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Abstract. We performed an investigation of how several data relation-
ship discovery algorithms can be combined to improve performance. We
investigated eight relationship discovery algorithms like Cosine similar-
ity, Soundex similarity, Name similarity, Value range similarity, etc., to
identify potential links between database tables in different ways using
different categories of database information. We proposed voting system
and hierarchical clustering ensemble methods to reduce the generaliza-
tion error of each algorithm. Voting scheme uses a given weighting met-
ric to combine the predictions of each algorithm. Hierarchical clustering
groups predictions into clusters based on similarities and then combine
a member from each cluster together. We run experiments to validate
the performance of each algorithm and compare performance with our
ensemble methods and the state-of-the-art algorithms (FaskFK, Ran-
domness and HoPF) using Precision, Recall and F-Measure evaluation
metrics over TPCH and AdvWork datasets. Results show that perfor-
mance of each algorithm is limited, indicating the importance of com-
bining them to consolidate their strengths.

Keywords: Semantic Relationship · Primary/Foreign key Relationship
· Data Discovery · Database Management · Ensemble-Based Discovery

1 Introduction

Data are one of the most important assets in the economy of the 21st cen-
tury. Entire new industries rely on and are centred around the exploitation of
large data sets, as many modern business processes generate millions or even
billions of data records every day which are stored in databases. Understanding
the relationship between data and gaining insight from data is central to their
commercial success.

A user such as a business analyst may gain access to an existing database but
expertise about how data is structured and how data tables relate to each other
may not be provided, and little or no documentation exists. It could be that
the technical and domain experts have moved on or left the business altogether,



or many different groups have contributed to the database over time without a
single authority fully understanding the overall information. This is a significant
roadblock to exploiting this data. This challenge has mostly been addressed
through highly time-intensive human analysis and exploration by domain experts
[5, 6, 11, 22]. However, such an approach is limited due to time, cost and the
amount of information that can be looked at, and is further likely to be error-
prone [2, 7, 9]. Clearly, we need an automated mechanism to speed up the data
discovery process.

In this paper, we investigate several relationship discovery algorithms that in-
fer links between columns of tables and propose a framework that combines them
into an overall framework. To the best of our knowledge, several approaches have
been proposed to determine semantic relationships between database schemas
and several variations have been reviewed with each having its strengths and
weaknesses. See [1]. However, limited research work has been seen in exploring
various ensemble strategies for combining several relationship discovery algo-
rithms. One of these strategies was seen in [14] and this is in the space of schema
matching which focuses on the manipulation of database schema elements for
mapping [21].

Our motivation for combining several algorithms is to reduce the generaliza-
tion error of the prediction produced by the individual algorithms [12]. Individual
algorithms are diverse and independent so, the predictions made by a single algo-
rithm may lead to imperfect discovery compared to a framework that combines
several approaches [21].

Our proposed approach emphasizes recall and this is based on the premises
that our methods discover different relationship types; primary/foreign key (ex-
plicit) and semantically equivalent (implicit) relationships. We only rely on the
explicitly defined primary key/foreign key relationship as our gold standard.
Thus, false positives (which are more likely to be semantically equivalent rela-
tionships) could be discovered due to the impact of the specified gold standard.
This paper makes the following contributions;

– We investigated the problem of automatically discovering primary keys and
foreign keys as well as semantically equivalent (implicit) relationships by
ensemble methods.

– We used hierarchical clustering method as an ensemble framework to com-
bine the prediction of individual discovery algorithms to better provide a
comprehensive matching outcome.

The rest of this paper is structured as follows. Section 2 briefly explores some re-
lated work in relationship discovery. Section 3 defines the problem and describes
the individual algorithms and their ensemble strategies. The experimental eval-
uations are provided in Section 4. Finally, a conclusion is given in Section 5.

2 Related Work

Several approaches have been proposed in the literature using different categories
of data. For instance, Jiang and Naumann [11] proposed a holistic discovery of



both primary key and foreign key (HoPF) as a subset of sets of unique column
combinations and inclusion dependencies based on score function and several
pruning rules. [22] proposed ten feature-based approach to automatically detect
foreign keys using a machine learning model. In [6], K-Means clustering was
used to solve multi-schema matching problem. They used a well-known TFIDF
weighting to convert attributes to points in a vector space model and used cosine
measure as a distance metric between attributes. [15] proposed a content based
matching approach to determine the relationship between attributes which rely
on the combined strengths of Google as a web semantic and regular expression as
pattern recognition. [27] proposed an unsupervised solution that clusters set of
columns to identify attribute relationships based on similar value characteristics
using Earth Mover’s Distance (EMD) as distance measures.

