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Abstract
Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these 
systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanation 
needs of different groups using an individual system. In this paper we present an explainability framework formed of a cata-
logue of explanation methods, and designed to integrate with a range of projects within a telecommunications organisation. 
Explainability methods are split into low-level explanations and high-level explanations for increasing levels of contextual 
support in their explanations. We motivate this framework using the specific case-study of explaining the conclusions of field 
network engineering experts to non-technical planning staff and evaluate our results using feedback from two distinct user 
groups; domain-expert telecommunication engineers and non-expert desk agent staff. We also present and investigate two 
metrics designed to model the quality of explanations - Meet-In-The-Middle (MITM) and Trust-Your-Neighbours (TYN). 
Our analysis of these metrics offers new insights into the use of similarity knowledge for the evaluation of explanations.
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1 Introduction

Growing social and ethical responsibilities are being faced 
by organisations to ensure that decisions made by their 
intelligent systems are explainable. These responsibilities 
are supported by European legislation which dictates ’an 
individual’s right to an explanation’ and ensures that organi-
sations are held accountable for the decisions made by these 
systems [5]. Furthermore, there is a need at an operational 

level for users to better understand the systems they are 
using to achieve superior working performance, nurture trust 
and ultimately increase productivity [19, 24]. In a real-world 
case, the quality and benefits of explanation depend on how 
timely and comprehensively they are produced.

However, explanations are typically crafted to respond to 
specific user needs and specific applications [1, 3, 19]. This 
practice is both time-consuming and inefficient. We believe 
that there are overlaps between the requirements of an expla-
nation for different applications. In particular, we believe 
that responding to user needs can be effectively achieved 
by co-creating explanations between the developer and the 
user. We are therefore motivated to create a general purpose 
explanation framework which can interface with a broad 
variety of projects across an organisation to reduce the cost 
of provisioning an explanation for individual applications.

We present a framework formed of three components; a 
classification engine, an explanation generation engine and 
a feedback loop to ensure iterative refinement (see Fig. 1). 
The framework is modular, allowing the classification 
engine to be switched with other learned models as neces-
sary. The explanation engine operates upon the classification 
engine’s output (as well as some external knowledge bases), 
to explain system decision-making. It achieves this by incor-
porating a catalogue of explainability techniques to provide 
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transparency around system decision-making, and improve 
user understanding of the source data. Two progressive lev-
els of explanation content have been developed: low-level 
explanations which provide key insights on the data; and 
high-level explanations which generate relevant sentence 
summaries. The progressive approach allows increasing lev-
els of complex, context-aware explanations as users require.

We demonstrate the capabilities of this framework with 
the real-world use case of improving the transfer of infor-
mation between telecommunication field engineers and 
desk-based planning agents. In this use case, the treatment 
of complex orders (such as fibre access installation) requires 
decomposition into a chain of tasks, together described as 
an ’order journey’. Each individual task can involve various 
external dependencies (e.g. traffic management, hoist, and 
digging) and be subject to hazards or delays. Throughout 
the journey, planning agents must decide the next action 
to progress the order on the basis of textual notes reported 
by technical engineers. However, understanding these notes 
can be challenging for non-experts in the field of telecom-
munication engineering. Therefore, to support planning 
agents we have developed a recommender system to iden-
tify the most appropriate scenario for a given query note. 
This recommender acted as the classification engine to test 
our framework, and allowed the opportunity to co-create 
various explanation methods with a real user base. Though 
we demonstrate the application of this model to a specific 
use case, our method can be adapted to any reasoning task.

We extend our analysis in this paper to include an inves-
tigation of the relationship between explanation quality and 
similarity knowledge between a query, its neighbour set and 
its explanation. To this end, we introduce two novel similar-
ity-based metrics, called Meet-In-The-Middle (MITM) and 
Trust-Your-Neighbours (TYN) respectively. Our hypothesis 
is that leveraging knowledge of the relationship between 
query and its neighbour set presents an opportunity to 

formalise a user’s explanation need within a specific region 
of the space. We believe similarity-based metrics will there-
fore be well placed to judge the quality of explanations by 
measuring the similarity of the provisioned explanation to 
the identified explanation need. Using these metrics, we 
generate some interesting analysis and insight into use of 
similarity for measuring explanation quality.

The contributions of this paper are as follows. Firstly, 
we (1) outline the development of a modular explainability 
framework and detail several of its sample modules. We (2) 
implement a live version of this catalogue to answer the real-
world problem of supporting desk-based planning agents. 
We (3) perform a qualitative evaluation to understand user 
opinion on the quality of provided explanations. Finally, we 
(4) explore the correlation between the quality of an expla-
nation and similarity knowledge within the latent space.

The paper is structured in the following manner. In Sect. 2 
we provide some details on related work. In Sect. 3 we moti-
vate the need for our framework through the use case of 
improving the transfer of information between technical 
field engineers and desk-based agents. In Sect. 5 we provide 
details about our explainability framework and give exam-
ples for each of the categories of low-level and high-level 
explanations. In Sect. 6 we describe our efforts to explore 
any correlation between the quality of explanations and the 
similarity of recommended examples. In Sect. 7 we provide 
details of a qualitative evaluation on explanation quality. 
Lastly, in Sect. 8 we offer some conclusions.

2  Related Work

The term ’explainability’ refers to the level at which a 
machine learning algorithm’s decision-making processes 
and outcomes are comprehensible to its intended user base 
[17]. Though explainability has been a subject of works 

Fig. 1  A flow diagram of the developed system, displaying its linked components
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since relatively early in machine learning research [15, 32] 
recent governance requirements such as EU legislation [5] 
and the increased complexity of neural models have con-
tributed to a resurgence of interest in this field [2, 10, 17, 
22]. However, defining what is comprehensible to a given 
user (or group) requires knowledge of areas where they lack 
understanding to anticipate where they will require addi-
tional support. Therefore central to the idea of explainability 
is the concept of mental modeling. A mental model can be 
summarised as a user’s conceptual understanding of an intel-
ligent system; it is everything they know and believe about 
a system’s algorithmic processes, as well as any biases or 
expectations they may have regarding its outcomes [10]. It 
is when a situation occurs that challenges these perceptions 
that a user requires an explanation, so that they can update 
the relevant area of their mental model. We can describe a 
user’s ‘explanation need’ as the area where there is discrep-
ancy between their mental model and an algorithm’s true 
nature [33], while an ’explanation’ is the artefact which must 
be created in order to fill that gap [17].

