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Abstract—Efficient and accurate segmentation of sea ice floes
from high-resolution optical (HRO) remote sensing images is cru-
cial for understanding of sea ice evolutions and climate changes,
especially in coping with the large data volume. Existing methods
suffer from noise interference and the mixture of water and ice
caused high segmentation error and less robustness. In this article,
we propose a novel sea ice floe segmentation algorithm from HRO
images based on texture-sensitive superpixeling and two-stage
thresholding. First, sparse components are extracted from the HRO
images using the robust principal component analysis (RPCA),
and noise is removed by the bilateral filter. The enhanced image is
obtained by combining the low-rank matrix and the sparse compo-
nents. Second, a texture-sensitive simple linear iterative clustering
(SLIC) superpixel algorithm is introduced for presegmentation
of the enhanced HRO image. Third, a learning-based adaptive
thresholding in the two stages is employed to generate the refined
segmentation from the derived superpixels blocks. The efficacy
of the proposed method is validated on two HRO images using
visual assessment, quantitative evaluation (with seven metrics), and
histogram comparison. The superior performance of the proposed
method has demonstrated its efficacy for sea ice floe segmentation.

Index Terms—Adaptive two-stage thresholding, high-resolution
optical (HRO) image, low-rank sparse representation, sea ice floe
segmentation, texture-sensitive superpixeling.

I. INTRODUCTION

S EA ice floe segmentation is an important topic in remote
sensing. It is essential for understanding the climate and
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environmental change and for safe navigation of ships in waters
where sea ice forms [1]. With regular data provided covering, an
increasingly wide area, and a relatively high temporal resolution,
various satelliteborne sensors are used in sea ice applications.
However, each sensor has certain strengths and weaknesses.
For example, although scatterometers can provide a fast and
noncontact method for topography assessment, it suffers from a
low spatial resolution and, hence, can only detect large sea ice
floes or icebergs. For deformed sea ices, radar altimeters are also
restricted. As the synthetic aperture radar (SAR) acquires data
at all time in any weather conditions, it is widely used for sea ice
analysis [2]. However, SAR suffers from severe speckle noise
and limited spatial resolution; hence, it is difficult to detect small
ice floes [3]. In addition, collecting data from observational air-
craft is difficult and expensive. With the advancement of satellite
technology, high-resolution optical (HRO) imagery has provided
another alternative solution, as it enables accurate detection of
the textures, shapes, and edges of the sea ice floes [4].

In order to precisely segment water–ice from HRO images,
many studies have been done. Early attempts include grey
level co-occurrence probability texture features [5], function-
based Markov random field model algorithm [6], and k-means
clustering [7]. In addition, region-based segmentation is also
focused, which include watershed and iterative region growing
with semantics [8], incidence angle effect correction and region
merging [1], and watershed with intensity-based region merg-
ing method [9]. In general, good segmentation results can be
produced if the contrast between the sea ice and its surrounding
background is sufficiently high; thus, it fails to deal with cases
of mixed melting ice and water as the contrast becomes quite
low.

Due to the complicated dynamics of the sea ice under the
changing environmental effects such as wind, temperature, and
ocean current, it is extremely difficult to model and detect small
sea ice floes. At present, most of the sea ice image segmentation
methods are for SAR images. In [10], deep learning approach is
also attempted for classification of ocean surface in SAR images.
However, due to the lack of sufficient samples and labeled data
the application is very limited, whereas the few shot learning
is difficult to meet the needs, especially sea ice floe segmen-
tation. Although high-resolution optical images can visually
capture the surface features of interest, relevant approaches for
sea ice floe segmentation remain under-developed and distance
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away from practical needs. In addition to thresholding [11] and
watershed-based segmentation [12], there has been growing
interest recently in pixel grouping, i.e., object-based segmen-
tation. The object-based segmentation was particularly useful
for sea ice floe segmentation, where each floe can be treated as
one individual object. Neighboring pixels can be grouped into
objects according to the similarity of their intensity and textural
features [13]. However, due to the difficulty in defining object
boundaries in sea ice images, superpixel-based segmentation
is preferred as it provides an intermediate level representation
between pixels and objects.

Recently, superpixel segmentation has been applied for object
detection or image segmentation in remote sensing images.
These include superpixel graph-based segmentation algorithm
with ensemble learning and incremental learning [14] and com-
bining superpixels with the minimum spanning tree [15]. How-
ever, these methods are not aimed at sea ice segmentation from
high-resolution optical images. As a result, we aim to apply
superpixel for sea ice floe segmentation from HRO images,
where the challenges are how to deal with the low contrast
areas of mixed ice and water and also accurate segmentation of
touching floes of arbitrary sizes and shapes. Meanwhile, efficient
implementation is needed to cope with the pressure of large data
volume in the context of big data analysis.