3 Ensemble-Based Discovery

3.1 Problem Definition

For a given database of n tables, T = {t1, t2, · · · , tn}, let C = {c1, c2, · · · , cθ}
be the set of all columns of tables T where θ is the number of columns in the
database. We define ti(ci) as a table with an associated column where ci is an
i-th column of table ti. Let ∆ = {(ci, cj) : ∃ ti(ci) = ti(cj), (ci, cj) ∈ C × C}
be a set of column pairs (ci, cj) of the same table. We define gk = (Ck, Ek)
as a graph of inferred relationships between set of columns (nodes) Ck and
Ek ⊆ Ck × Ck ⊂ (C × C) \∆ as the set of edges of gk. Columns ci and cj are
nodes in Ck, and each pair of columns (ci, cj) represents an edge in Ek, such
that (ci, cj) ∈ Ck×Ck. Let fk : C×C −→ gk be a given discovery algorithm that
produces graph gk.

Our task is to determine the relationships between database tables which
forms a graph G. The relationships include both primary/foreign key and se-
mantic relationships which are determined by different discovery techniques to
produce graphs, whereby the graphs are combined, with appropriate ensemble
methods, to produce a global graph. The discovery techniques exploit meta-
data/schema information and column values available in relational database
model.

1. Input Parameters
(a) C - A set of all columns of the tables in T in the database DB.
(b) fk – A suitable method for discovering table relationships.

2. Output Parameters
(a) gk = (Ck, Ek) - A graph containing a set of column pairs (ci, cj) in Ck

where Ck ∈ C.

3.2 Relationship Discovery Algorithms

Pseudo-Primary Key Discovery (Pri) Pri is important in an application
area, where no explicit definition of primary and foreign key constraints is avail-
able [22]. Existing work in this area can be explored in [11, 18, 22, 26]. We denote



A as the subset of C, A ⊆ C, which contains all columns with explicitly defined
primary key columns in a database. Let B be defined as the subset of C \ A,
B ⊆ C \ A, which are columns qualified as potential primary key candidates.
The sets A and B do not share any columns. Let X be the union of A and B:
X = A ∪B. We then calculate a graph gk in which the nodes are columns from
X plus their associated foreign key columns. Two column nodes are linked in
the graph if they are in a primary/foreign key candidate relationship. We use
the following four tests to infer B.

– Alphanumeric Datatypes Test: Columns with alphanumeric datatypes.
– Nullability Test: Non-null columns.
– Uniqueness Test: Columns with unique values.
– Word Character Test: Columns with letter, digit or underscore character.

We distinguish two cases in primary key/foreign key column pairs:

– Either a column is explicitly marked as a foreign key in the database itself,
– Or we need to establish that the second (foreign key) column only contain

values that appear in the first (primary key candidate) column.

In Equation (1), values(ci) denotes values in column ci. w(ci, cj) returns 1
if two columns ci and cj are in a (potential) primary / foreign key relationship,
and 0 otherwise:

w(ci, cj) =


1, if ci ∈ A and cj is foreign key for ci and ti(ci) 6= ti(cj)

1, if ci ∈ B and values(cj) ⊂ values(ci) and ti(ci) 6= ti(cj)

0, otherwise

(1)

Name Similarity (NSim) Nsim is used to determine the linkages between ta-
bles by identifying the similarity between column names associated with each ta-
ble. Several names used in identifying tables and columns are usually designated
based on the nature of the business activities. Thus, column names may have
inconsistent designations across tables. For instance, a column name ”Customer
Name”, might be represented either as ”CustName”, ”CustomerN” or ”Cst-
Name”. We used Jaro-Winkler to discover the similarity between two columns
names (ci and cj) because it is a well-known algorithm used as far back in the
80s. This has currently been used in name similarity matching like entity match-
ing [24]. See [10] and [25] for detailed mathematical definitions. We used java-
string-similarity 3 library for our implementation. In equation (2), we define the
Score(ci, cj) function for all threshold dependent algorithms. The Score(ci, cj)
function returns 1 if a given Metric produces a value greater than or equal to
a given Threshold and if ci and cj are not from the same table ti. Score(ci, cj)
returns 0 otherwise. In the NSim algorithm, we implement JWinkler(ci, cj) as
the Metric function. The value of JWinkler(ci, cj) is a real number between
the range of 0 and 1. If this value is greater than or equal to the Threshold, 1

3 https://github.com/tdebatty/java-string-similarity



is assigned to Score(ci, cj) which allows us to add the two columns as nodes to
a graph gk and connect them in the graph.