In practice, the need for an explanation can occur when 
the expectations of a system’s user group do not match up 
with one another, or are not aligned with the system’s output. 
A common cause for this is when individuals’ capabilities 
and expertise are not considered [28]. In [26] for example, 
the authors highlight that understanding the relationship 
between the needs of a technical expert and the needs of 
a non-technical user is of fundamental importance for the 
success of a deployed industrial application. It is often the 
misalignment of objectives between these two parties, or the 
inability to effectively transfer information between them, 
that leads to costly errors. In domains such as field service 
provisioning for telecommunication organisations where 
the technical experts heavily rely upon their non-technical 
counterparts for administrative and logistical purposes, it is 
vital that a clear and understandable flow of information is 
maintained between the two groups.

Furthermore, we rarely intend for a system to be used 
by a single user in isolation. Recent work has demonstrated 
that it is important to be aware of the multiple stakeholders 
who are likely to require an explanation of an intelligent 
system [10, 21, 22, 26]. Each user of an intelligent applica-
tion approaches the system with an individual context which 
defines their need for an explanation [21]. Some research-
ers argue that part of the responsibility of an explainable 
intelligent system is to enable fairness of its use throughout 
its user base [2]. Therefore, several works in the literature 
which have attempted to group stakeholders by explanation 
need. In [22] the authors suggest that users of an intelli-
gent application can be divided into three groups (novice 
users, domain experts and AI experts), each with distinct 
explanation needs. While AI experts are usually satisfied 
by global explanations describing how the learned model 

operates, novice users and experts within individual domains 
are more likely to require local explanations contextualised 
by specific input-output examples. Despite this similarity in 
need, there remains a wide gap between these latter groups 
in regards to their contextual domain knowledge. This divide 
is noticeable within our context when comparing field engi-
neers with desk-based agents. It follows that no single expla-
nation method is therefore suitable to answer every possible 
need from every possible stakeholder. This intuition inspired 
us to develop a catalogue of explanation methods, allowing 
users to utilise the most suitable combination of explanation 
mechanisms to meet their individual needs.

Different explanation needs from different users are bet-
ter satisfied by different types of explanation. As intimated 
above, the term ‘explanation’ broadly refers to an artefact 
which reinforces the comprehensibility of an algorithm. 
The most appropriate way to achieve this is inherently 
linked to explanation need itself [33]. One approach is to 
improve model transparency. If the user can clearly see and 
comprehend the decision-making process of an intelligent 
model then this is usually sufficient to convince them of its 
effectiveness and clarify why an outcome was reached. This 
school of thought has lead to classification of algorithms on 
the basis of their transparency: black-box algorithms, where 
the decision-making is fully opaque; grey-box algorithms, 
where the process is clear enough that additional information 
can be used to interpret missing information; and white-
box algorithms, where the decision-making process and all 
needed information to support that process is clearly vis-
ible and understandable [8, 30]. This is particularly useful 
in domains where the features used as input to a machine 
learning algorithm are understandable to its intended user 
base. For novice users who might be unaware of the system’s 
context, contextualisation might be required to understand 
how the system relates to them [22].

Another strand of research has aimed to explain outcomes 
of machine learning models using the relationship between 
specific examples of system input and output. For instance, 
the LIME algorithm learns surrogate models locally around 
predictions to enable explanation of specific examples [29]. 
Recent work in this area considers the user’s mental model to 
influence it’s explanation. In one example in robot task plan-
ning, the system labels individual steps within generated plans 
for complex actions. These labels are selected based upon 
anticipated human understanding of how the steps contribute 
to goal achievement, thereby drawing a connection between 
the user’s mental model and the robot’s actions at a specific 
point in time [35]. Explanations based on specific input-output 
examples are useful as they contextualise the explanation by 
demonstrating recognisable impact on model decision-making. 
However, they rely on multiple explanations to be given to 
the user to cover different aspects of system decision-mak-
ing. It would be desirable for an ecosystem of transparent 
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and explanatory methods to be working in tandem to support 
explanation algorithms.

Given the variability in explanation needs and explanation 
types, a further challenge is the evaluation of explanations 
intended for multiple stakeholders. How to evaluate explana-
tions, the need-for and usefulness-of which are fundamentally 
subjective to an individual user’s context [10, 25], is generally 
considered a user-centric area of machine learning research. 
For that reason, much of the work in this field has aimed to 
formalise qualitative measures of human understanding into 
quantitative metrics of system performance [8, 22, 23, 34]. For 
example, in [8], the authors suggest the explanation quality 
of a system can be appraised through a mix of subjective and 
objective measurements. These measurements are: user satis-
faction (e.g. the clarity and utility of the explanation); mental 
model (e.g. the ability to understand individual decisions and 
identify strengths and weaknesses of the model); task per-
formance (e.g. whether user ability to complete the task is 
improved by using the system); trust assessment (e.g. whether 
the system is trustable); and correctability (e.g. the user can 
rectify incorrect decisions). A mix of subjective and objective 
metrics allows developers to measure user opinion of explana-
tion quality (through user satisfaction, mental model and trust 
assessment), as well as determine whether the explanations 
actually approve on practice in an applied environment (via 
task performance and correctability). Similarly, the authors in 
[34] propose five goals that an explainable system should be 
able to achieve: it should be (1) transparent; (2) able to justify 
its decisions; (3) support the user in their ability to concep-
tualise necessary features; and (4) ensure that the approach 
adopted by the system is relevant to the problem. These aspects 
should (5) support the user in their ability to learn both about 
the system and the problem domain [34]. They propose that a 
system can then be assessed by how well it is aligned to each 
of these goals.

Though attempts to empirically evaluate explanation 
methods without user feedback are growing more common, 
these metrics typically rely on justifications that explana-
tion has improved algorithmic performance or comparisons 
against model-agnostic and/or interpretable model baselines 
[7, 22, 31]. We are less aware of methods which attempt to 
assess explanation quality by exploiting similarity informa-
tion. In this respect, we suggest our work in modelling the 
relationship between a query, its neighbour set in a latent 
space and the retrieved explanation, is relatively unique.

