
SHI, H., WANG, S., FERNANDEZ, C., YU, C., FAN, Y. and CAO, W. 2020. A novel dual correction extended Kalman 
filtering algorithm for the state of charge real-time estimation of packing lithium-ion batteries. International journal 

of electrochemical science [online], 15(12), pages 12706-12723. Available from: https://doi.org/10.20964/2020.12.52  

A novel dual correction extended Kalman 
filtering algorithm for the state of charge real-

time estimation of packing lithium-ion batteries. 

SHI, H., WANG, S., FERNANDEZ, C., YU, C., FAN, Y. and CAO, W. 

2020 

This document was downloaded from 
https://openair.rgu.ac.uk 

© 2020The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.20964/2020.12.52
http://www.electrochemsci.org/
http://creativecommons.org/licenses/by/4.0/


  

Int. J. Electrochem. Sci., 15 (2020) 12706 – 12723, doi: 10.20964/2020.12.52 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

A Novel Dual Correction Extended Kalman Filtering Algorithm 

for The State of Charge Real-Time Estimation of Packing 

Lithium-Ion Batteries 

 
HaoTian Shi1, Shunli Wang1,*, Carlos Fernandez2, Chunmei Yu1, Yongcun Fan1, Wen Cao1 

1 School of Information Engineering, Southwest University of Science and Technology, Mianyang 

621010, China;  
2 School of +Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK. 
*E-mail: wangshunli@swust.edu.cn  
 

Received: 28 August 2020  /  Accepted: 7 October 2020  /  Published: 31 October 2020 

 

 

This paper explores the state estimation method of lithium-ion battery pack through theoretical analysis 

and experimental research. Combining the advantages of the empirical models of various 

electrochemical models, a new type of composite electrochemistry-dual circuit polarization (E-DCP) 

model is proposed to better reflect the dynamic performance of the power lithium-ion battery under the 

conditions of meeting its safe and reliable energy supply requirements. Using the multi-innovation least 

squares (MILS) algorithm to identify the parameters in the E-DCP model online, so that it has the 

characteristics of high data utilization efficiency and high parameter identification accuracy. The battery 

charge and discharge efficiency function is introduced to dynamically modify the battery capacity, and 

the dynamic function is used to improve the Kalman gain in the extended Kalman filter (EKF), a new 

type of based on dynamic function improvement and combined with actual capacity correction (FC-

DEKF) algorithm is applied to the estimation of battery pack operating characteristics, which solves the 

problem that the traditional EKF algorithm is difficult to estimate errors when the system input change 

rate is large. The experimental results of urban dynamometer driving schedule (UDDS) and complex 

charge-discharge cycle test show that the maximum error of terminal voltage does not exceed 0.04V, the 

accuracy is 99.05%, and the errors of MILS algorithm combined with FC-DEKF algorithm for SOC 

estimation are all within 1%. The proposed equivalent circuit modeling method and state estimation 

correction strategy provide a theoretical basis for the reliable application of high-power lithium-ion 

battery packs. 
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1. INTRODUCTION 

With the consumption of fossil energy and the pressure of environmental protection, as well as 

the limitation of the maximum capacity of battery cell, it has become more and more important to 

improve the mathematical modeling research of battery group management technology [1-4]. A large-

capacity battery system generally consists of multiple battery cell connected in parallel and converged, 

and then encapsulated by battery cells shell and cell covers to form multiple battery cells cascaded. It 

has the characteristics of large capacity and many series and parallel nodes [5-8]. For the entire battery 

pack system, its stability and real-time and effective status monitoring are the prerequisites for the 

system’s vitality [9, 10] . The development of power battery pack applications has entered a new era. 

Accurate battery models and accurate state estimation are of great significance for predicting the range 

of battery packs.  

