium battery, CP represents the polarization capacitance, and the RC network 

characterizes the polarization phenomenon of the LIB, i indicates the load current, and UL indicates the closed-circuit 

voltage when the battery pack is externally connected. The circuit equation can be listed according to the Kirchhoff 

laws as follows: 

L OC o pU U R i U= − − (2) 

=p p

p p p

dU Ui

dt C C R
− (3) 

Up represents the polarization voltage. Eq. (3) can be rewritten in the discrete-time form as[34, 42]: 

, , 1 1exp( / ) (1 exp( / ))p k p k P kU U t R t iτ τ− −= −∆ + − −∆ (4) 

In Eq. (4), t∆ is a fixed time step between two adjacent measurement points and τ= RpCp.

, , , , 1 1

, 1 , 1 1

exp( / ) (1 exp( / ))

exp( / )( ) (exp( / ) (1 exp( / )))
L k OC k p k O k p k P k O k

L k OC k O k O P k

U U U R i U t R t i R i

t U U R i t R R t i

τ τ
τ τ τ

− −

− − −

− = − − = − −∆ − − −∆ −

= −∆ − − + −∆ − − −∆
(5) 

Then, define , , ,d k L k OC kU U U= − , we can get: 



, 0 , 1 1 2 -1+d k d k k kU U i iα α α−= + (6) 

In Eq. (6), the model coefficient 0α , 1α  and 2α are:
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The open-circuit-voltage Uoc can be characterized by the state variable SOC, according to which the nonlinear 

function relationship can be obtained. The function of Uoc and SOC can be expressed as Eq. (8). 

2 3 4 5
, 0 1 2 3 4 5= ( ) +OC k k k k k k kU G SOC k k SOC k SOC k SOC k SOC k SOC= + + + + (8) 

2.3. Model parameters online identification 

The RO, Cp, and Rp of LIB model parameters vary with temperature and SOC, which can be seen in section 3.3. 

Model parameters may be changed by internal or external factors (such as battery aging or changes in the operating 

environment), and it can not be tracked and corrected in real-time by using conventional offline identification methods. 

To solve this problem, the online parameter identification method based on the forgetting factor RLS method is used 

in the model parameter identification [34]. 

Assume the model can be described as: 

k k k ky ϕ θ ξ= + (9) 

Then the system identification can be realized as follows: 

$

$ $

1

1

1
1 1

-1

-1

( )

= +

T
k k

k T
k k k

k k k k k

kk k k

k k k k

P
L

P

P P L P

e y

L e

ϕ
λ ϕ ϕ
λ ϕ

ϕ θ

θ θ

−

−

−
− −


= +

 = −
 = −



(10) 

In Eq. (8) λ is the forgetting factor and ek is the prediction error. The model can be estimated iteratively by the 

recursive equations of the EKF, which are given in Eq. (10). The detailed implementation process of the forgetting 

factor RLS algorithm is shown in table 1. 

Table 1 Summary of the forgetting factor RLS algorithm. 

1) Parameter identification of OCV model in Eq. (3)

a) Initialization:
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2) Parameter identification of battery model in Eq. (7)

a) Initialization:
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b) Calculate algorithm gain L1,k and error covariance

matrix P1,k: 
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c) Calculate prediction error e1,k and update model
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2.4. Adaptive estimation algorithm 

2.4.1. A multiscale framework with extended Kalman filter 

Compared with the change of the SOC, the battery capacity changes very slowly over time. Therefore, we will use a 

discrete-time state-space model with two time-scales: the macro and micro time-scales [43]. The state-space model 

can be written as shown in the Eq. (11). 
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In Eq. (11), Xk,l is the vector of system states at the time tk,l = tk,l-1+ t∆ , and k and l being the indices of macro and

micro time-scales respectively; uk,l is the vector of observed exogenous inputs; βk is the vector of system model 

parameters at the time tk,0; Yk,l is the vector of system measurements; wk,l and rk are the vectors of process noise with 

covariance Qw and Qr for states and model parameters, respectively; vk,l is the vectors of measurement noise with 

covariance Qv; f( , , ) and g( , , ) are the state transition and measurement functions, respectively. L represents the level 

of time-scale separation and that tk,0 = tk-1,L. 