3  Use‑Case ‑ Explaining Engineering Notes 
to Desk‑Based Agents

The personnel within complex services provisioning for 
telecom organisations can be broadly divided into two 
categories; the specialist-skilled workforce who fulfil 

the required technical work (such as field engineers) and 
those who support them in their capacity to do so (such as 
planning agents). In regards to this former category, we 
highlight the telecommunications field engineering force 
whom develop expertise in network equipment installa-
tion and repair. Field engineers are assigned tasks in a 
timely manner to ensure continuous service delivery. In 
this domain, a task typically represents a time-sensitive 
activity on a piece of equipment (such as maintenance, 
installation or decommissioning) or interacting with and 
responding to customer inquiries (both residential and 
business). As part of work force auditing, field engineers 
record information about the tasks they have completed in 
text documents called ”notes”. These notes form a knowl-
edge-base of experiential content and are comprised of 
rich, heterogeneous information.

From the other perspective, one of the responsibilities 
of planning agents is to incorporate knowledge sourced 
from task update notes to identify and regulate suitable 
task intervention or assistance. We describe this pro-
cess as anticipating the next ’scenario’ for a given task. 
Though these agents develop aptitude in understanding 
some aspects of telecommunication engineering, they do 
not benefit from the experience or training that technical 
experts receive. The result is an increased likelihood of 
human-error and decreased efficiency when they interpret 
engineer notes to anticipate the appropriate scenario, par-
ticularly in cases where the notes are complex.

A recommender system offers means to support the 
desk-based agents in their work and pave the way for 
potential automation of some diagnosis operations in 
future. However, such a system would need to prove its 
trustworthiness for real-world application through trans-
parent and explainable decision-making. The goal of the 
system is therefore to identify the appropriate scenario for 
a desk-based agent given an engineering note and explain 
why that scenario was selected.

4  Classification of Scenarios

We performed an exploratory evaluation to understand the 
effectiveness of different representation learners and clas-
sifiers on the task of scenario classification using a dataset 
extracted from our use case. We considered both a distribu-
tional (term frequency/inverse document frequency) and a 
distributed (Document-2-Vector) method of learning repre-
sentations. We also considered three classification methods 
- k-Nearest Neighbour (kNN), Logistic Regression (LR) and 
a Multi-Layer Perceptron (MLP). We used accuracy in a 
classification task as a proxy measurement for representa-
tion goodness.
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4.1  The Dataset

We extracted 46 days worth of engineering note data, spread 
between the months of May, August, September and Octo-
ber. In total, we extracted approximately 6,800 task notes 
over 33 unique scenario types (classes). We then removed 
any class which contained less than 5 examples. It also 
became clear that a certain scenario, “No New Action 
Required” (NNR), was fully reliant on external informa-
tion and not on the contents of the note. This was because 
the NNR class was only relevant if a scenario had already 
been organised for a given task. Based upon feedback gained 
from co-creation with the user group, we decided to remove 
this class until the external data source was available. The 
resulting dataset contained 5,343 notes spread between 29 
classes. There was notable class imbalance, with the rarest 
class containing only 7 notes while the most populated class 
contained 1,120 (see Table 1).

Using this dataset, we created a classification task where 
notes were classified according to one of 29 scenarios. The 
dataset was divided into distinct training and test sets using 
five-fold cross-validation.

4.2  Experiment Parameters

Term frequency-inverse document frequency (tf-idf) is a sta-
tistical measure to develop representations for documents 
in a corpus based upon the terms they contain. The value 
for each term is calculated by dividing the frequency of its 
usage within a document over the number of documents 
which contain the term within the corpus and controlled 
by a normalising factor [27]. Therefore, each feature of a 
document vector is a value which represents an individual 
word from the corpus vocabulary and so vectors can be very 
sparse. Document-2-Vector (Doc2Vec) [14] is an extension 
of the Word2Vec algorithm [20]. In Word2Vec, the repre-
sentation for each word is learned by training a small neural 
network on word co-occurrence. The neural network learns 
a representation for each word such that words with similar 
context will have a similar representation. The result is a 
representation of each word which is indicative of how it 
relates to every other word in the vocabulary (which gives 
an idea of what concepts the word belongs to). In its simplest 
form (and the one we use in this work) Doc2Vec is merely 
an average of the word embeddings to give a representation 
for a document.

Logistic regression is a statistical approach where the 
classifier learns a predictor function to model the relation-
ship between a document and each of its features. When this 
function is averaged across a large set of documents it tends 
to generalise well to unseen examples. We can then apply 
this function to get a label for query documents. K-NN clas-
sifies a query document based upon a (potentially weighted) 

vote of the k most similar examples from a set of docu-
ments. The value k is an integer to threshold the number of 
neighbours to consider during the voting process. Weighted 
variations of k-NN ensure that the most similar documents 
will have more weight during voting. An MLP is a neural 
network trained by providing a large number of labelled 
examples to learn a set of weights and biases which approxi-
mate the relationship between each document and its label. 
Once sufficient accuracy is achieved through training, these 
weights and biases can be applied to a query document to 
establish the probability of the document belonging to each 
label which was provided during training. We take the label 
with the maximum probability as our classification.

The hyper parameters for both representation learners and 
all three classifiers were optimised using a grid search (an 
exhaustive search of all combinations of hyper parameters 
for a given algorithm). In the case of tf-idf, data was pre-pro-
cessed by removing stop words and stemming words to their 

Table 1  Number of examples within each class

Scenario Acronym Examples

Aerial cable required AER 22
ARLLAOH ARL 7
Asset assurance required ASA 55
C002 - new circuit D side C02 51
C004 - plan do installation C04 154
C017 - D-Pole validation C17 105
Customer access CA 41
Customer readiness and sales query CSQ 333
Complete COM 345
Dig required DR 614
Duct work required DWR 11
Exchange equipment required EER 18
Faulty E Side FES 350
Frames work required FWR 60
Hazard indicator HI 93
Hoist required HSR 286
Hold required HLR 127
Line plant required LPR 36
Manhole access required MA 25
New site required NSR 10
No access NA 164
No dial tone NDT 28
Out of time OOT 1120
Planning required PLR 431
Polling required POR 319
Survey required SR 32
Track and locate required TLR 193
Traffic management required TMR 198
Underground work required UR 124
Total 5353



402 KI - Künstliche Intelligenz (2021) 35:397–411

1 3

root form. We then considered the 300 most common uni-
grams (n-gram range of 1) to build a representation. Finally, 
this output was normalised using cosine normalisation. For 
Doc2Vec, a window size of 10 was used to identify seman-
tically related words and generated a representation of 300 
features. For the kNN classifier we used the 5 nearest neigh-
bours and the voting mechanism was weighted by distance, 
while for LR we used L2 penalties with no class weighting 
and a maximum of 100 iterations. Lastly, our MLP classifier 
was formed of a single layer containing 100 neurons. This 
was trained for 200 epochs, with a batch size of 200 exam-
ples, using ReLU activations and a categorical cross-entropy 
loss function supported by the Adam optimizer [12].