Lithium-ion battery is a typical nonlinear system. Its work involves multiple processes such as 

electrochemical reaction and energy conversion. The traditional pure electrochemistry or pure equivalent 

circuit model is not enough to fully reflect its multiple mutual coupling processes. Carry out composite 

modeling optimization of lithium-ion battery, and use different working conditions to test, and 

experiment with the accurate expression of lithium-ion battery model [11-15]. Aiming at difficult 

problems in the safety management of power battery packs under the influence of complex working 

conditions, single combination structure and environmental conditions, the equivalent model is 

constructed and researched, based on the exploration of working characteristics under different working 

conditions, combined with the characteristic information of external measurable parameters, and the 

establishment is related to time The equivalent model of, and the description of the state space, lay the 

foundation for the subsequent accurate estimation of the battery state [16-18]. 

As the most widely used estimation method in recent years, the accuracy of State of Charge 

(SOC) estimation has been constantly improved [19, 20]. Accurate SOC estimation helps to improve the 

safety level and cycle life performance of the energy power supply system. Based on achieving this goal, 

while constructing an accurate composite electrochemical circuit model, it is combined with a high-

precision SOC filter to achieve real-time monitoring of SOC [21, 22]. Wang et al. used the Unscented 

Particle Filter to predict the state of electric charges [23]. In the literature [24], an equivalent neural 

network circuit model was established and SOC estimation was performed based on this model.   

Research the implementation technology of the online accurate estimation management system 

of the power battery pack, and ensure the safety and reliability of the battery pack application through 

key technology research such as the detection of key parameters of the battery pack and its internal 

monomers [25, 26].In the literature [27], an SOC estimation algorithm is applied to the battery with 

degradation tracking. A method of SOC estimation based on a white box equivalent neural network 

circuit model was proposed [28]. Luo et al. studied a method for estimating SOC of lithium-ion batteries 

based on the Cubature Kalman filter [29]. Guo et al. used the cyclic neural network and the genetic 

algorithm to estimate SOC of lithium-ion batteries [30]. Hou et al. used an adaptive double unscented 

Kalman filter (UKF) for normal-Gamma estimation of battery parameters and charged state [31]. 

Most of the existing studies have not considered the influence of the system input change rate on 

the accuracy of the state estimation of the group of batteries. By analyzing the advantages and 
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disadvantages of electrochemical and equivalent circuit models, a new type of composite 

electrochemistry-dual circuit polarization (E-DCP) model is proposed under the conditions of meeting 

its safe and reliable energy supply requirements, which better reflects the power lithium-ion battery's 

step-by-step process. Through theoretical analysis and experimental research, combined with the 

characteristic information of external measurable parameters, establish a time-related equivalent model 

and describe the state space. The battery charge and discharge efficiency function is introduced to 

dynamically modify the battery capacity, and the dynamic function is used to improve the Kalman gain 

in the extended Kalman filter (EKF), which realizes the accurate estimation of the state of the group 

battery when the system input change rate is high. Through urban dynamometer driving schedule 

(UDDS) and complex charge-discharge cycle test experiments, the accuracy of the E-DCP model and 

the accuracy of the multi-innovation least squares (MILS) algorithm combined with the EKF algorithm 

based on dynamic function improvement and combined with actual capacity correction (FC-DEKF) 

algorithm for SOC estimation are verified. This kind of modeling and collaborative prediction correction 

strategy research is of great significance to improve the estimation accuracy and robustness of high-

power battery packs. 

 

 

 

2. THEORETICAL ANALYSIS 

2.1 Electrical equivalent modeling 

The quality of the lithium-ion battery model directly affects the accuracy of the subsequent SOC 

estimation. In order to realize the accurate modeling of the lithium-ion battery, this paper explores the 

output characteristics of the closed-circuit voltage during the working process of the lithium-ion battery 

pack through mechanism analysis and simulation experiments of working conditions.  
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Figure 1. Electrical equivalent modeling 
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In order to more accurately reflect the changing law of the battery, using the optimized 

electrochemical Nernst model and combining the second-order circuit equivalence, a new type of 

complex electrochemistry-dual circuit polarization (E-DCP) model is proposed to realize the working 

process precise description. The equivalent structure of each part in the compound electrochemical-dual 

circuit polarization model is shown in Fig. 1. 