By grouping spatially adjacent similar pixels into small re-
gions, superpixel segmentation can significantly simplify the
computational efficiency and improve the efficacy of following-
on analysis. This is particularly useful for sea ice image segmen-
tation, as the images are often very large in size and the pixels for
either the water background or sea ice floes have quite similar
appearance. The only exception is the mixture of water and ice
pixels, i.e., regions of melting ices. As a result, texture sensitive
superpixeling is proposed to tackle this challenge.

The major contributions of the proposed approach can be
highlighted as follows: First, we apply the robust principal
component analysis (RPCA) and low-rank representation for
denoising of the input images. Second, we combine texture sen-
sitive superpixeling and a learning-based adaptive thresholding
for efficient and effective segmentation of sea ice floes. Both
visual and quantitative assessments have validated the superior
performance of the proposed approach in denoising and accurate
segmentation of sea ice floes in comparison to the state-of-the-art
approaches.

The remaining parts of this article are organized as follows.
Section II presented the proposed algorithm in detail, with the
experimental settings detailed in Section III. The experimental
results are summarized and discussed in Section IV. Finally,
Section V concludes this article.

II. PROPOSED METHODOLOGY

In Fig. 1, the flowchart of the proposed approach is illustrated.
First, sparse components are extracted from the high-resolution
remote sensing image by using RPCA, and the bilateral filter
is used on it to remove noise. The enhanced image is obtained
by combining the low-rank matrix and the sparse components.
Second, applying the proposed texture-sensitive superpixeling

Fig. 1. Flowchart of proposed algorithm for sea ice floe segmentation.

algorithm to presegment the enhanced high-resolution optical
image. Finally, these superpixels are then processed using the
two-stage thresholding to generate the final segmentation. The
whole processing is divided into denoising and segmentation. In
simple linear iterative clustering (SLIC), the k-means clustering
approach is adopted to generate superpixels [16]. For determin-
ing the nearest cluster center for each image pixel, both the color
and spatial features are used to measure the distance D. In fact,
in HRO images, the roughness degree of different ocean cover
surfaces brings about different texture properties. The employed
textural information can help to exploit the underlying spatial
information so that the accuracy (ACC) of classification can
be improved [17]. As a result, we have introduced the texture
feature into the distance measure D for better segmentation
of sea ice floes. These superpixels are then processed using
a two-stage thresholding to generate the final segmentation as
detailed below.

A. De-Noising Using the RPCA

Due to the effect of illumination changes, atmosphere effect,
and sensor noise, remote sensing images often suffer from
different kinds of noise, which may appear in Gaussian, stripe,
impulse, spectral, speckle, temporal, or mixed patterns. Such
noise may severely degrade the image quality and constraint the
performance of the subsequent processing, e.g., segmentation
of small ice floes. By experimental analysis, it is found that the
major noise in our tested images are mixed patterns. Conven-
tional filtering approaches are found to fail in such cases, as they
may selectively smooth some noisy parts of the image whilst
blur details in other parts. In fact, as remote sensing images
are characterized with low-rankness, i.e., sparsity, which means
that the high-dimensional data can be adequately represented in
a low-dimensional subspace for dimensionality reduction [31].



CHAI et al.: TEXTURE-SENSITIVE SUPERPIXELING AND ADAPTIVE THRESHOLDING FOR EFFECTIVE SEGMENTATION 579

Fig. 2. Sample output of the noise reduction processing. (a) Original image.
(b) Sparse matrix. (c) Low-rank matrix. (d) Filtered sparse matrix using bilateral
filter. (e) Enhanced image.

Basically, the noise component tends to be sparse and lies in the
sparse subspace on the dataset. Thus, the remote sensing images
can be transformed into a sparse matrix and a low-rank matrix,
which can be solved by using a computational tool namely
RPCA [19].

Let Y ∈ Rm×n be the input data, RPCA can be regarded as
a convex optimization problem and described as follows:

minL,E ‖L‖∗ + λ‖E‖1 s.t. Y = L+ E (1)

where L ∈ Rm×n and E ∈ Rm×n denote, respectively, the low-
rank component and the sparse component; ‖L‖∗ =

∑
r δr(L)

is the nuclear norm of L, whose rth singular value is denoted
as δr(L)(r = 1, 2, . . . ,min(m,n)); ‖E‖1 =

∑
ij |eij | is the

L1-norm, and eij is the element at the ith row and jth column. L
and E can exactly recover Y with a high probability under certain
rank upper-bound and noise sparsity assumptions [18]. The
optimization method used is the alternating direction method
of multipliers (ADMM) algorithm [20].

Following the decomposing of RPCA, we apply the bilateral
filter to remove noise in the sparse matrix. As a nonlinear filter,
it can smooth the image and reduce noise without blurring the
edges, as detailed in [21]. At last, the image can be restored by
combining the low-rank component and the de-noised sparse
component.