The maximum available capacity Cmax is selected as parameter β. Combined with the definition of SOC and the 

battery model, the discrete state-space equation can be obtained as shown in Eq. (12). 
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Kalman filter is an optimized autoregressive data processing algorithm. The basic principle of the algorithm is to use 

the minimum mean square error as the best estimation criterion, and use the state-space model of signal and noise to 

introduce the relationship between state variables and observed variables by establishing state equations and 

observation equations model. The dual Kalman filter (DKF) method is a commonly used technique to simultaneously 



estimate the states and model parameters. The algorithm of multi-scale dual extended Kalman filter is shown in Table 2 and 

the detail can get in reference [43]. 

Table 2 Summary of multi-scale dual extended Kalman filter algorithm 

1.Macro EKF for parameter estimation

a) Initialization:

  
0 0 00 ,0 0 0[ ], [( )( ) ]TE P Eββ β β β β β= = − −  

b) Iterative calculation according to formula

  

 

   

1,

1 , , 1 1

1
, , , ,

1,00 1,0:

, , ,

1, ,

, ,

1

1,

, ,

(

,

[

)

,

]

( )

(

, )k L k

r
k k k k k

T T
k k k k k k w k

k L k Lk k

k

kL k L

k

k k k

X

P P Q

K P C C P C Q

K X X

P I K

X u

C

f

P

β β

β β β β β β

β

β β β β

β

β

β β

β

−
−

− −

−→

− − −

− − −

−
− −

−

− −

=

=

= = +

= +

+ −

= −

Where 



0 1,0 1,0
,

:d

d

( , , )

k

L
k

k k lf X u
Cβ β β

β
β −

−

=

→ −=

2. Micro EKF for state estimation

a) Initialization:
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2.4.2. Adaptive square root in the extended Kalman filter 

The SOC of LIB is affected by factors such as temperature, charge and discharge state, self-discharge, aging, etc. 

The internal chemical reaction is dynamic and its characteristics are highly nonlinear. These characteristics make SOC 

estimation difficult. In recent years, the Kalman filter is widely used in SOC estimation. But the realization of the 

covariance of the Kalman filter has numerical problems, which has been proved by many documents[35, 36]. A square 

root decomposition of the state covariance matrix is proposed based on the extended Kalman algorithm. On the EKF 

algorithm, the error variance matrix Pk is decomposed. Make Pk=SkSk
T, instead of calculating the covariance matrix, 

iteratively update the covariance decomposition matrix Sk. This can ensure that the covariance matrix is non-negative 

definite, avoiding some algorithm divergence problems caused by the limited word length of the computer.  

(1) State variables and covariance time updates as shown in Eq. (13).
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(2) The corresponding Kalman gain calculation changes as shown in Eq. (14).
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(3) State variables and covariance measure updates as shown in Eq. (15).
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Since the covariance matrix Pk is decomposed, at least it is guaranteed that Pk is always non-negative definite, which 

can overcome the filter divergence caused by the limited word length of the computer. In Eq. (15), I is identity matrix, 

ky%  is residual, and Sage-Husa adaptively updates the noise variables and by comparing the final estimated value with 

the estimated value. To make the estimation of noise more accurate and avoid the influence of the observed value, this 

paper considers the noise at the previous moment and at the specific moment of time, and adopts the weighting 

coefficients dk,ln where dk,l =(1-b)/(1-bn+1), n = 0,1, ... . b is the forgetting factor. In practice, the smaller the value of b, 

the smaller the impact at the previous moment; if the value of b is small, the estimated noise will oscillate, so it can be 

determined according to the specific situation. Then the calculation formula of the noise matrix is as shown in Eq. 

(16). 
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The process noise and observation noise are corrected by Eq. (16), and the ASREKF algorithm is combined with Eq. 

(13) to Eq. (16) like Table 3.