4.3  Results and Discussion

The results of the experimentation can be seen in Table 2. 
Tf-idf offered superior performance on this problem when 
compared to Doc2Vec, both when including the NNR class 
and when not. This is for two reasons. Firstly, Doc2Vec (like 
other neural network based approaches) commonly requires 
a large training set to function very effectively. Pre-training 
of a Doc2Vec model is also not valid here, due to the high 
usage of unique technical vocabulary in the notes. This also 
informs the second reason for the better classification per-
formance achieved by representations learned via tf-idf. 
The likely scenario for a given note is highly reliant on the 
technical vocabulary which is used to describe the work per-
formed as part of the task. In light of this we also tried a sim-
ple rule-based token-matching approach, but its performance 
did not match either of the above methods. This suggests that 
the additional information that tf-idf offers about term rarity 
(in the form of its idf portion) is important.

Removing the NNR class offers a much improved perfor-
mance for the classifiers using representations gained from 
tf-idf. As above, this is likely due to the focused technical 
vocabulary of the notes, a mixture of which would be used 
throughout the NNR class. This is misleading, as the vocab-
ulary used within a note is irrelevant to whether it should 
be classified NNR or not. Hence the decision to remove the 

NNR class from our dataset. That said, it is interesting to 
note that (with the exception of kNN) removing the NNR 
class did not overly affect the classification accuracy gained 
from the Doc2Vec representations. We take this as further 
support that a much larger volume of text would be needed 
to ensure that Doc2Vec could function effectively on this 
problem. This is supported by the improved performance of 
kNN on Doc2Vec representations when the NNR class was 
present. Direct similarity comparisons are more likely to suf-
fer than approaches that perform further feature engineering, 
when the learned representations are non-optimal.

As a result of this evaluation, we elected to use represen-
tations learned from tf-idf and classified according to kNN 
as the classification engine for our use case. This decision 
was also impacted by the knowledge that decisions must 
be made explainable to our users. The kNN algorithm is 
well-suited to explanation due to its focus on similarity 
knowledge between examples, while both LR and MLP are 
more opaque to novice user groups (such as those that our 
desk-based agents represent). Furthermore, the representa-
tion learned by tf-idf correlates directly with visible terms 
in the notes, making it too well suited for non-experts in 
machine learning. In future work, we plan to comprehen-
sively explore the relationships between representation 
learner, classifier and explanation more deeply, with the 
intent of integrating a range of possible combinations to our 
explanation framework.

Given the imbalance within the dataset, we also investi-
gated whether the promising results were due to large classes 
performing well at the cost of smaller classes. We produced 
a confusion matrix to compare the predicted and true label 
produced by the classifier. As can be seen Fig. 2, the clas-
sifier is producing robust predictions across both large and 
small classes. Looking specifically at classes with less than 
20 examples, we can observe that for classifications relat-
ing to DWR, EER, NDT, and NSR, all queries were classi-
fied correctly. We are therefore satisfied that the accuracy 
obtained by the classifier is robust, and the metric is not 
being skewed by strong performance on only large classes 
within the dataset.

5  Development of Explanation Strategies

The use case offered a platform for co-creation to identify 
what the users considered important aspects of explanation. 
Meetings with the end user group or their managerial repre-
sentatives occurred weekly throughout development of the 
framework. The results of these sessions revealed that the 
overwhelming desire from co-creation participants was that 
explanations should be counterfactual, supporting findings 
in [21]. Co-creation participants were specifically interested 
to understand why a certain scenario was recommended and 

Table 2  Classifier performance on tf-idf and Doc2Vec representa-
tions with/without NNR class, with highest accuracy highlighted in 
bold

Representation Classifier Accuracy (%)

w/ NNR w/out NNR

TF-IDF kNN 50.88 99.10
LR 54.60 76.08
MLP 54.30 98.25

Doc2Vec kNN 27.70 16.24
LR 22.80 23.64
MLP 28.10 28.06
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what features had led this scenario to be recommended. Co-
creation participants felt that understanding the causal rela-
tionships between terms within the note text and organising 
the appropriate intervention would support on-the-job learn-
ing. Furthermore, there was an acknowledgement through-
out co-creation that desk-based agents would require more 
clarity around their explanations than engineers would, but 
that this would also be down to an individual. One example 
cited was that an experienced desk agent may well know 
more than an apprentice engineer. Therefore, the framework 
should be flexible to give the level of explanation support 
that is required.

With the results of this co-creation in mind, in this paper 
we present a framework of explainability mechanisms that 
support a classification engine by explaining its output. The 
idea is to have multiple levels of explanation support by 
providing explainablility methods of increasing contextual 
awareness. In this work, we divide explanation mechanisms 
into two categories:

– Low-level explanations methods allow the user to 
visualise key information that provide insight to system 
decision-making and support interpretation.

– High-level explanation methods augment one or more 
low-level explanations with contextual information to 
enable more comprehensive explanation.

We provide an example of a module from each category 
below. Each example is specifically implemented to sat-
isfy requirements of our co-creation group. Furthermore, 

as inspired by [34], we highlight each goal that a specific 
module is designed to achieve.

Though the use case we have selected for discussion in 
this paper is confined to the use of textual data, the goal of 
the framework is to be data agnostic. The idea is that this 
will provide a resource for developers within the telecom-
munication organisation to easily and quickly integrate with 
their projects. Effective cataloguing (i.e. allowing searching 
by explanation type, the explanation goal it supports and 
data type) is key to provisioning a maintainable and acces-
sible framework.