Fig. 2 shows the results of noise reduction from RPCA on an
example image. The 512× 512 sample image was taken from a
HRO image in the Arctic (Chukchi Sea [22]). As seen, Fig. 2(d) is
better than Fig. 2(b) from visual comparison. The RPCA-based
method and bilateral filter have effectively removed most of
the noise from the sparse matrix while clearly maintaining the
boundary of the sea ice floes.

In Table I, the mean-squared error (MSE) and signal noise
ratio (SNR) are used for quantitative evaluation of the de-noising
effect. As seen, our method using RPCA and bilateral filter
has improved the MSE and SNR than median filtering, Wiener
filtering, and the case with only the bilateral filtering.

TABLE I
QUANTITATIVE EVALUATION OF DE-NOISING

B. Texture-Sensitive Superpixeling-Based Segmentation

As superpixels have been successfully applied in other image
segmentation tasks [14], [15], we use it in our problem for
segmenting individual sea ice floes, especially the small floes, for
efficient analysis of the large HRO images. By grouping pixels
into meaningful patches, superpixels can significantly reduce
the complexity of following-on tasks of image analysis [16].
Among quite a few superpixeling algorithms, SLIC is used for
its simple, fast, and more memory efficient implementation and
better adherence to image boundaries [16].

The general SLIC works like as follows. First, the number
of superpixels K is specified, and each superpixel will have
approximately N/K pixels, and the interval between their cen-
troids is S =

√
N/K, where N is the total number of image

pixels. Denote the cluster centers of the K selected superpixels
as Ck = [lk, ak, bk, xk, yk] with k ∈ {1, . . . ,K} at a regular
grid interval S. The cluster centers are represented using a 5-D
vector, which contains the spatial coordinate (x,y) and three color
components (L,a,b) derived from the CIELAB colorspace.

For two pixels i and j, their color, spatial, and combined
distances dc, ds, and D , can be measured using the Euclidean
distance as follows:

dc =

√
(li − lj)

2 + (ai − aj)
2 + (bi − bj)

2 (2)

ds =

√
(xi − xj)

2 + (yi − yj)
2. (3)

D =

√
dc

2 +

(
m
ds
S

)2

(4)

where m is a parameter to control the spatial compactness of the
superpixels. A larger m emphasizes more the spatial proximity
and, hence, a more compact cluster. The value of m varies within
[1] and [20], and its default value is set to 10 [16].

In the conventional SLIC approach, only the color and spatial
coordinates are utilized for generating the superpixels. Due to
similar intensity and lack of shape and other constraints, texture
features are extremely important for sea ice floes in the HRO
images, especially for detecting small sea ice floes in the mixture
of ice and water. For simplicity, the texture descriptor is also
extracted from local image blocks, using the local directional
ZigZag pattern (LDZP) as it has superior texture representation
capability than a few existing approaches, such as local binary
pattern, local ternary pattern, and local derivative pattern [23].

Using the LDZP [23], a texture descriptor can be extracted
for each pixel in a 3× 3 local window. For two pixels i and j,
denote LDZPi and LDZPj as the corresponding LDZP-based
texture descriptors. Their distance can also be measured using
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Fig. 3. (a) Superpixels generated by SLIC. (b) Texture-sensitive SLIC.

the Euclidean distance below as follows:

dt =

√∑N

n=1
(LDZPi,n − LDZPj,n)

2 (5)

where n is the index of the N neighbors in the local window,
and we have N = 8 for a 3× 3 local window.

The distance D in (4) is then further updated to include the
texture-features as follows:

D =

√
dc

2 +

(
ds
S

)2

m2 + dt
2. (6)

In Fig. 3, we compare the superpixels generated by SLIC
and our refined texture-sensitive SLIC. As seen, the proposed
texture-sensitive SLIC is able to retain more detailed texture
information with clearer boundary. This has the great potential
to extract small ice floes as verified in the following section.

C. Refined Segmentation Using Two-Stage Thresholding

By analyzing the superpixels pictures generated by SLIC and
texture-sensitive SLIC, we find that most of superpixels blocks
adhere the boundary well. While there are still some blocks
which contain both the ice and water, especially in areas of melt-
ing ice in the open water. In other words, some superpixels blocks
are under-segmented. For improved segmentation, two-stage
thresholding is proposed to further process these superpixels
blocks.

Through the analysis of the image histogram, it is found that
the original images are usually obvious bimodal distribution.
Therefore, the bottom of the valley can be used as the seg-
mentation threshold T. The variance V of the original image is
computed and T + V and T− V can be used as the thresholds of
the first layer segmentation, respectively. Furthermore, the mean
μ is computed for each superpixels block and the superpixels
block can be considered as sea ices if the μ is more than T +
V. Otherwise, the superpixels block can be considered as sea
water if the μ is less than T − V. For superpixels blocks whose
μ values are between T − V and T + V, they are considered as
the mixture of ice and water and will be further segmented.