Score(ci, cj) =

{
1, if Metric ≥ Threshold and ti(ci) 6= ti(cj)

0, otherwise
(2)

Usage-Based Approach (Usage) Usage uses a set of existing scripts from
the database to infer relationship between tables. Scripts may include existing
database logic such as procedures, functions, views or user queries. From these
scripts, we extract all pairs of columns that co-occur in linking tables together.
This approach was first introduced in [8]. Usage-based approach is suitable, in
special cases, where column names are opaque or where there are no sufficient
information about schema and data instance. However, it is often difficult to
obtain suitable usage data [20]. We used General SQL Parser (GSP) library 4 to
implement this approach. Let S = {s1, · · · , sq} be the set of existing scripts for a
database. si denotes a single script and references a set of tables Tsi in its logic.
We define Tsi = {tsi1, · · · , tsi ι}, where ι is the number of tables in Tsi . If script
si contains a link statement, e.g. a join statement, between tables tsix and tsiy,
and more specifically links the referenced columns in tsix and tsiy respectively,
we then, infer a link between those two columns and add the two columns as
nodes to graph gk.

Cosine Similarity Approach (Cosine) Cosine uses vector representation to
measure the cosine angle between two vectors. Cosine was used in [6] as a dis-
tance metric measure for clustering attributes. We adopt cosine similarity to
represent each attribute/column as a vector using Term Frequency Inverse Doc-
ument Frequency (TFIDF) weighting computation. TFIDF is a term weighting
scheme for cosine computation. TFIDF is a product of a term frequency (TF)
weight factor and an inverse document frequency (IDF) weight factor. We de-
fine the cosine similarity metric between a pair of columns as CoSim(ci, cj). See
detailed computation of cosine similarity CoSim(ci, cj) in [23]. The cosine simi-
larity value CoSim(ci, cj) is a real number between 0 and 1 and it represents the
Metric function defined in equation (2). If the value is greater than or equal to
the Threshold in equation (2), we then assign 1 to Score(ci, cj) or 0 otherwise.
A Score(ci, cj) of 1 will add the two columns as nodes to graph gk and connect
them in the graph.

Semantic Similarity in a Taxonomy (Sem) Sem exploits additional, exter-
nal information to measure the similarity between a pair of words or concepts.
The key resource used is a knowledge-based database, such as a business-specific
ontology or a general-purpose database like WordNet [17], which encodes rela-
tions between concepts. For example, when column headers are described slightly

4 http:/dpriver/www..com/



differently e.g., “AUTOMOBILE NO” can conceptually mean the same as “VE-
HICLE ID”. We used a knowledge based function in [16], to measure the simi-
larity between a pair of columns. We define the knowledge metric as Sem(ci, cj)
which computes the average similarity score by combining resultant similarity
scores of substrings of ci and cj . We define vik as the k − th substring / term
associated with the name for column ci. The SemSim(vik, vjk) metric in equa-
tion (3) is used in the Sem(ci, cj) metric computation (see [16]) which returns a
similarity score between a pair of terms vik and vjk associated with the names
of columns ci and cj respectively. A stopword (i.e, most common word in a lan-
guage) term returns score 0. If both terms are not in the knowledge networks,
name similarity JWinkler(vik, vjk) is used. JWinkler(vik, vjk) is also used for
terms that are either adjectives or adverbs in the knowledge network. Lastly, if
the pair of terms are both verbs or nouns in the knowledge networks, we then
compute simLin(vik, vjk), otherwise score returns 0.