5.1  Low‑Level Explanations

Low-level explanation methods describe key information 
directly extracted from the data itself or generated as part 
of the decision-making process. In the literature these are 
described as analytic explanations [22].

5.1.1  Confidence Measures

We can establish the confidence of our predictions with the 
traditional method of using similarity as a proxy [3]. If simi-
larity is sufficiently high, we can be confident that our clas-
sification is correct. We base our confidence on the similar-
ity of the nearest neighbour from a given label. Confidence 
measures can be seen as a form of justifying the decision 
which has been made by the system.

5.1.2  Word Overlap and Scoring

Scoring features to identify their contribution to algorithmic 
decision-making is a common trope throughout traditional 
machine learning methods [16, 19] and the subject of grow-
ing work in modern neural methods [6, 11]. Research has 
identified that it is important for users to understand the dif-
ferences between a query and its neighbours [19]. With this 
in mind, we designed this module to promote understanding 
of the impact that note vocabulary has on system decision-
making. The overlap component identifies key terms which 
appear both in the query and within the neighbour set of a 
particular label. This enables the user to quickly visualise 
key similarities or differences between the notes and inform 
about complementary terms from similar notes in the cor-
pus. The word scoring module then measures the activation 
of terms to highlight the influence of each term’s local simi-
larity on selection of a given neighbour note.

A key aspect of this module is correctability, as it offers 
the user a simple interface to highlight non-relevant key-
words which were included in the explanation, and report 
relevant key words which were missing. In turn, this allows 
update of the explanation to improve it for similar future 
users, as part of end-to-end debugging of explanations [13].

Fig. 2  Confusion matrix comparing the true and predicted label for 
tf-idf representations using knn classifier
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This method can be extended to cover phrases or dis-
tributed approaches [1]. Word scoring and identification of 
overlapping terms is a method of improving the user’s ability 
to understand the underlying concepts of system decision-
making and improve interpretability of the process.

5.2  High‑Level Explanations

While low-level explanations identify key information about 
the query or recommendation, they are potentially inacces-
sible to non-expert users. In these scenarios, it would be 
helpful to give the information context by incorporating rel-
evant background knowledge. High-level explanations cover 
verbal and visual explanations [22], which are generated 
by building on insights from low-level (analytic) explana-
tions. In this work, we use the example of generating sum-
maries to contextualise similarities and differences between 
notes based on the output of the ’word overlap and scoring’ 
component.

5.2.1  Summarisation of Similarities/Differences

We consider a method of extractive summarisation to create 
a verbal explanation of similarities and differences between 
a query note and its neighbour set. First introduced in [18] 
as a means to create abstracts for journal papers, extractive 
summarisation is reliant upon the identification, extraction 
and combination of content representative sentences to sum-
marise a document. It is applicable in domains where docu-
ments share unique technical vocabulary, such as law reports 
[9] or research papers with similar focus [4]. Our method of 
summarisation builds upon those mentioned. Given a query 
and a neighbour note (or set thereof), we are interested in 
summarising the similarities or differences. This means we 
are generating a summary from a list of overlapping and 
non-overlapping terms, as opposed to generating a summary 

from a full document. Essentially, we are augmenting the 
technical vocabulary which is highlighted by the low-level 
’word overlap and scoring’ mechanism and giving context 
to that information with free text.

From the notes, we generate a case-base of summaries 
which will act as summaries. Each note within the full use-
case dataset (see Sect. 4.1) is divided into multiple sentences 
by slicing at natural end points (such as the end of a sen-
tence, or beginning of a new topic). We pre-process these 
sentences by stemming their word contents, removing stop 
words and transforming using tf-idf. These sentences are 
then collected into a case-base of summaries, where the 
problem component of the case is the tf-idf vector, and the 
solution component is the sentence. When the classification 
model is queried, we identify overlapping (or non-overlap-
ping) words between the query and its return set using the 
method presented in Sect. 5.1.2. For each list, we create a 
tf-idf vector, representing the overlapping and non-overlap-
ping terms respectively. These two vectors are then used to 
query our summarisation case-base to find the most similar 
case which will act as a summary of similarities and differ-
ences. This process is demonstrated in Fig. 3. Words can 
be weighted using their idf score to emphasise rare terms 
and we can integrate aspects of query expansion from infor-
mation retrieval research and augment queries with further 
information using local context.

This summarisation method produces a sentence in the 
engineers own words. This is useful for two reasons. Firstly, 
when engineers use the system it can be reassuring and trust 
building for them to see the difference clearly in their own 
words. Secondly, in the instances where non-experts are 
using the system, the summary of similarities and differ-
ences can expose them to language that engineers use in a 
controlled environment and supported by the other low-level 
explanation methods. This can improve learning about the 
original source data. However, autonomously evaluating the 

Fig. 3  Summarisation of 
similarities/differences between 
a query note and a set of neigh-
bours
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quality of explanations gained in this manner is traditionally 
difficult. In the next section, we discuss our attempt to model 
the quality of explanations using similarity knowledge.

6  Similarity Knowledge for Evaluating 
Explanations

Relying on user feedback means it is difficult to bench-
mark the usefulness of explanation methods before they are 
expanded to other user groups. It would be advantageous 
if we could identify consistent patterns of what makes a 
’good’ explanation. Given the context of this work, it seems 
reasonable to investigate the similarity between examples 
as a potential indicator of explanation quality. We therefore 
propose two novel methods of similarity-based explanation 
scoring which we introduce as Meet-In-The-Middle (MITM) 
and Trust-Your-Neighbours (TYN). Both of these metrics 
aim to quantitatively model the area of ’explanation need’ 
that is suggested by a query. While MITM explicitly con-
siders the relationship between a query and its neighbour 
set in its scoring mechanism, TYN implicitly considers this 
relationship. We describe both mechanisms in more detail 
below.

6.1  Meet‑In‑The‑Middle (MITM)

The MITM metric attempts to model the user’s ’explanation 
need’ from an explanation to enable scoring of whether the 
retrieved explanation meets that need. We propose that the 
explanation need experienced by a user in a similarity-based 
system is typically the understanding of the similarities and 
differences between the user’s query and the neighbour set 
responsible for its classification. We base our approach on 
the observation that the query note, the notes used to pro-
duce the explanation (from summarisation) and the notes 
used to identify the classification label are all linked. We 
then take (and discuss through experiments) the assumption 
that if the meaning of a query note x and a neighbour n1 is 
understood by the user, then the meaning of the sentences 
built from the same vocabulary as x and n1 will likely be 
understood too. This intuition is supported by our findings 
from co-creation with real users. Therefore, in a latent space 
the representation for the explanation need can be hypoth-
esised to exist within the range of values between the repre-
sentation for a query and the centroid of representations for 
its neighbour set.