For the mixed ice–water blocks, the second segmentation
stage is needed. First, the mean u and the variance v are com-
puted and the threshold u+ ω ∗ v is obtained, in which ω is an
adjustment factor. The mixed ice–water blocks are segmented
by comparing each pixel value against the threshold.

The key parameter ω is actually adaptively determined by
using the support vector machine (SVM), where we select 50%

Fig. 4. Label outputs segmented by two-stage thresholding method. (a) Label
output from the original SLIC algorithm. (b) Enlarged details comparison. (c)
Label output from our texture-sensitive SLIC algorithm.

of the regions for training and the remaining for testing. For
training, we manually determine the best ω for each mixed
ice–water block, and followed by support vector regression
analysis to derive the ω automatically for the testing blocks.
The LibSVM was used for implementing the SVM [24]. Finally,
the two-stage thresholding algorithm can be described using the
following pseudocode:

T← threshold of bimodal segmentation of the original
image

V←variance of the original image
For each superpixels block

μ←mean of each superpixels block
v←variance of each superpixels block
If μ > = T+V

Superpixels block is sea ice
Elseif μ < = T − V

Superpixels block is sea water
Else

Determine the optimal threshold ω using SVM
For each pixel in superpixels block

If Grayscale > = u+ ω ∗ v
The pixel is sea ice

Else
The pixel is sea water

End
End

End

Fig. 4(a)–(c) shows the label outputs segmented by using
the two-stage thresholding on results of the SLIC superpixels
and texture-sensitive SLIC, respectively. On the whole, both
methods can segment large chunks of ice well. However, by ex-
amining the details as highlighted in the label outputs, we can see
that some small ice floes in the ice–water mixing area are missed
by the general SLIC algorithm. In fact, obtaining small ice floes
is important for the subsequent processing and analysis of sea
ice melting [25]. To this end, the proposed texture-sensitive
SLIC algorithm seems to obtain improved segmentation with
fine detail.
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III. EXPERIMENTAL SETTINGS

A. Image Dataset

In 2009, the U.S. Geological Survey (USGS) released to
the public numerous HRO images acquired since 1999 at six
locations in the Arctic Basin (i.e., Canadian Arctic, Chukchi
Sea, Beaufort Sea, Fram Strait, East Siberian Sea, and Point
Barrow) for studying of shifts in Arctic Ocean sea ice cover
and understanding the environmental changes. With a spatial
resolution of 1 m, each geocoded panchromatic image covers
an area of approximately 15 × 15 km of the Arctic sea ice.
In addition, in order to obtain a single cloud-free scene of the
surface, repeated acquisitions are typically required since Arctic
stratus clouds frequently obstruct imaging of the surface during
the summer [26]. In this study, two HRO images from the Global
Fiducials Library (GFL) [22] are used to verify the proposed
algorithm. The Chukchi Sea and East Siberian Sea images were,
respectively, acquired on 31 May 2013 and 16 June 2001. The
data type of both images is unsigned 8-bit integer.

B. Ground Truth (GT) and Evaluation Metrics

For evaluation of the segmentation results, the most intuitive
method is visual comparison. Considering the large size of the
images and the massive volume of the data, however, it is unreal-
istic to evaluate the segmentation results by visual comparison in
this context. For the sake of quantitative performance evaluation,
a GT image is needed for quantitative evaluation. Due to the
dynamic nature of the scene and the ambiguous boundaries
between the water and ice during melting, it is a very challenging
or even impossible task to obtain an error-free GT, even by
domain experts in a manual way. Despite of such difficulties,
manual analysis has been widely adopted for analyzing sea ice
images [27].

In this study, manual GT is also used for the test image of the
Chukchi Sea [22]. A region of interest of 6368× 2584 pixels is
cropped from the original image for simplicity. The GT data were
produced by combining software and manual analysis, where
an initial segmentation from the environment for visualizing
images (ENVI) is further manually corrected by an experienced
sea ice expert to generate the corresponding GT.

The following popularly used metrics are adopted for quan-
titative evaluation of the segmentation results, including the
ACC, Precision, Recall, F1-measure, Jaccard coefficient (JAC),
Matthews Correlation Coefficient (MCC), and Conformity [28].
All these metrics can be derived from the confusion matrix,
using several statistical measures such as the numbers of true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). Their definitions are briefly summarized
as follows:

Accuracy =
TP+ TN

TP + TN+ FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
. (9)

Fig. 5. Original HRO image divided into four subimages. (a) Top-left. (b)
Top-right. (c) Bottom-left. (d) Bottom-right.