In Fig. 1, R0 is the battery ohmic resistance, which is the instantaneous voltage drop caused by 

battery current; R1 and R2 the polarization resistance of the battery; C1 and C2 are the polarization 

capacitance of the battery. The parallel circuit composed of R1 and C1 has a large time constant; the 

parallel circuit composed of R2 and C2 has a small time constant; I is the loop current of the battery; UL 

is the battery terminal voltage. E is the ideal voltage source. E is used together with Cb as a whole to 

represent the change of open circuit voltage Uoc. The effect of charge-discharge rate gradient change on 

energy attenuation law is analyzed and summarized. The E-DCP model combines the advantages of both 

the electrochemical model and the equivalent circuit model, studies the effect of the charge-discharge 

rate on the internal battery chemical reaction change, and uses the double RC circuit to specify the 

polarization response of the battery to better present the dynamic performance of the power lithium-ion 

battery under step working conditions. 

Through the study of E-DCP model, based on the exploration of working characteristics under 

different working conditions, combined with the characteristic information of external measurable 

parameters, the time-related equivalent model is established and the state space description is shown in 

Equation (1). 
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where t is the continuous time constant, It and SOCt represent the current and SOC values in the 

continuous time state. 

The first-order backward difference principle is used to discretize equation 1, and the results are 

shown in Equation (2). 
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where k is a discrete time constant, and T is the sampling time. 

By combining equations 1 and 2, the system difference equation suitable for full parameter 

identification is obtained as shown in Equation (3). 

 )2()1()()2()1()( 543210  kIckIckIckUckUcckU LLL  (3) 

where c0 to c5 are the coefficients of the differential equation. The E-DCP model combines the 

advantages of both the electrochemical model and the equivalent circuit model, and uses the double 

resistance-capacitance (RC) circuit to specify the polarization response of the battery, which laid a 

foundation for the subsequent parameter identification and accurate estimation of the battery state. 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

12710 

2.2 Full-parameter online identification 

To improve data utilization, the MILS algorithm is used for online parameter identification for 

the lithium-ion battery. This algorithm extends the innovation into vector innovation or matrix 

innovation, and can more fully use the scalar innovation of each moment in the iteration calculation 

process to improve data usage efficiency, accelerate algorithm convergence and increase parameter 

identification accuracy. The full-parameter identification process of using the MILS algorithm to 

estimate the parameters in the E-DCP model, as shown in Fig. 2. 
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Figure 2. Equation of State discretization and iterative Flow chart with MILS algorithm. 

 

The MILS algorithm performs recursion for solution innovation in each time step, and the 

calculation quantity is not high. In order to simplify the state space representation of the model, equation 

(3) is converted to the least squares form: 

 θφ )()( kky T  (4) 

where y(k) said the system output vector, )(kφ  and θ represent system data and parameter vector 

respectively. The y(k), )(kφ  and θ specific said is as follows: 
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where ρ  is the parameter matrix to be identified in the E-DCP model. With the simultaneous 

equations of (1) and (2), the calculation results of θ  can be obtained: 
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where the calculation of τ1 and τ2 is shown in Equation (7). 
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 (7) 

By further separating equation (6), the calculation results of each parameter in the E-DCP model 

are shown in Equation (8). 
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(8) 

High usage efficiency of innovation can be achieved by using the MILS algorithm for full-

parameter online identification in the E-DCP model and combining the parameter separation result after 

system discretization. The output matrix of MILS algorithm is shown in Equation (9). 
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where Y(k) is the output matrix of the algorithm, p is the length of the matrix innovation, and 

)1(ˆ kθ  is the estimated value of the parameter vector at the previous moment. 

By using equation (5-8) to calculate the parameters at each moment in the E-DCP model, 

combined with the output matrix of MILS algorithm, the parameter values were iteratively updated 

through Equation (10). 
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Where P(k) is the covariance matrix of MILS algorithm, G(k) is the correction factor in the MILS 

algorithm, which ensures a relative small terminal voltage error and a relative fast convergence speed in 

each iteration of the algorithm. Through the above theoretical analysis, the online accurate identification 

of full-parameter based on E-DCP model is realized. 