Although better understanding of each individual user 
is required to pinpoint where exactly within this range the 
specific explanation need may lie, we can approximate with 
a certain degree of accuracy by taking the midpoint to act as 
a proxy. By doing so, we are explicitly considering the exact 
point in the space which would summarise the relationship 

between them. The midpoint can be seen as the point where 
a note, were it to exist, would contain a perfect blend of 
the information contained within the query and the neigh-
bour set. Therefore, this midpoint could be seen as the most 
appropriate summary to describe the similarities/differences 
between two notes. With that in mind, it is our intuition that 
the distance between the midpoint and the actual explana-
tion which is retrieved, could act as a metric for the quality 
of the explanation.

To extract the MITM score M
s
 for a given query x we 

firstly we take the centroid of the neighbours n ∈ N using 
the function c() (Eq. 1). Using the centroid allows us to rep-
resent the neighbour set as a single point within the fea-
ture space. We can then identify the midpoint between the 
x and c(N) (Eq. 2). Finally, we use a distance metric D

W
 to 

measure the distance between mid(x, c(N)) and the retrieved 
explanation e (Eq. 3).

The MITM score M
s
 for an explanation is therefore captured 

as a real value. We demonstrate this process graphically in 
Fig. 4.

6.2  Trust‑Your‑Neighbours (TYN)

As many of the background research works indicate, expla-
nation knowledge is informed by the relationship between 
the query and the classification. With that in mind, it 
would seem foolish to disregard any query information in 
a potential metric. However, in similarity-based algorithms 
the neighbour set maintains some query knowledge. This 
occurs because the neighbour set is identified based upon the 
query’s placement into the feature space. Therefore, query 
knowledge is implicitly captured. We can use that knowledge 
to inform the development of another metric - Trust-Your-
Neighbours (TYN).

TYN follows an assumption that the explanation need 
associated with a query is less concerned with specific dif-
ferences between the query and its neighbour set. Instead, 
the explanation need is associated with a user’s inability to 
comprehend the region of the space into which the query 
has been placed. In other words, TYN measures would sit 
well with the assumption that the user is likely unable to 
understand why examples in the neighbour set are similar 
to each other. Therefore, a useful explanation is one which 

(1)c(N) =

∑�N�
i=1

n
i

�N�

(2)mid(x,N) =
x + c(N)

2

(3)M
s
=D

W
(mid(x,N), e)
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helps the user to understand the relationship between these 
neighbours.

To extract the TYN score T
s
 for a given explanation, we 

make some adaptation to the MITM formula. Similar to 
MITM, we firstly we take the centroid of the neighbours 
n ∈ N using the function c() (Eq. 4). We then use a distance 
metric D

W
 to measure the distance between the neighbour 

set centroid c(N) and the retrieved explanation e (Eq. 5).

This allows us to capture the TYN score T
s
 for an explana-

tion as a real value. We demonstrate this process graphically 
in Fig. 5.

7  Evaluation of Explanation Framework

Evaluating the quality of explanations is traditionally dif-
ficult due to their inherent subjectivity. The needs of dif-
ferent user groups can be very different, which is reflected 
in their expectations of what an explanation should offer. 
With this in mind, we evaluate the quality of explana-
tions using qualitative feedback from telecommunication 
field engineers. Technical experts were selected to iden-
tify whether explanations emulated their decision process, 
as requested during co-creation. We retrieved qualitative 
feedback on explanation quality from individual engineer 

(4)c(N) =

∑�N�
i=1

n
i

�N�

(5)T
s
=D

W
(c(N), e)

comments verbally communicated during a beta test of 
the software. Furthermore, we extracted structured feed-
back from desk-based agents during a pilot test of the soft-
ware. This allows analysis of results from two distinct user 
groups and insight into two separate ways in which the 
system would be used.

In this paper we measure the effectiveness of our expla-
nation by applying the model suggested in [8]. The model 
divides evaluation of an explainable systems into five dif-
ferent headings: user satisfaction (e.g. the clarity and util-
ity of the explanation); mental model (e.g. the ability to 
understand individual decisions and identify strengths and 
weaknesses of the model); task performance (e.g. whether 
user ability to complete the task is improved by using the 
system); trust assessment (e.g. whether the system is trust-
able); and correctability (e.g. the user can rectify incorrect 
decisions). We examine each of these aspects in turn.

Furthermore, we investigate the relationship between 
explanation quality and the two proposed metrics, MITM 
and TYN. The purpose of this investigation is to identify 
whether these metrics can be used to model explanation 
quality. Based on the explanation method in Sect. 5.2.1, we 
consider the following six metrics: 

1. MITM-B: The distance between the midpoint of the 
original query note and the centroid of nearest neigh-
bours of that class (computed from an average of the 
queries for overlapping and non-overlapping keywords) 
and the explanation center point (computed from an 
average of the representations for the returned sentences 
to summarise similarity and differences).

Fig. 4  Capturing the MITM score Fig. 5  Capturing the TYN score
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2. MITM-S: The distance between the midpoint of the 
original query and the centroid of nearest neighbours of 
that class (computed by only considering overlapping 
keywords) and the representation of the sentence used 
to explain similarities.

3. MITM-D: The distance between the midpoint of the 
original query and the centroid of nearest neighbours of 
that class (computed by only considering non-overlap-
ping keywords) and the representation of the sentence 
used to explain differences.

4. TYN-B: The distance between the returned explana-
tion (computed from an average of the representations 
for the returned sentences to summarise similarity and 
differences) and the centroid of nearest neighbours of 
that class (computed from an average of the queries for 
overlapping and non-overlapping keywords).

5. TYN-S: The distance between the returned explanation 
(computed only from the representations for the returned 
sentence to summarise similarity) and the centroid of 
nearest neighbours of that class (computed by only con-
sidering overlapping keywords)

6. TYN-D: The distance between the returned explanation 
(computed only from the representations for the returned 
sentence to summarise differences) and the centroid of 
nearest neighbours of that class (computed by only con-
sidering non-overlapping keywords).