SemSim(vik, vjk) =



0, if vik or vjk = stopword

JWinkler(vik, vjk), if vik or vjk /∈ ontologies
simLin(vik, vjk), if vik and vjk ∈ ontologies(noun)

simLin(vik, vjk), if vik and vjk ∈ ontologies(verb)
JWinkler(vik, vjk), if vik or vjk ∈ ontologies(adv)

JWinkler(vik, vjk), if vik or vjk ∈ ontologies(adj)
0, otherwise

(3)

We implemented simLin(vik, vjk) using Semantic Measures library 5. See compu-
tation in [13]. It takes two concepts and returns their semantic relatedness value.
Let Sem(ci, cj) represents the Metric function in equation (2). The Score(ci, cj)
function defined in equation(2) is assigned 1 if the Sem(ci, cj) is greater than or
equal to the Threshold and if the column pair are not from the same table.

Soundex Similarity (Soundex) It is a phonetic algorithm that indexes a
string by sound in English. It simply evaluates letters of a string and assigns a
numeric value. Soundex is used in the context of identifying the relationship be-
tween two tables based on the phonetic similarity between their column names.
See computation in [19]. We implemented Soundex using Apache Commons li-
brary 6 in Java. We denote the phonetic similarity as Sdex(ci, cj). The value
of Sdex(ci, cj) is between 0 and 4. A Sdex(ci, cj) value of 4 means that a pair
of column names sound strongly similar and 0 means otherwise. Sdex(ci, cj)
computes the Metric value in equation (2) to assign Score(ci, cj) a score 0 or 1.

Value Ranges Similarity (Val) Val uses minimum and maximum values of
column pairs to determine whether they are linked. Val works with numeric,

5 https://www.semantic-measures-library.org/sml/index.php?q=downloads#sml
6 https://commons.apache.org/proper/commons-codec/download_codec.cgi



strings or date datatypes. Two columns of the same datatype are similar if they
have similar value range pattern. We denote ai as a pair of minimum and max-
imum values 〈min(ci),max(ci)〉 for column ci. Columns ci and cj are logically
equivalent (ai ≡ aj), if ai is similar to aj or vice versa. The check range(ci, cj)
in equation (4) returns 1 for similar value ranges between two columns ci and cj
or 0 otherwise. (ci, cj) is added to gk if range(ci, cj) is 1.

range(ci, cj) =


0, if datatype(ci) 6= datatype(cj) or ti(ci) = ti(cj)

1, if ai ≡ aj and ti(ci) 6= ti(cj)

0, otherwise

(4)

Content-Based Similarity (Col) Col exploits and compares data instances
to determine the relationship between columns pair. content(ci, cj) returns 1 if
the set of value samples in column cj is a subset of unique values of column ci,
and 0 otherwise. (ci, cj) is added to graph gk if content(ci, cj) is 1.

content(ci, cj) =


0, if datatype(ci) 6= datatype(cj) or ti(ci) = ti(cj)

1, if samplevalues(cj) ⊂ values(ci) and ti(ci) 6= ti(cj)

0, otherwise

(5)

3.3 Ensemble Strategies

We used voting scheme and hierarchical clustering to find the best combination
of graphs generated by the discovery algorithms.

Voting Scheme The voting scheme checks if the individual graphs share com-
mon edges. It uses a weighting measure to determine the proportion of graphs
that contain a pair of columns (ci, cj). Given, gk and Pweighting, we can generate
a global graph G. We defined wk in equation(6) as a score that indicates whether
a pair of columns (ci, cj) exists in graph gk. wk returns 1 if a pair of columns
(ci, cj) is an element of Ek ∈ gk and 0 otherwise. We compute the weighted value
of p(ci,cj) in equation(7) for each pair of columns (ci, cj) as the sum of scores of
wk divided by the number of graphs m. We then generate a global graph G by
adding a pair of columns (ci, cj) to graph G where the obtained weighting value
of p(ci,cj) is equal or greater than a given Pweighting.

wk =

{
1, if (ci, cj) ∈ Ek
0, Otherwise

(6)

p(ci,cj) =

∑m
k=1 wk
m

(7)



Hierarchical Clustering We used the clustering approach (hierarchical clus-
tering) proposed in [3] to group together variables which are strongly related to
each other into homogeneous clusters. Each variable represents a graph gk. We
used hierarchical clustering proposed in [3] to group the variables (graphs) into
clusters based on how they are strongly linked. See [3] for detailed formulation
of the hierarchical clustering method proposed in the study.

The rationale for this strategy is that members in each cluster contains sim-
ilar prediction pattern. We can therefore, select a member of each cluster and
combine with a selected member of another cluster to exploit diversity and re-
duce error in prediction.