Table 3 Implementation of the ASREKF algorithm. 

a) Initialization:
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c) Calculate the Kalman gain coefficient
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c) Measurement-update equations
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e) Noise covariance matrices updated iteratively
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Then, Thevenin model parameter online identification based on FFRLS, micro EKF in Table 1 replaced by ASREKF 

shown in Table 2. A multiscale framework with ASREKF algorithm can be obtained and the implementation flowchart 

is shown in Fig.2. 
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Fig. 2 Flowchart of a multiscale framework with ASREKF for battery SOC and capacity estimation. 

3. Experimental analysis

3.1. Test platform construction 

The NCM50Ah ternary power lithium battery was used as the experimental object, and its rated capacity was 50 Ah, the basic 

information of the battery is shown in Table 4. The battery test equipment is the Yakeyuan BTS 750-200-100-4, which has a 

maximum charge and discharge power of 750W, a maximum current of 100A, and a maximum voltage of 200V. The temperature 

chamber is s Bell Test Equipment Co., Ltd. BTT-331C. The entire test bench is shown in Fig. 3. 



Table.4 Basic technical parameters of the battery 

Cell nominal capacity/Ah 50 Standard charge current 1C 

Rated voltage/V 3.65 Standard discharge current 3C 

Charge cut-off voltage/V 4.2±0.05 Maximum load current  5C 

Discharge cutoff voltage/V 2.65±0.05 Internal resistance/ mΩ 0.8 

Size: l * w * h/ mm 148×27×93 Working temperature/℃ -20~60

Lithium-ion 
battery

Temperature
Chamber

BTS 750-200-
100-4

TCP/IP

Temperature
Current
Voltage
Ah/Wh

Host
Computer

On-line experiment 
control Data recording

Battery 
Test 
Bech

TCP/IP

Fig. 3  Battery test bench 

3.2. Maximum available capacity at different temperatures 

The capacity measurement test at different temperatures has steps as follows: Place the LIB in the incubator, adjust 

the incubator to 25℃, and fully charge the battery with constant current and constant voltage (CC-CV). The specific 

steps are as follows: charge to a constant voltage when the LIB voltage is 4.2V with a constant current of 50A until the 

current is less than 2.5A. Adjust the temperature of the incubator and perform a constant current discharge test on the 

LIB at 1C (here 50A) to obtain the maximum usable capacity at this temperature. Finally, the maximum capacity of 

the battery at different temperatures is shown in Tab. 5. 

Table.5 Maximum available capacity at different temperatures 

Temperatures（℃） -10 0 10 20 25 30 40 

Capacity（Ah） 40.18 42.92 45.47 46.97 47.99 48.75 49.53 

Temperature has a great impact on the maximum available capacity of LIB. As the temperature decreases, the 

maximum available capacity of the battery decreases. The maximum available capacity of LIB at -10 ° C is only 

83.7% of LIB at 25 ° C.  

3.3. LIB test under HPPC 

LIB has the advantages of high specific energy, high single battery voltage, small self-discharge rate, long charging 

and discharging life and no pollution. In the energy management of lithium batteries, accurate estimation of SOC is 

the key to power system operation, so it is of great significance. External characteristic from the battery to the battery 



model bridge between internal states. The battery performance of state estimation, analysis and evaluation of science 

also play a fundamental role. The change rule of each parameter is obtained by the Hybrid Pulse Power Characteristic 

(HPPC) [44] experiment, in which the voltage and current change are shown in Fig. 4(a). Fig. 4(b) is the HPPC 

current-voltage curve made at 25℃.
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(a) Single HPPC profile ( SOC = 0.787, 25℃) (b) Complete HPPC curve (25℃)

Fig. 4  HPPC experiment and results analysis 

The UOC is determined by above HPPC experiments at different temperatures and different SOC values. After the 

battery is left for half an hour, there is basically no change in the terminal voltage, which can be regarded as equal to 

the UOC. The results are shown in Fig. 5(a). The offline parameters identification results obtained at different SOC 

points according to the least-square algorithm are shown in Fig. 5(b) (c) (d). 