 

2.3 Iterative calculation 

The Kalman filter algorithm gives high optimization estimation accuracy in a linear system, but 

as battery SOC estimation is a typical non-linear system, it is difficult to use the traditional Kalman filter 
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algorithm in the battery management system (BMS). The EKF algorithm is one of the most common 

SOC estimation algorithms. This algorithm not only solves the state estimation problem in a non-linear 

system but also ensures fast correction and therefore achieves adaptive target tracking in the event of a 

relative big error of the initial value [32]. In this paper, MILS and EKF are combined to improve the 

robustness of BMS and the accuracy of SOC, so as to achieve accurate estimation of Lithium-ion battery 

status. The algorithm iteration process is shown in Fig. 3. 
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Figure 3. The EKF algorithm iteration flowchart 

 

To use the EKF algorithm, with SOC, U1 and U2 in the state equation as the state variables, 

current I as the system input and Uoc as the system output, the expression of the state equation and the 

observation equation is constructed, as shown in Equation (11). 
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where x is the system state variable, u is the system input and y is the system output, wk and vk 

are the system noise, with the covariance matrices being Q and R respectively. The A, B, C and D matrix 

of the above-mentioned formula is expressed as follows: 
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The EKF algorithm uses the first-order Taylor expansion of the open-circuit voltage equation to 

transform the nonlinear system into a linear system, and its calculation is shown in Equation (13). 

SOC
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
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1)(

)( 21  (13) 

The parameter values estimated in real time by MILS algorithm and EKF algorithm are combined 

to realize the iterative calculation of SOC values. The calculation of state prediction equation and state 

covariance prediction equation is shown in Equation (14). 
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where Pk is the covariance matrix. 

In order to obtain the optimal filter gain matrix Kk+1, the optimal state matrix xk+1 and the optimal 

covariance matrix value Pk+1, the above prediction equation needs to be updated over time, and the 

update equation is shown in Equation (15). 
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By combining with the above-mentioned EKF optimal iteration process, the MILS algorithm is 

used to identify the parameters of the E-DCP model, to achieve state estimation of the BMS and improve 

SOC estimation precision. 

 

2.4 Adaptive capacity correction 

Throughout the life cycle of a lithium-ion battery pack, due to the decomposition of the 

electrolyte inside the battery and the accumulation of the passivation layer of the solid electrolyte 

interface film on the surface of the positive electrode, the charge and discharge efficiency will change 

with electrochemical degradation [33]. In order to solve the above problems, this paper introduces the 

battery charging and discharging efficiency function to dynamically modify the battery capacity, so that 

in practical applications, the rated capacity of the lithium-ion battery pack more accurately reflects the 

actual capacity, and the adaptive correction of the battery capacity is always realized. The function is 

shown in Equation (16). 









NDD

NCC

QfQ

QfQ

)(

)(




 (16) 

where QN is the rated capacity of the lithium-ion battery pack, QC and QD are the actual battery 

capacity corrected by the charge and discharge efficiency function, )( Cf  and )( Df   are the charge 

efficiency correction function and the discharge efficiency correction function, respectively, and are the 

charge rate and discharge rate, respectively. 

In order to obtain the charge-discharge efficiency correction function, it is necessary to obtain 

the coulomb efficiency under different charge-discharge rates. The calculation is shown in Equation 

(17). 
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where C  and 
D  are the efficiency of charging and the efficiency of discharging respectively, 

CnQ  is the charge capacity when the charge rate is n, and DmQ is the discharge capacity when the 

discharge rate is m. maxCnQ ,  and maxDnQ ,  are the maximum charge capacity and maximum discharge 

capacity, respectively. In this paper, five groups of different current rates are selected for experiments to 

obtain the corresponding coulomb efficiency, and five groups of different coulomb efficiency data are 

used as the value range to fit the corresponding values and, so as to realize the adaptive correction of 

battery capacity. 