We represent each graph gk as a categorical variable Φk and we defined
{Φ1, · · · , Φm} as a set of Φ categorical variables where Φk ∈ Φ and k = 1, · · · ,m.
m is denoted as the total number of variables (number of graphs). Then, let x
be a set of all pairs of columns in (C×C)\∆, such that Ek ⊂ x. Φk has the same
dimension (number of column pairs) as x, and for each variable Φk, contains
binary strings of 0 and 1. String 1 indicates that (ci, cj) ∈ Ek and 0 otherwise.

Let P = (P1, . . . ,Pq) be a partition into q clusters of Φ variables. q denotes
the total number of clusters and Pl is the l − th cluster of P.

We generate {G1, . . . , Gα} as a set of graphs G where Gi is the ith graph in
G. We expect to obtain at least a graph from G graphs which gives a strong and
improved prediction of relationship between column pairs. We denote α as the
total number of graphs (i.e, number of possible combination of variables from
each cluster). This is expressed in the equation below;

α =

q∏
l=1

|Pl|

|Pl| denotes the number of Φ variables in cluster Pl. Let Φjl be a variable in
cluster Pl, so that each graph Gi ∈ G is produced by combining a set of q vari-
ables selected from each cluster using intersection operation. This is expressed
below as follows;

Gi =

q⋂
l=1

Φjl

4 Experimental Evaluation

4.1 Dataset description

The two datasets (TPCH7 and AdvWork8) used for this paper are synthetic
datasets. For ease of comparison, the TPCH used the same parameter setting

7 http:/www.tpc.org/tpch
8 https://github.com/Microsoft/sql-server-samples/releases/tag/

adventureworks



used in [11]. We stored the individual datasets in an Oracle database. The char-
acteristics of the two datasets are given in Table 1. Both synthetic datasets
contain database views and procedures we used as existing database queries.

Table 1. Data Characteristics

Data No of No of AvgNo of MaxNo of Total No of Primary Foreign
Tables Columns Columns Columns Rows Queries keys keys

per Table per Table

TPCH 8 61 8 16 6,885,051 22 8 8

AdvWork 71 486 7.5 26 754,248 33 27 45

4.2 Experimental Set-up

We implemented our algorithms in Java and performed experiments on an In-
tel Core i5 vPro 2.4GHz CPU with 8GB Ram. We first run experiments for
threshold dependent algorithms to select appropriate thresholds required for
an overall comparative analysis. The range of thresholds include; NSim (0.50 -
0.95), Soundex (1 - 4), Sem (0.50 - 0.95) and Cosine (0.50 and 0.95). Next, we
explored the performance of individual algorithms based on mean completion
time over 20 runs. We then combined their predictions based on voting scheme
and hierarchical clustering. Finally, we compared performance with state-of-the-
art algorithms (FaskFK [4], Randomness [26] and HoPF [11]). FastFK combines
heuristic features with different rules to detect foreign keys, which assumes that
each table pair can hold only one foreign key. Randomness algorithm uses a ran-
domness metric to discover both single-column and multi-column foreign keys
by using the earth-mover distance (EMD) to measure the data distribution sim-
ilarity between foreign key candidates. HoPF uses score function and pruning
rules for holistic discovery of both primary and foreign keys as a subset of sets
of unique column combinations and inclusion dependencies.

4.3 Evaluation Metrics

We employ three standard evaluation metrics to measure the performance of
individual algorithms; Precision, Recall and F-Measure. Let g1 be a graph of
actual relationships between set of columns (nodes) C1 and E1 be the set of
edges of g1. Let g2 be another graph containing inferred relationships between
columns discovered by a discovery algorithm with set of columns C2 as nodes
and E2 as edges of g2. Let TP = E1 ∩ E2. TP represents true positives, a set
of edges common to both E1 and E2 and |TP | is the number of edges in TP .
Let FP ⊆ E2 \ TP be a subset of E2 \ TP which represents false positives.
FP and TP do not share common edges and |FP | is the number of edges in
FP . Let FN ⊆ E1 \ TP and |FN | represents the number of edges in FN .



Let x = (C × C) \ ∆ be all edges formed from all pairs of columns, such that
E1 and E2 are both subsets of x. Then, we define TN (True negatives) as
TN = x \ (E1 ∪ E2) and |TN | is the number of edges in TN .