(a)Open circuit voltage UOC (b) Ohmic resistance RO



 

(c) Polar resistance RP                             (d) Polar capacitance CP 

Fig. 5  Model parameters identification results by HPPC 

In fig. 5(a), it can be seen from the figure that the UOC change trend at different temperatures is consistent. When the 

SOC is greater than 0.2, the UOC difference is not large at different temperatures; when the SOC is less than 0.2, the 

difference becomes large, and when the temperature is low, the UOC is high. Due to occasional error in the battery test 

capacity and the SOC calibration decreasing from 1 to 0, these errors will accumulate.  

In fig. 5(b), as can be seen from the figure, when the SOC is greater than 0.2, the RO value is relatively smooth at 

each temperature without significant change and it can be taken as the RO does not change; when the SOC is less than 

0.2, the RO value rapidly increases. At the same time, the 40 ° C and 30 ° C curves basically coincide, and it can be 

considered that the RO is the same. As the temperature decreases, the RO increases, and every 10 ° C decrease, the RO 

accelerates. The effect of temperature on the internal resistance can be observed in the Fig. 5. The lower the 

temperature, the slower the ion transmission inside the battery and the greater the internal resistance of the battery. The 

charge response impedance increases more significantly with decreasing temperature.  

In fig. 5(c), as can be seen from the figure, the polarization resistance RP at different temperatures has the same trend. 

When SOC is greater than 0.2, the RP does not change significantly; when SOC is less than 0.2, the RP becomes larger, 

and the RP at different temperatures is not clearly distinguished, indicating that the influence of temperature change on 

RP is relatively small.  

In fig. 5(d), it can be seen from the figure that the change trend of the polarization capacitance CP at different 

temperatures is not obvious compared with RO and RP. When SOC is less than 0.2, the CP becomes smaller at different 

temperatures. As the temperature decreases, the CP will decrease slightly.  

 The FFRLS algorithm is a widely used online parameter identification algorithm [34, 45], The details are in section 

2.3. The model parameters are estimated at the same time when estimating SOC. To verify the reliability of the model 

and algorithm, the results obtained based on HPPC conditions are shown in Fig. 6. The model prediction voltage and 

the measured voltage are compared in Fig. 6 (a) and (b) with different SOC interval. Fig. 6 (c) is the capacity 

estimation curve, the initial error is 2Ah, the capacity cannot be corrected when the charge and discharge current is 0. 

Fig. 6 (d) is the SOC estimation results. In Fig. 6 (d), SOC1 is reference SOC, SOC2 is estimation result by EKF, and 



SOC2 is estimation result by ASREKF. The numerical results of the algorithm performance are shown in table 7. The 

maximum absolute errors (MAEs) of EKF and ASREKF are 0.0226 and 0.0105, respectively. The root mean square 

errors (RMSEs) of EKF and ASREKF are 0.0258 and 0.0131, respectively. As can be seen from table 7 and Fig. 6, the 

proposed ASREKF can achieve accurate SOC estimation. 
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(c) Maximum usable capacity estimation                (d) SOC estimation results  

Fig. 6  Algorithm verification based on HPPC 

3.4. LIB test under BBDST 

To further verify the reliability of the proposed method, more complex working conditions based on Beijing Bus 

Dynamic Stress Test (BBDST) are performed on the ternary LIB. The BBDST conditions which is shown in table 6 

simulate the acceleration, deceleration, uniform speed, rapid acceleration, coasting, and braking of the vehicle by 

charging and discharging the battery with different powers and different durations.   

Table.6 Beijing Bus Dynamic Stress Test 

Step LIB test power /w Single step time/s total time/s Working condition 

1 75 21 21 Start 

2 145 12 33 Accelerate 

3 9 16 49 Sliding 

4 -30 6 55 Brake 

5 75 21 76 Accelerate 

6 9 16 92 Sliding 

7 -30 6 98 Brake 



8 145 9 107 Accelerate 

9 185 6 113 Rapid accelerate 

10 75 21 134 Accelerate 

11 9 16 150 Sliding 

12 -30 6 156 Brake 

13 145 9 165 Accelerate 

14 185 6 171 Rapid accelerate 

15 75 21 192 Accelerate 

16 9 16 208 Sliding 

17 -70 9 217 Brake 

18 -30 6 229 Brake 

19 9 71 300 Parking 

This test method is as follows: the LIB is charged according to the given charging mechanism, left at open-circuit 

state for 3h after fully charged, then tested according to BBDST cycle conditions until the voltage of the battery 

reaches the minimum restriction. To better simulate the actual operation of the car, the experiment will be carried out 

once at high and low temperatures, respectively.  