 

2.5 Dynamic function improvement 

The actual application results of a large number of working conditions show that the estimation 

effect of the EFF algorithm is not ideal when the system input changes rapidly or the instantaneous 

current change rate is large, and there is even the possibility of divergence. After in-depth analysis and 

research, it is found that the above situation is caused by the insufficient adjustment of the Kalman gain 

when the system input changes rapidly or the current instantaneous change rate is large. Based on the 

above problems, this paper improves the Kalman gain in EKF, uses the idea of one-sided limit, introduces 

a dynamic function to modify the Kalman gain, and proposes an EKF algorithm based on dynamic 

function improvement and combined with actual capacity correction (FC-DEKF), which makes EKF 

suitable for the situation where the system input changes rapidly or the current instantaneous change rate 

is large. The principle of using the dynamic function to improve the Kalman gain is as follows. 

First define the left limit of the rate of change of the system input in the discrete state: 

t

kIkI

t

ktk

t

I
k

Tt

II

TtTt
I

















 

)1()(
lim

)()(
limlim)(

' FF
F  (18) 

where )(
'

kI 
F  is the rate of change of the input current of the system at adjacent moments in the 

discrete state, )(kIF  is the system input at the current moment. Since the actual operation of the system 

is in a discrete state, its value can be obtained by looking up the table. 

Secondly, according to the actual working condition test, the conditions for triggering the 

dynamic function correction are given: 

max

''
)()( kk II 

 FF  (19) 

where max

'
)(kI 

F  is the maximum input current change rate that the system can withstand, and its 

value is obtained according to actual working conditions. 

Finally, use the curve characteristics of the exponential function to give the optimized Kalman 

gain: 

)( 1

1

11


 


kk II

kk KK   (20) 

where   is a dynamic function,   is an empirical factor, and its value is )1,0( . In order to 

avoid the appearance of "soft adjustment" or "over adjustment" of the dynamic function, a constant factor 
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 is introduced to restrict the dynamic function. The value range of the constant factor and the dynamic 

function are specifically analyzed in the following experimental analysis. 

 

 

 

3. EXPERIMENT ANALYSIS 

3.1 Experimental test platform 

In order to verify the accuracy of the improved algorithm, this paper uses 7 battery cells 

connected in series as a sample to conduct an experimental study. The single cells in the sample are 

connected in parallel and converged by multiple battery cells. During the use of the Lithium-ion battery 

pack, each battery cell is cascaded together in series. The basic parameters of the experimental sample 

of the Lithium-ion battery pack are shown in Table 1. 

 

Table 1. The basic performance parameters of the Lib pack samples. 

 

No. Parameter Name Parameter Value Brief description 

1 Battery model 7-ICP 7 battery cells connected in series 

2 Rated capacity 4.00 Ah Nominal capacity value 

3 Group nominal voltage 25.90V Group output rated voltage 

4 Cell nominal voltage 3.70V 
Rated voltage of lithium-ion battery 

pack 

5 Discharge cut-off voltage 3.00V 
Any cell voltage reaches to stop 

discharging 

6 Charging cut-off voltage 4.15V 
Any cell voltage reaches to stop 

charging 

7 range of working temperature -55.00℃～+70.00℃ 
Keep the ambient temperature within 

this range 

8 Standard charging current 0.2CA Rated charging current 

9 Standard discharge current 1.0CA Rated discharge current 

 

In Table 1, the C represents the rated capacity of the battery. According to the selected 

experimental samples of Lithium-ion battery packs, a small test platform is built using lithium battery 

test systems, computers, incubators and other equipment to collect and analyze experimental data for 

Lithium-ion. The test platform can perform real-time data collection on lithium-ion batteries with an 

upload computer system. The platform structure is shown in Fig. 4. All experiments in this paper are 

carried out at 25°C, and the model parameters and algorithm verification at high and low temperatures 

need to be further improved by subsequent research. 
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Figure 4. Experimental Li-ion battery test platform 

 

3.2 Open circuit voltage identification 

Based on the internal redox mechanism of lithium-ion batteries, through the integration and 

optimization of commonly used electrochemical models, a new type of composite electrochemical-dual 

circuit polarization model is proposed. The relationship between open circuit voltage (OCV) and SOC 

of this model is as follows The method of charging and discharging experiment is as follows: (1) Select 

the experimental sample of the Lithium-ion battery pack and proceed with the discharge current rate of 