As the Precision and Recall values are in conflict, a combined
metric Fβ-measure is defined as follows:

Fβ =

(
β2 + 1

)
Precision ∗ Recall

β2Precision + Recall
. (10)

When β = 1, the widely used F1-measure can be derived as
follows:

F1 =
2TP

2TP + FP + FN
. (11)

The JAC defined by the following:

Jaccard =
TP

TP + FP + FN
. (12)

The MCC is defined as follows:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

(13)
The Conformity below is a coefficient for characterizing the

global error of the segmentation [26].

Conformity = 1− FP + FN

TP
. (14)

IV. RESULTS AND VALIDATION

A. Visual Comparison

For the East Siberian Sea image [22], it has a spatial size of
3684× 7056 pixels. For performance evaluation of the proposed
approach, the image is equally divided into four subimages (see
in Fig. 5), where each subimage has a size of 1842 × 3529
pixels. The sea ice segmentation based on general SLIC and
texture-sensitive SLIC are carried on them, respectively.

Fig. 6 shows the visual comparison of segmentation results.
The left column shows the label output from the original SLIC
algorithm, the right column shows the label output from our
texture-sensitive SLIC algorithm, and the middle columns show
the enlarged details comparisons. As seen, both methods can
well segment large sea ice floes. However, the proposed method
performs significantly better in segmenting small ice floes as
highlighted in the close-up views of the selected image blocks.
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Fig. 6. Visual comparison of segmentation results. (a) Comparison of top-left
image. (b) Comparison of top-right image. (c) Comparison of bottom-left image.
(d) Comparison of bottom-right image.

We further compare visually our results with the method
proposed in [27], which is a watershed with rule-based postpro-
cessing, and the results are shown in Fig. 7. Although the method
in [27] has a clear boundary, it has oversegmented large floes yet
missing many small floes. This is possibly due to the fact that the

Fig. 7. Visual comparison of segmentation results. (a) Label output from our
texture-sensitive SLIC algorithm. (b) Enlarged details comparison. (c) Label
output from the method proposed in [26].

watershed algorithm is an aggressive segmentation technique,
which tends to generate oversegmented results. On the contrary,
our method has almost no oversegmentation phenomenon, and
the produced output fits the edge well.

B. Algorithm Parameter Analysis

In SLIC, there are two important parameters that may affect
its performance, i.e., the compactness factor m, which is set to
10 in this article, and the number of clusters k.

However, the selection of k varies with the type and res-
olution of the image. Luckily, based on abovementioned GT
data and evaluation metrics, we can tune parameter k to achieve
the best segmentation performance of the proposed algorithm.
According to experience, too small k value will lead to poor
segmentation performance and too large k will lead to large
computation. For the test images, we tried different k values
from 1000 to 12 000 in increments of 1000 superpixels to obtain
statistics of evaluation metrics.

To further evaluate the effect of de-nosing based on RPCA,
we compared the general SLIC method [(2) in Table II] and
RPCA+ general SLIC method [(3) in Table II] with the proposed
method [(4) in Table II]. The method (2) performed super-
pixels segmentation directlyta on the original sea ice image.
And method (3) performed superpixels segmentation on the
denoising image by using RPCA and bilateral filter. Fig. 8(a)–(c)
shows the curves of ACC, F1 measure, and MCC with different
k value using the general SLIC method, RPCA+ general SLIC
method, and the proposed method, respectively. Fig. 8(d) shows
the comprehensive comparison of ACC for three methods.

As can be seen from Fig. 8(a)–(c), the evaluation curves
fluctuate as parameter k increases, and there is no obvious trend.
But the changes of the three evaluation metrics are basically
coordinated and can get the best performance at the same time.
In Fig. 8(a) and (b), the general SLIC method and RPCA+
general SLIC method achieve the best performances when k =
10 000. In Fig. 8(c), the proposed method achieves the best
performances when k = 6000. Hence, it indicates that the selec-
tion of parameter k will affect the performance of the algorithm.
Fig. 8(d) shows the comprehensive evaluation curves of three
methods with different k. For the proposed method, a larger k
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS

Fig. 8. Parameter k tuning using the evaluation metrics of three approaches.
(a) General SLIC method. (b) RPCA+ General SLIC. (c) Proposed method. (d)
Comparison of ACC.

makes it easier to achieve better performance and the ACC has a
slight upward trend as the number of the superpixels increases.
Meanwhile, it can be seen that the performance of the proposed
method is better than the other two methods. At the same time,
the performance of the RPCA+ general SLIC method is better
than the general SLIC method. Hence, it can be concluded that
denoising on low-rank sparse matrix is useful for removing noise
in high-resolution optical images.

Although the value of k may affect the segmentation results,
it is found that the variation of the results is quite small. When k
>= 4000, the ACC is between 0.950 and 0.956. For simplicity,
we set k = 6000; hence, the maximum number of pixels in
each superpixel becomes 6368× 2584/6000≈3000 pixels. This
seems to work well and hold a very steady performance, as
validated in Fig. 8(d).