The experimental verification results under high temperature conditions are shown in Fig. 7. The current profiles 

are plotted in Fig. 7(a). The measured voltage and predicted voltage is shown in Fig. 7(b). The voltage prediction error 

and temperature are shown in Fig. 7(c). The SOC estimation results based on EKF and ASREKF are shown in Fig. 

7(d). In Fig. 7(d), SOC1 is the reference SOC, SOC2 is the estimation results based on ASREKF, and SOC3 is the 

estimation results based on EKF. The numerical results of the algorithm performance are shown in table 7.   
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(c) Model voltage prediction error and temperature          (d) SOC estimation results   

Fig. 7 SOC estimation results based on high-temperature BBDST 

The experimental verification results under low temperature conditions are shown in Fig. 8. The current profiles are 

plotted in Fig. 8(a). The measured voltage and predicted voltage is shown in Fig. 8(b). The voltage prediction error 

and temperature are shown in Fig. 8(c). The SOC estimation results based on EKF and ASREKF are shown in Fig. 

8(d). In Fig. 7(d), SOC1 is the reference SOC, SOC2 is the estimation results based on ASREKF, and SOC3 is the 

estimation results based on EKF. The numerical results of the algorithm performance are shown in table 7.  
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(c) BBDST voltage errror and temperature curve         (d) SOC estimation results and error curve 

Fig. 8 SOC estimation results based on low-temperature BBDST 

As can be seen from Fig. 7 and Fig. 8, compared with the LIB at high temperature, the LIB voltage changes more 

drastically at low temperature. At the end of discharge, the voltage changes drastically at low SOC. This reason is that 

the model parameters change with temperature and SOC, which are consistent with those shown in Figure 5. The SOC 

estimation errors under different working conditions are shown in Table 7. The results under variable temperature and 

complex working conditions indicate that accurate estimation result can be obtained by the proposed method. 

Table.7 Comparisons of MAE and RMSE  

 HPPC(25℃) BBDST (high-temperature) BBDST (low-temperature) 

 MAE RMSE MAE RMSE MAE RMSE 



EKF 0.0226 0.0258 0.0171 0.0246 0.0124 0.0149 

ASREKF 0.0105 0.0131 0.0085 0.0109 0.0040 0.0048 

4. Conclusions 

In this study, for the accurate SOC estimation of the power LIB based on the low error of the Thevenin model, the 

advantages of long-term testing and consideration of polarization effects and a battery model based on Thevenin 

model at different temperatures were introduced. Transient analysis of processes is considered. The forgetting factor 

RLS method is employed for parameter identification. Co-estimation of capacity and SOC based on a multi-scale 

framework of dual Kalman filters. The ASREKF algorithm effectively reduced the influence of noise and solved the 

problem of filter divergence that may occur due to computer processing. It has certain reference value for the rational 

use and distribution of power LIB. This algorithm avoids degraded or divergent filter performance. In addition, 

through charging and discharging experiments at different temperatures, the temperature has a great effect on the 

ohmic internal resistance of ternary power LIB Between -10 ° C and 40 ° C. To verify and evaluate the proposed 

algorithm, dynamic temperature BBDST are performed on the NCA battery. The experimental results are accurate, the 

experimental steps are simple and convenient. 
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Research highlights 

• An novel adaptive square root extended Kalman filter is proposed. 

• Co-estimate capacity and state-of-charge based on multi-scale dual Kalman filter. 

• The recursive least square method is employed for parameters online identification. 

• The changes of lithium-ion battery model parameters with temperature are studied. 

• The algorithm is validated with dynamic temperature working conditions. 
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