Our goal is to identify whether these metrics can be used 
to accurately measure explanation quality. Given that our 
hypothesis is that we can model explanation need as a spe-
cific area of the feature space, this evaluation will enable us 
to explore that assumption. To achieve this, we apply each of 
the metrics to the explanations provisioned to our engineers, 
allowing us to use the engineer feedback provided about the 
quality of each explanation as ground truth on whether it 
was useful or not. In this work we use Euclidean distance to 
calculate similarity between examples.

In this manner, our evaluation is two-fold. Firstly, using 
human feedback from engineers and desk-based agents, we 
use the DARPA model to evaluate the effectiveness of our 
systems ability to provision explanation. Secondly, we evalu-
ate whether the proposed MITM and TYN metrics corre-
late with human judgement, using the feedback provided 
by engineers during our first evaluation as a ground truth.

7.1  Results and Discussion

In total we observed 23 interactions between engineers and 
the system, and obtained feedback from desk-based agents 
for a further 30 interactions. All engineers provided a simple 
positive/negative score on whether the provided explanation 
was useful, while all desk-based agents used this score to 

indicate it supported them in their work. We therefore use 
results from engineers to measure user satisfaction, and feed-
back from desk-based agents to measure task performance. 
This distinction resembles the different scenarios in which 
we expect the system to be used.

Qualitative feedback was provided by 17 engineers and 
all 30 of the recorded interactions with desk-based agents. 
While engineers tended to give a feedback comment per 
explanation per class, desk-based agents supplied one com-
ment to summarise their feedback on all explanations and 
classifications for a given scenario. This is likely due to the 
difference in feedback capture mechanisms. Engineers were 
given opportunity to share all their thoughts during a closed 
beta test of the software, so had time to give detailed replies. 
Desk-based agents on the other hand were piloting the soft-
ware as part of daily work, and looking to maximise their 
efficiency. Furthermore, while engineers tended to focus 
on whether explanations justified each of the top-n recom-
mended scenarios, desk-based agents tended to prioritise 
the classification of a scenario and mainly commented on 
whether explanations supported only the correct recommen-
dation. As a result, feedback from engineers is more granu-
lar and descriptive of explanation quality, while desk-based 
agent feedback is shorter and focuses on task performance. 
An example of feedback from an engineer (and the explana-
tion case it refers to) can be seen in Table 3.

User satisfaction with the system seems reasonably high. 
Of the 23 interactions with the system, 15 (65%) engineers 
left positive feedback regarding the explanation quality. In 
almost all cases (7 of 8 or 87.5%) where negative feedback 
was provided by engineers, the explanation was associated 
with an incorrect classification. This suggests that when 
a user discovers an error in the system decision-making, 
they are also likely to find a fault in its explanation of that 
decision. Word matching and scoring was the most popu-
lar explanation mechanism, with almost every observed 
engineer discussing the selected words (both formally as 
recorded comments and informally with the researcher). 
Though summaries were observed, they were not discussed 
in the same level of detail. This is indicative that domain 
experts require less contextualisation from an explanation 
to understand it, likely because they can infer their own con-
text. This was an interesting (if somewhat expected) contrast 
to desk-based agents, who tended to prefer the retrieved sen-
tence summaries of similarities/differences.

In 20 of the 30 recorded interactions (67%) between desk-
based agents and the system, the explanation supported or 
improved their task performance. In 2 of these interactions, 
the classification was only partially correct, but the explana-
tion supported a correct classification. This was an interest-
ing finding, since one of the failings of the extracted dataset 
was that it did not demonstrate any examples where multiple 
scenarios could be recommended simultaneously, whereas 
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this was a possibility in real-life. It was interesting to see 
that the explanation made the system more robust to this, as 
the retrieved sentences gave desk-agents more information 
to support their decision-making. Overall the cases where 
classification and explanation were dually complement to 
identify the complete expected result, has contributed to a 
good level of correctability with the system. In one instance 
the classification of the system was completely incorrect but 
the retrieved explanation supported the desk-based agent to 
make the correct classification.

Although both user groups understood that the model was 
reliant on task note vocabulary, there was a tendency to mis-
understand the learned model as simple token matching. As 
such, engineers often criticised the lack of keywords identi-
fied for certain notes, even when they had little or no impact 
on model decisions. In one example, an engineer stated that 
’leaning’ and ’tree’ should be highlighted as key words, even 
though the word leaning is too generic to be represented by 
the vocabulary. Similarly, many desk-based agents would 
report cases of missing key words when these terms had 
no impact on decision-making. This is indicative that users 
were able to understand some aspects of system decision-
making (e.g. that it was vocabulary-based), but unable to 
mentally model the entire system. In future work, we aim 
to improve this.

Although not directly related to trusting the explanation 
itself, something that was interesting to observe was the lack 
of trust that desk-based agents displayed towards the system 
in general. Though not recorded in structured feedback, ver-
bal comments to the researcher indicated there was suspicion 
that the system was being used to audit working procedure, 
and this generally lowered user engagement. This was exac-
erbated by the feedback components because agents felt the 
system was aimed to assess their understanding of the job 
and to ensure their reasoning processes were appropriate. 
This was obviously not the case. Still, this feedback demon-
strates a good example of how areas of the workforce feel 
threatened by implementation of smart automatisation, and 

that having an explanation component does not necessarily 
resolve those fears.

Our model offers a means for users to submit corrections, 
which was well received by engineers. Of the 23 interactions 
with the system, 15 (65%) engineers made use of the feed-
back system to highlight missing or non-relevant words and 
phrases. Several engineers commented that they felt more 
comfortable with the system due to this feedback compo-
nent. This suggests that correctability of an explanation is 
an important consideration when users are deciding whether 
to trust the system. This may be something that could be 
resolved by prolonged use of the system, allowing engineers 
and agents to actually experience how their feedback updates 
the system. We plan to explore this further in future work.