1C until the discharge cut-off voltage; (2) Let the experimental sample of the Lithium-ion battery pack 

stand for 1 hour to make its internal reaction Return to a stable state; (3) Charge the lithium-ion battery 

pack with constant current at a charging current rate of 0.2C until the charge cut-off voltage, and then 

perform constant voltage supplementary charging until the current drops to the charge cut-off current; 

(4) For lithium The ion battery pack is allowed to stand for 1 hour to restore its internal chemical reaction 

to a stable state; (5) Discharge the Lithium-ion battery pack at a constant current for half an hour at a 

discharge current rate of 0.1C to reduce its SOC to 0.95; (6) Allow the sample to stand for 1 hour to 

return to a stable state, and then record its OCV value; (7) The experiment skips to the fifth step, and the 

cycle operates 20 times; (8) The aviation lithium-ion battery pack is charged with constant current and 

voltage until Meet the charging cut-off condition and make the battery fully charged. 

Based on the above experimental method, the data set is fitted with the optimized open circuit 

voltage equation in the E-DCP model, and the OCV-SOC function fitting curve of the above 

experimental sample is obtained as shown in Figure 5. 
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       f(x,y) = K0 + K1*ln(SOC) + K2*ln(1-SOC)

Coefficients (with 95% confidence bounds):

       K0 = 25.98  (24.81, 27.16)

       K1 = 0.4441  (-0.3055, 1.194)
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Goodness of fit:

       SSE: 18.61

       R-square: 0.6322

       Adjusted R-square: 0.5913
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Figure 5. OCV-SOC function fitting curve 

 

 

In Fig. 5, U1 is the experimental value of open circuit voltage, U2 is the fitting value of open 

circuit voltage. The S represents the SOC value, whose unit 1 is the result after normalization. According 

to the fitting curve shown in Fig. 5, the OCV-SOC change relationship of the test sample can be obtained 

as shown in Equation (21). 

)](1ln[8883.0)](ln[4441.09846.25)( kSOCkSOCkUOC   (21) 

It can be seen from Figure 4 that the related coefficient of the fitting curve is 0.6322, which 

indicates that the curve fitting accuracy is high and can be used for subsequent parameter identification 

and precise SOC estimation. 

 

3.3 Actual capacity correction experiment 

In order to accurately reflect the actual power of the lithium-ion battery pack, five sets of 

experiments with different current rates are designed to obtain the coulomb efficiency under different 

charge and discharge rates. The experimental parameters of different charge and discharge current rates 

are shown in Table 2. 

 

Table 2. Coulomb efficiency under different charge and discharge ratio 

 

Parameter name First group Second Group Third group Fourth group Fifth group 

Charging rate(C) 0.20 0.30 0.50 1.00 1.20 

Charging power(Ah) 3.7599 3.7217 3.5861 3.3844 3.2307 

C (1) 1.0000 0.9894 0.9548 0.9001 0.8590 

Parameter name First group Second Group Third group Fourth group Fifth group 

Discharge rate(C) 0.10 0.20 0.50 1.00 1.20 

Discharge power(Ah) 3.4063 3.3941 3.3716 3.3560 3.3500 

D (1) 1.0000 0.9964 0.9898 0.9852 0.9835 

 

In Table 2, C  and 
D  are charging efficiency and discharging efficiency respectively, and the 

normalized unit is 1. The units of charge ratio and discharge ratio are C, and 1C represents the rated 

capacity of the battery. From the analysis of the experimental results, it can be seen that the charging 
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efficiency is the highest under the 0.20C charge rate condition, and the discharge efficiency under the 

0.10C discharge rate is the highest. Therefore, based on the 0.20C charge rate, the charge efficiency at 

different charge rates is obtained. Based on the 0.10C discharge rate, obtain the discharge efficiency 

under different discharge rates. Curve fitting is performed on the above experimental results of charging 

efficiency and discharge rate. Through comparative analysis of the fitting effect of the function 

relationship under different orders, the fourth degree polynomial is selected as the fitting function of 

charging efficiency, and the third degree polynomial is selected as the discharge efficiency. The fitting 

function, fitting curve and fitting error analysis are shown in Figure 5. 