Precision is computed as |TP |
|TP |+|FP | which evaluates the percentage of relevant

outcomes discovered by our algorithms. We compute recall as |TP |
|TP |+|FN | . Recall

evaluates the percentage of relevant outcomes that were discovered by a discovery
algorithm over the total relevant outcomes. We then compute F-measure as
2∗Precision∗Recall
Precision+Recall to measure the weighted harmonic mean of precision and recall.

4.4 Comparative Analysis

Discovery Completion Time The mean completion time of individual algo-
rithms is shown in Table 2. This involves 20 experimental runs over the TPCH
dataset. Name similarity (NSim) algorithm records the lowest mean time of 4.25
milliseconds with a minimum time 0 millisecond and maximum time 16 millisec-
onds. On the other hand, content-based (Col) approach takes longer time than
other discovery algorithms with recorded mean time of 2868283.3 milliseconds
(47.81 minutes). Figure 1 shows example of graphs generated by Sem (a) and
Soundex (b) algorithms over the TPCH dataset.

Table 2. Completion Time of Discovery Algorithms in Milliseconds

Algorithms MinTime AveTime MaxTime

Cosine 72 136.15 351
Pri 1228045 1501709.15 2926454
NSim 0 4.25 16
Col 2107575 2868283.3 7901629
Val 15671 16170.85 19454
Sem 3481 4491.35 8711
Soundex 3 5.95 34
Usage 144 342.2 1552

Comparison with existing techniques We compared our results with the
results already reported in [11]. The specified gold standard used for evaluation is
based on primary/foreign key relationship. Performance is shown in Table 3. The
best performance for the TPCH dataset results in f-measure of 1.00 which was
achieved by Randomness. The Randomness performance is largely attributed to
the assumption that true primary keys exist and are known. Randomness exactly
matches the known primary keys to columns with the same names which makes
it possible for the algorithm to achieve that score. Our methods exploit database
information differently without any known assumptions about true primary key
existence. Three of our methods (Sem, Usage, Cosine) outperformed the FastFK
algorithm on TPCH dataset with respective f-measure scores 0.83, 0.80 and 0.73.



a b

Fig. 1. Graph Example

The performance of the Usage based approach is highly dependent on the quality
of existing queries. For instance, if the queries use all the true primary keys to
link tables then f-measure of 1.00 is possible.

Table 3. Comparison of Proposed Discovery Algorithms, Ensemble Strategies and
state of the art results already reported in [11]

Categories Algorithm TPCH Algorithm AdvWork
Precision Recall F-Measure Precision Recall F-Measure

Individual Algorithms Cosine 0.73 0.73 0.73 Cosine 0.02 0.86 0.04
Pri 0.24 0.91 0.38 Pri 0.03 0.90 0.06
NSim 0.22 1.00 0.37 NSim 0.02 0.83 0.04
Col 0.15 0.91 0.26 Col 0.01 0.93 0.03
Val 0.08 1.00 0.15 Val 0.01 0.04 0.02
Sem 0.77 0.91 0.83 Sem 0.02 0.83 0.04
Soundex 0.07 0.27 0.12 Soundex 0.02 0.83 0.04
Usage 0.89 0.72 0.80 Usage 0.14 0.58 0.23

2-Clusters Combination Sem Pri 1.00 0.91 0.95 Sem Pri 0.18 0.73 0.29
NSim Val 0.85 1.00 0.9 Cosine Pri 0.19 0.76 0.30
NSim Pri 0.91 0.91 0.91 NSim Pri 0.18 0.73 0.29

3-Clusters Combination Sem NSim Pri 1.00 0.91 0.95
Sem NSim Col 1.00 0.82 0.90
Sem NSim Val 0.91 0.91 0.91

Voting PVote50 0.79 1.00 0.88 PVote75 0.18 0.80 0.29
PVote62.5 0.85 1.00 0.92 PVote87.5 0.16 0.49 0.25
PVote75 1.00 0.91 0.95

State-of-the-Art FastFK 0.56 0.90 0.69 FastFK 0.32 0.97 0.49
Randomness 1.00 1.00 1.00 Randomness 0.90 0.41 0.56
HoPF 0.88 0.88 0.88 HoPF 0.31 0.84 0.46

In respect to the AdvWork dataset in Table 3, our algorithms could not
achieve significant f-measure results apart from the Usage-based algorithm that
achieved f-measure score of 0.23. The poor performance is largely attributed to
huge number of false positives discovered by our methods. These false positives
are caused by the inherent semantic relationships which are not defined in the
primary/foreign key relationship that we have used as gold standard in our eval-



uation. In terms of recall, Content-based (Col) and Primary key (Pri) algorithms
achieved 0.93 and 0.90 respectively.