7.2  Similarity Knowledge for Evaluating 
Explanations

We compared the output of the MITM and TYN metrics 
with a ground truth for explanation quality presented by tel-
ecom engineers. To perform this comparison, we obtained 
the output for the six metrics (MITM-B, MITM-S, MITM-D, 
TYN-B, TYN-S, TYN-D) for each of the explanations that 
were generated in response to real engineer queries. We were 
then able to compare them directly to the binary feedback of 
explanation usefulness provided by engineers. This allowed 
us to examine the correlation of whether these scores dem-
onstrated any trends for predicting useful or non-useful 
explanations. A visualisation of the results can be seen in 
the graphs in Fig. 6. For each graph, the y-axis is distance 
and the x-axis is a unique identifier for each interaction. For 
readability, we have ordered the graphs by increasing score.

When analysing the results, it would appear that both 
summary metrics (MITM-B and TYN-B, which combine 
the query generated for similarities and differences) show 
a consistent pattern. Explanations which are very similar 
to the estimated point of explanation need (the midpoint 
or centroid for MITM or TYN respectively) tend not to 

Table 3  Example of qualitative feedback on explanation quality from field engineers

Query Drop Wire already up at front of property but landlord wants the customer drop wire moved to the wall of the 
flat which is above the flat roof and to drill out where the socket is required is out to the flat roof.

Recommended scenario 
(action)

Out of time (Re-allocate engineer)

Keywords
 Overlap [flat, 3.33] [roof, 2.76] [wire, 1.43] [drop, 1.18] [abov, 0.7]
 Non-overlap [one,0.29] [insid,0.29] [coil,0.28] [side.,0.27] [build,0.27]

Summary
 Similarities Drop wire is already up at front of property.
 Differences I have fitted the socket inside and left a coil of cable.

Feedback Roof is rightly highlighted. Fair explanation since engineer faced additional steps on the customer site (drill out)
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be useful. Instead, most useful explanations tend to exist 
at least a set distance away from this point. This could 
indicate that the region identified by the metrics does not 
fully correspond with the actual explanation need. We note 
this is reflective of the literature regarding mental models, 
which highlights that explanation need is indicative of a 
mismatch between an individual’s mental model and the 
true nature of a system. The proposed metrics attempt to 

identify the region of this mismatch from the perspective 
of the model, and therefore do not consider the explanation 
need within the user’s mental model. Overall we believe 
this means that evaluation metrics should consider the 
alignment between mental model and algorithm to judge 
the quality of provisioned explanations. Therefore, we 
believe that our hypothesis is supported (i.e. similarity 
knowledge between ‘explanation’ and ‘explanation need’ 

Fig. 6  Comparison of the different scoring metrics and correlation with explanation quality
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is useful to measure explanation quality), but the proposed 
metrics need refinement to better identify the region of 
explanation need.

From the results, it also seems that MITM is generally 
better at modelling the quality of explanations describ-
ing differences between the query and its neighbour set, 
while TYN is more promising for scoring explanation of 
similarities. Given the differences between the two met-
rics, this observation suggests that understanding the dif-
ferences between a query and its neighbour set requires an 
knowledge of how these are linked, which the midpoint 
in MITM provides. However, understanding the similar-
ity between query and neighbour set is difficult without 
first developing knowledge of the region of the space into 
which the query has been placed. We highlight this as a 
valuable finding which could help inform the development 
of explanation quality metrics in future.

Examining each interaction in more detail (from Fig. 5), 
interactions 13 and 17 seem to be exceptions to these 
observations. For interaction 13, the engineer feedback 
states that the outcome and the explanation was a distinct 
possibility ”but at this stage in the task was more likely to 
be a risk than a definite outcome”. So the explanation was 
valid, but could not leverage temporal information to bet-
ter inform its findings - something which could be targeted 
in future. For interaction 17, both of the summary metrics 
(MITM-B and TYN-B) allocate it a very high score. The 
interaction involved the system attempting to explain an 
incorrect classification. This suggests that interaction 17 
involved a query which was allocated to a sparse region 
in the latent space, which may offer some reasoning as to 
why it does not follow general trends of other interactions. 
Another outlier is interaction 15, an interaction where a 
useful explanation was experienced by the user. By almost 
all metrics this interaction is judged to be very similar to 
the identified point of explanation need. For other inter-
actions this has typically been an indicator of non-useful 
explanation. This suggests that there is room for simply 
rewording statements and have them act as useful explana-
tion, but the situations in which this is useful will be rarer.

In future work, we wish to explore the application of 
MITM and TYN metrics to complex combinations of rep-
resentations and classifiers. The tf-idf vectors explored 
throughout this use case are extremely sparse so as a next 
step it would be desirable to assess the metrics on dense 
representations. Furthermore, our results suggest that 
similarity knowledge is useful to judge explanation qual-
ity, but these results are produced on a similarity-based 
algorithm. We are keen to investigate whether similar-
ity knowledge is useful to judge explanation quality for 
complex similarity-based algorithms such as deep metric 
learners, as well as other machine learning architectures.

8  Conclusions

We have described the development of a framework to pro-
mote explainability of machine learning methods within a 
telecommunication organisation. We have motivated and 
explored the application of this framework to the specific 
use case of explaining technical engineer notes to non-
technical planning personnel.

An evaluation of this framework over two distinct user 
groups, engineers and desk-based agents, demonstrates 
several key differences between them which impacts 
how they use the system. In particular it is interesting to 
note the different ways in which these two groups judge 
the quality of an explanation. For engineers, it is about 
whether the explanation follows their reasoning, while 
desk-based agents are more concerned with whether it 
supports their work.

We have also investigated the relationship between simi-
larity and explanation quality by introducing the two metrics 
MITM and TYN. Overall, these metrics seem to indicate 
that similarity and explanation quality do share a relation-
ship, but that it is quite complex. We hope this will inspire 
many avenues for further work in the utility of similarity 
as a metric for autonomous system explanation evaluation.

In future work, we plan to extend the framework to incor-
porate explanations which acknowledge sequential and co-
occurring scenarios, as these are necessary concepts for full 
automation. We also aim to apply this framework to further 
use cases, enabling us to better understand the explanation 
needs of users from different work types and experience lev-
els. Furthermore, there are some limitations with both of the 
proposed metrics. For example, MITM assumes that the user 
has a good understanding of the query. This can be problem-
atic in situations where the user does not fully understand 
what they are asking of the system. Similarly, when using 
TYN the centroid of neighbours may in fact be very similar 
to the query, which could interfere with the quality of the 
metric. We will investigate these in future work.
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