C. Quantitative Comparison

For quantitative performance comparison, the proposed
method is benchmarked with the other three methods, including
the abovementioned two superpixel-based segmentation meth-
ods and another segmentation method. Labeled as (1) in Table II,
The third approach is based on the hidden Markov random field
(HMRF) model and its expectation-maximization (EM) [29],
which has been used for sea ice segmentation for its high ACC
and robustness in image segmentation [30].

Table II describes the evaluation metrics computed from
the proposed method and other state-of-the-art methods. For
consistency of comparison and less computation, we use k =
6000 for all of the method (2)–(4). The proposed method (4)
achieves the best ACC, Recall, F1-measure, MCC, JAC, and
Conformity of 95.51%, 95.76%, 97.63%, 83.09%, 95.38%, and
95.15%, respectively. The method (1) based on K-means and
HMRF-EM obtains the best Precision of 99.37%, while the other
metrics are quite poor. Overall these evaluation metrics show
good consistency. Moreover, it can be seen that the de-noising
method based on RPCA and texture-sensitive SLIC is useful to
improve the segmentation performance.

The left column in Fig. 9 shows the original image, GT image,
and segmentation results of abovementioned four methods. The
right column of Fig. 9 shows the enlarged sections of them since
the details are difficult to see clearly due to the high resolution of
original image. The selected regions are shown in the box on the
original images. As seen, method (1) can give a clearer boundary,
yet it misses many small sea ice floes. Methods (2) and (3) can
detect more small floes, yet they still miss some small ones. The
result of method (3) is found to be better than that of method
(2). It is consistent with the statistical data in Table II, which has
validated that our proposed method can accurately segment the
sea ice floes at different sizes with consistent boundaries.

In addition to visual comparison and quantitative evaluation,
we also compare the histogram of segmentation results. With a
bar plot for representing the distribution of numeric data into
bins, histograms of the floe sizes can compare the results of
floe size distribution (FSD). We compare the histograms of the
GT image and segmentation results of the other four methods
in Fig. 10. It can intuitively find that some small size of ices
(especially about 10) are missed by method (1) and our proposed
approach is better than methods (2) and (3).

The tested images have a spatial resolution of 1 m, and
they are geocoded panchromatic images that cover an area of
approximately 15 × 15 km. As seen in Fig. 10, the proposed
method can accurately detect small ice floes under ten pixels.
Actually, it can even detect ice floes as small as three pixels,
which corresponds to a diameter of 3 m.

In order to compare histograms more accurately, we also
used the Pearson correlation coefficient (PCC) to calculate the
similarity between the two histograms as follows:

PCC(H1, H2) =

∑
I(H1(I)−H1)(H2(I)−H2)√∑

I

(
H1(I)−H1

)2 ∑
I

(
H2 (I)−H2

)2
(15)

where Hk is the mean value of Hk.
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Fig. 9. Comparison of segmentation results with GT image. (a) Original sea
ice image. (b) GT image. (c) Result of K-means + HMRF-EM. (d) Result of
General SLIC. (e) Result of RPCA+ General SLIC. (f) Result of proposed
method.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

The similarity between the derived histograms from the seg-
mentation results in Fig. 10 and the GT are compared in Table III.
As seen, the results are basically consistent with the visual com-
parison, which again have validated the superior performance
of our proposed approach in segmentation of sea ice floes from
HRO images.

D. Computational Time Comparison

To further evaluate the efficiency of the proposed algorithms,
the running time of each stage of the algorithm is computed,
respectively. We execute all experiments on a desktop computer
with 16 GB RAM using MATLAB R2018a. The max number
of iterations is set to 10 for the K-means + HMRF-EM segmen-
tation method, and k is set to 6000 for the SLIC.

Fig. 10. Comparison the histograms of the derived sea ice segmentation results
from (a) the ground truth, (b) our approach, (c) RPCA+ SLIC, and (d) K-means
+ HMRF-EM.

TABLE IV
RUNNING TIME OF DIFFERENT SEGMENTATION ALGORITHMS (IN SECONDS)

As seen in Table IV, the SLIC-based methods are gener-
ally faster than the K-means + HMRF-EM method. While
texture-sensitive SLIC takes 81.31s more than the general SLIC
approach for computing the distance with LDZP. Moreover,
de-noising takes about 105.5s and segmentation based on two-
stage thresholding takes 310.23s. Therefore, postsegmentation
of superpixels blocks need to be further improved and optimized
in future work.