Overall, the diversity displayed by the individual algorithms are based on
the characteristics of data. The algorithms have performed in different ways over
the two datasets. However, the diversity of the independent algorithms can be
exploited by combining their outcomes in different ways to improve performance.

Ensemble Performance We used voting strategy and hierarchical clustering
to combine the diversity of the outcomes produced by the individual algorithms
and compare performance with the results of the state of the art algorithms
reported in [11]. Voting thresholds are given as;
Pweighting = (12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%). We include re-
sults of the top three voting thresholds over the two datasets (TPCH and Ad-
vWork) in Table 3. For TPCH dataset, the three top voting thresholds, 75%,
62.5% and 50% (i.e., PVote75, PVote62.5 and PVote50) achieve respective f-
measure scores 0.95, 0.92 and 0.88, precision scores 1.00, .85 and 0.79 and recall
scores 0.91, 1.00 and 1.00. The voting scheme could not reach the f-measure
score (1.00) delivered by the Randomness algorithm, however, a 0.95 score was
achieved which outperformed HoPF and FastFK.

In the AdvWork dataset, despite the poor performance of the individual
approaches, the voting scheme helped in improving the performance. Although,
this strategy could not outperform the selected state of the art algorithms. The
reason for this is due to the existence of several semantic relationships which are
not explicitly specified in the database structure. We only relied on the explicit
specifications of primary key/foreign key relationships for our evaluation.

The drawback in the voting strategy is that the voting strategy takes all the
discovery algorithms into consideration. This is quite expensive in terms of the
computational time. For instance, based on Table 2, the total average comple-
tion time to implement a voting strategy will take about 4391143.2 milliseconds
(73.19 minutes). However, this could be addressed by using an appropriate so-
phisticated parallel computing approach which is beyond the scope of this paper.

In terms of the hierarchical clustering strategy, with the TPCH dataset, we
evaluate two clusters and three clusters combinations. We obtain 15 unique com-
binations of algorithms with two clusters and 18 unique combinations with three
clusters. The best performance in the two clusters combination for instance, is
produced by Sem Pri. Sem Pri gives an f-measure score of 0.95 with precision
score equal to 1.00. This means that no false positives were predicted with the
combined efforts of both Sem and Pri algorithms. Sem NSim Pri obtains an
f-measure score of 0.95 with precision score of 1.00. When comparing perfor-
mance with state of the art algorithms, Sem Pri and Sem Nsim Pri give better
performance than HoPF and FastFK.

In the AdvWork dataset, two clusters were predicted by the clustering algo-
rithm. We obtained top three unique combinations of the two cluster based on
f-measure performance. The best performance is produced by the combination
of Cosine Pri with f-measure score 0.30, precision score 0.19 and recall score



0.76. The results reported by the state of the art algorithms outperformed the
combined efforts of Cosine and Pri. See Table 3. We have earlier attributed the
poor performance over the AdvWork dataset to lack of sufficient gold standard
used in the study. We only relied on the primary/foreign key relationships which
is specified in the database. An expert opinion would be needed for additional
information about semantic relationship.

Overall, results show clearly that some specific algorithms are relevant when
combined in certain ways. The Pri for instance, has the tendency of performing
well when combined with algorithms like Sem, Nsim or Cosine irrespective of
the data characteristics. However, the suitability of Pri is impaired due to speed
considerations. Therefore, the choice of algorithms to combine depends largely
on user’s compromise on speed, reliability and sufficiency.

5 Conclusion

We investigated eight discovery algorithms and showed how their predictions
can be combined to identify more comprehensive links between database tables
involving both primary/foreign key and semantic relationships. The discovery
algorithms identify potential links in different ways based on different levels of
database information. In evaluating the performance of our approaches, based on
two diverse datasets, we showed that different levels of schema information can
be exploited and combined in a view to reduce the generalization error associated
with each algorithm. We showed in our experiment that an appropriate combi-
nation strategy can be adopted to improve relationship discovery outcomes. The
performance of individual discovery algorithm is limited, indicating the necessity
to combine several algorithms to bring together their strengths. We compared
precision, recall and f-measure with state of the art algorithms.
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