 

 

 
(a) Charging efficiency fitting curve 

 
(b) Charge efficiency fitting error 

 
(c) Fitting curve of discharge efficiency 
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Figure 6. Charge and discharge efficiency fitting curve and fitting error analysis chart 

 

 

In Fig. 6 (a) and (c), 1C  and 1D  respectively represent the experimental data sets of charging 

efficiency and discharge efficiency, 2C  and 2D  respectively represent the function curves of charging 

efficiency and discharging efficiency. The abscissa represents the charge-discharge current ratio, whose 

unit is C. The function expression of the fitted curve is shown in Equation (22). 
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Fig. 6 (b) and (d) are the fitting errors of charging efficiency and discharging efficiency. 

According to the experimental results, the fitting equation used has a good effect on the simulation of 

the working characteristics of the lithium-ion battery pack. By embedding the impact of charging and 

discharging efficiency on the SOC estimation process, the SOC estimation accuracy of the lithium-ion 

battery pack is improved. 
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3.4 Feasible region analysis of dynamic function 

Through theoretical analysis and experimental research, the feasible region of dynamic function 

is explored, and the value of constant factor in dynamic function is preliminarily determined, so that the 

regulation of dynamic function can reach the optimal level. The discussion results of feasible domains 

of dynamic functions under different constant factor values are shown in Fig. 7. 

 

 
 

Figure 7. Results of the feasible region of weight constraint factors 

 

 

In Fig. 7, the z-axis in the three-dimensional graph represents the value range of the dynamic 

function, and the x-axis and y-axis represent 
1

1

 kk II
and   respectively. According to theoretical 

analysis: when 1 , it will cause the dynamic function "weak adjustment"; when it is 1 , it will 

cause the dynamic function to "over-regulate"; when it is 3, the dynamic function loses its regulating 

effect. In order to ensure that the adjustment ability of the dynamic function is kept optimal, the value 

range of the dynamic function is required to be )0.2,0.1( . According to the experimental results 

shown in Fig. 7, only 1  meets the requirements of optimal adjustment strength. Therefore, the 

subsequent model and algorithm verification research experiments in this paper are all based on 1 . 

 

3.5 Algorithm verification 
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(c) Resistance identification result curve 
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(d) Capacitance identification result curve 
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 (e) Terminal voltage comparison curve 
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Figure 8. Related experimental curves and model error curve under the UDDS working conditions. 

 

 

MILS algorithm can make full use of new information at every moment and improve data 

utilization efficiency. In order to verify the accuracy of the E-DCP model mentioned above and the 

accuracy of MILS, the UDDS working condition is used to conduct online parameter identification of 

the single cell in the battery pack by using the experimental samples of the selected lithium-ion battery 

pack and the battery test platform. The experimental process diagram and model error results are shown 

in Figure 7. 

In Fig. 8, U1 represents the actual terminal voltage, U2 represents the estimated value of the 

terminal voltage based on the MILS algorithm. R0, R1, R2, C1 and C2 are the parameters to be identified 

in the E-DCP model. It can be seen from Fig. 8(c) and (d) that in the entire MILS algorithm iteration 

process, due to the existence of systematic errors, the resistance value and terminal voltage errors in the 

initial model of identification are relatively large, as the iteration of the MILS algorithm progresses, each 

parameter identification results tend to be smooth, indicating that the method of online identification of 

E-DCP model parameters based on the MILS algorithm is more stable. In addition, it can be seen from 

Fig. 8(f) that due to the existence of system errors, the maximum error of terminal voltage based on 

MILS algorithm in the initial identification stage is 0.14V. After the algorithm is stable, the error does 

not exceed 0.04V, and its accuracy is 99.05%. The accuracy of E-DCP model combined with online 

parameter identification algorithm is 1.43% higher than that in reference [34] (the maximum error is 

0.12V) and 3.7% higher than that in reference [35] (the maximum error is 0.2V), which better verifies 

the accuracy of the E-DCP model and the accuracy of MILS. Laid the experimental foundation for the 

follow-up based on SOC estimation. 