V. CONCLUSION

Automatic sea ice segmentation from high-resolution optical
remote sensing images is a challenging task, due to the sea
ices have wide spectral signature, texture, morphology, and size
variability, especially when there is melting ice in the water.
The use of low-rank sparse decomposition based on RPCA has
successfully suppressed the noise in the images, which has been
verified by experiments. To tackle the problem of high resolution
and large image size, superpixel-based segmentation is found to
be effective, especially with the improved texture-sensitive SLIC
algorithm. The two-stage thresholding algorithm is also found to
be very useful to generate the final segmentation. Quantitative
and qualitative assessments have demonstrated the efficiency
and efficacy of our proposed approach, which benefits from
unsupervised analysis.
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As future work, we will explore new models for improved
denoising and segmentation, including kernel-based superpixles
[32], 2-D singular spectral analysis based noise reduction [33],
saliency detection [34], and folded-PCA-based dimension re-
duction [35]. By taking the segmentation results from conven-
tional approaches as coarse GT, various deep learning models
will also be explored, such as convolutional neural network in
combination with multiscale spatial features [36], segmented
stacked auto-encoders [37], combined loss learning [38], and op-
timized DenseNet [39]. Adaptive distancing-based unsupervised
learning will also be explored [40]. Additional work will include
extension of the algorithm for sea ice floe segmentation from
other satellite images, such as SAR, and also possible fusion of
different modalities for more accurate FSD analysis.

REFERENCES

[1] W. H. Lang, C. C. Chang, X. Z. Yang, J. Zhang, and J. M. Meng,
“ScanSAR mode sea ice image segmentation,” Adv. Mater. Res., vol. 709,
pp. 675–678, 2013.

[2] K. M. Stuart and D. G. Long, “Tracking large tabular icebergs using the
SeaWinds Ku-band microwave scatterometers,” Deep Sea Res. Part II,
vol. 58, no. 11-12, pp. 1285–1300, 2011.

[3] F. Gao, X. Wang, Y. Gao, J. Dong, and S. Wang, “Sea ice change detection
in SAR images based on convolutional-wavelet neural networks,” IEEE
Geosci. Remote Sens. Lett., vol. 16 no. 8, pp. 1240–1244, Aug. 2019.

[4] Z. Shi, Z. Jiang, X. Yu, and B. Li, “Ship detection in high-resolution optical
imagery based on anomaly detector and local shape feature,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 8, pp. 4511–4523, Aug. 2014.

[5] D. G. Barber and E. LeDrew, “SAR sea ice discrimination using texture
statistics: A multivariate approach,” Photogrammetric Eng. Remote Sens.,
vol. 57, pp. 385–395, 1991.

[6] H. W. Deng and D. A. Clausi, “Unsupervised segmentation of syn-
thetic aperture radar sea ice imagery using a novel Markov random field
model,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 528–538,
Mar. 2005.

[7] J. Ren, B. Hwang, P. Murray, S. Sakhalkar, and S. McCormack, “Effec-
tive SAR sea ice image segmentation and touch floe separation using a
combined multi-stage approach,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2015, pp. 1040–1043.

[8] D. A. Clausi and Q. Yu, “IRGS: Image segmentation using edge penalties
and region growing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 12, pp. 2126–2139, Dec. 2008.

[9] T. B. Ijitona, J. Ren, and P. B. Hwang, “SAR sea ice image segmentation
using watershed with intensity-based region merging,” in Proc. IEEE 14th
Int. Comput. Inf. Technol., 2014, pp. 168–172.

[10] C. Wang et al., “Classification of the global Sentinel-1 SAR vignettes for
ocean surface process studies,” Remote Sens. Environ., vol. 234, 2019,
Art. no. 111457.

[11] P. Lu et al., “Sea ice surface features in Arctic summer 2008: Aerial
observations,” Remote Sens. Environ., vol. 114, no. 4, pp. 693–699, 2010.

[12] N. C. Wright and C. M. Polashenski, “Open-source algorithm for detecting
sea ice surface features in high-resolution optical imagery,” Cryosphere,
vol. 12, no. 4, pp. 1307–1329, 2020.

[13] X. Miao, H. Xie, S. F. Ackley, and S. Zheng, “Object-based arctic sea
ice ridge detection from high-spatial-resolution imagery,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 6, pp. 787–791, Jun. 2016.

[14] M. M. Barbat, C. Wesche, A. V. Werhli, and M. M. Mata, “An adaptive ma-
chine learning approach to improve automatic iceberg detection from SAR
images,” Photogrammetry Remote Sens., vol. 156. no. 1, pp. 247–259,
2019.

[15] Z. Dong, M. Wang, D. Li, and Y. Cheng, “Optimal segmentation of
high-resolution remote sensing image by combining superpixels with the
minimum spanning tree,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1,
pp. 228–238, Jan. 2018.

[16] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2281,
Nov. 2012.

[17] G. Dong-Dong, T. Tang, Y. Li, and J. Lu, “Local pattern descriptor for
SAR image classification,” in Proc. IEEE 5th Asia-Pacific Conf. Synthetic
Aperture Radar, Singapore, 2015, pp. 764–767.

[18] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 3, 2011, Art. no. 11.