On the basis of the above theoretical analysis, combined with Lithium-ion battery pack sample, 

using battery management experiment platform, design the complex charge-discharge cycle test 
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condition of experiment, and validate the improved algorithm in the environment of high system input 

rate stability, the experiment error analysis of the correlation curve and curve as shown in Fig. 9. 
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(b) Terminal voltage comparison curve 
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(c) SOC value comparison curve 

0 4000 8000 12000

-0.04

-0.02

0.00

0.02

Er
r(
1)

t(s)

 Err1 
 Err2 
 Err3

 
(d) SOC error comparison curve 

 

Figure 9. UDDS test and error comparison 

 

In Fig. 9, U1 represents the actual terminal voltage, and U2 represents the estimated value of the 

terminal voltage based on the MILS algorithm. S1 represents the true value of the SOC, S2 is the 

estimated value of the EKF algorithm, S3 is the estimated SOC value of the EKF algorithm based on 

capacity correction, and S4 is the estimated value of the SOC based on the FC-DEKF algorithm. Err1 is 

the estimation error of the traditional EKF algorithm, Err2 is the estimation error of the EKF algorithm 

based on capacity correction, and Err3 is the estimation error based on the FC-DEKF algorithm. It can 

be seen from Fig. 9(e) that the terminal voltage tracking effect is better, which further verifies the 

reliability of the online identification of E-DCP model parameters based on the MILS algorithm. In 

addition, it can be seen from Fig. 9(d) that the estimation effect of the traditional EKF algorithm is not 

ideal, with a maximum error of 3.8%; the estimation effect of the capacity-corrected EKF algorithm is 

slightly better than the traditional EKF algorithm, but the error is still large, the maximum error it is 

3.1%, and there are large fluctuations in the iteration process; the estimation effect of the FC-EKF 

algorithm is significantly higher than the previous two algorithms, and its maximum error does not 

exceed 1%, its estimation accuracy is 2% higher than that in reference [36] (the estimation accuracy is 

3%) and 1% higher than that in reference [37] (the estimation accuracy is 2%). The error fluctuation of 

the algorithm during the entire iteration process is small, indicating under the modified function of FC-

DEKF algorithm, the BMS system has high robustness. Taken together, the E-DCP model proposed in 

this paper is of high accuracy, and the FC-DEKF algorithm proposed is superior to the traditional EKF 

algorithm. 
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4. CONCLUSION 

Through theoretical analysis and experimental research, this paper explores the state estimation 

method of lithium-ion battery pack. In order to better reflect the dynamic performance of power lithium-

ion batteries, combined with the advantages of the empirical models of various electrochemical models, 

a new type of composite E-DCP model is proposed under the conditions of meeting its safe and reliable 

energy supply requirements. Aiming at the problems of low data utilization and heavy workload of 

traditional offline parameter identification, the MILS algorithm is used to identify the parameters in the 

E-DCP model online to improve the efficiency of data utilization and the accuracy of parameter 

identification. Aiming at the situation that the traditional EKF algorithm is difficult to estimate the error 

is not ideal when the system input change rate is large, combined with the analysis of the state space 

description method, the battery charge and discharge efficiency function is introduced to dynamically 

modify the battery capacity, and the dynamic function is used to correct the Karl in EKF. Mann gain was 

improved, and a new FC-DEKF algorithm was proposed to achieve accurate estimation of battery pack 

operating characteristics. UDDS and complex charge-discharge cycle test results show that the 

maximum error of terminal voltage does not exceed 0.14V, the accuracy is 96.7%, and the error of MILS 

algorithm combined with FC-DEKF algorithm for SOC estimation is within 1%, which is suitable for 

high-power lithium State estimation of ion battery pack. 

 

 

NOMENCLATURE 

The symbols used in this research can be described as shown in Table 3. 

 

Table 3. List of symbols 

 

Symbol Description Symbol Description 

E-DCP Electrochemistry-Dual Circuit 

Polarization 

UKF Unscented Kalman Filter 

MILS Multi-Innovation Least Squares E-DCP Electrochemistry-Dual Circuit 

Polarization 

EKF Extended Kalman Filter RC resistance-capacitance 

UDDS Urban Dynamometer Driving Schedule BMS Battery Management System 

SOC State Of Charge OCV Open Circuit Voltage 
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