[19] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Proc. 23rd Annu. Conf. Neural Inf. Process. Syst.,
2009, pp. 2080–2088.

[20] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2011.

[21] S. Paris, J. Tumblin, P. Kornprobst, and F. Durand, “A gentle introduction
to bilateral filtering and its applications,” in Proc. ACM SIGGRAPH, 2007,
pp. 1–50.

[22] Chukchi sea image source chukchi_20130531_2. 2013. [Online].
Available: https://lta.cr.usgs.gov/gfl/?img:3859:124&PTAGNAME=
ArcticSea East Siberian Sea image source (esiber_20010616_1), 2001.
https://lta.cr.usgs.gov/gfl/?img:672:125&PTAGNAME=ArcticSea

[23] S. K. Roy, B. Chanda, B. B. Chaudhuri, S. Banerjee, D. K. Ghosh, and S. R.
Dubey, “Local directional ZigZag pattern: A rotation invariant descriptor
for texture classification,” Pattern Recognit. Lett., vol. 108, pp. 23–30,
2018.

[24] LibSVM. 2019. [Online]. Available: https://www.csie.ntu.edu.tw/∼cjlin/
libsvm/

[25] B. Hwang et al., “Winter-to-summer transition of Arctic sea ice breakup
and floe size distribution in the Beaufort Sea,” Elementa Sci. Anthropocene,
vol. 5, pp. 1–25, 2017.

[26] R. Kwok and N. Untersteiner, “New high-resolution images of summer
Arctic sea ice,” EOS, vol. 92, no. 7, pp. 53–54, 2011.

[27] B. Hwang et al., “A practical algorithm for the retrieval of floe size dis-
tribution of Arctic sea ice from high-resolution satellite synthetic aperture
radar imagery,” Elementa: Sci. Anthropocene, vol. 5, pp. 1–23, 2017.

[28] H.-H. Chang, D. J. Valentino, A. H. Zhuang, and W.C. Chu, “Performance
measure characterization for evaluating neuroimage segmentation algo-
rithms,” Neuroimage, vol. 47, no. 1, pp. 122–135, 2009.

[29] Q. Wang, “HMRF-EM-image: Implementation of the hidden Markov
random field model and its expectation-maximization algorithm,” 2012,
arXiv:1207.3510.

[30] G. Akbarizadeh, Z. Tirandaz, and H. Kaabi, “PolSAR image segmenta-
tion based on feature extraction and data compression using weighted
neighborhood filter bank and hidden Markov random field-expectation
maximization,” Measurement, vol. 153, 2020, Art. no. 107432.

[31] T. H. Ma, Z. Xu, and D. Meng, “Remote sensing image denoising via
low-rank tensor approximation and robust noise modeling,” Remote Sens.,
vol. 12, 2020, Art. no. 1278.

[32] L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, “Classification
of hyperspectral images by exploiting spectral–spatial information of su-
perpixel via multiple kernels,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 12, pp. 6663–6674, Dec. 2015.

[33] J. Zabalza et al., “Novel two-dimensional singular spectrum analysis for
effective feature extraction and data classification in hyperspectral imag-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4418–4433,
Aug. 2015.

[34] Y. Yan et al., “Unsupervised image saliency detection with Gestalt-laws
guided optimization and visual attention based refinement,” Pattern Recog-
nit., vol. 79, pp. 65–78, 2018.

[35] J. Zabalza et al., “Novel folded-PCA for improved feature extraction and
data reduction with hyperspectral imaging and SAR in remote sensing,”
ISPRS J. Photogrammetry Remote Sens., vol. 93, pp. 112–122, 2014.

[36] G. Sun et al., “Deep fusion of localized spectral features and multi-scale
spatial features for effective classification of hyperspectral images,” Int. J.
Appl. Earth Observ. Geoinf., vol. 91, 2020, Art. no. 102157.

[37] J. Zabalza et al., “Novel segmented stacked autoencoder for effective
dimensionality reduction and feature extraction in hyperspectral imaging,”
Neurocomputing, vol. 185, pp. 1–10, 2016.

[38] Z. Fang et al., “Triple loss for hard face detection,” Neurocomputing,
vol. 398, pp. 20–30, 2020.

[39] Z. Fang et al., “Topological optimization of DenseNet with pretrained-
weights inheritance and genetic channel selection,” Pattern Recognit., vol,
109, 2020, Art. no. 107608.

[40] H. Sun et al., “Adaptive distance-based band hierarchy (ADBH) for
effective hyperspectral band selection,” IEEE Trans. Cybern., in press,
2020, doi: 10.1109/TCYB.2020.2977750.

https://lta.cr.usgs.gov/gfl/&quest;img:3859:124&amp;PTAGNAME&equals; ignorespaces ArcticSea ignorespaces East ignorespaces Siberian ignorespaces Sea ignorespaces image ignorespaces source ignorespaces (esiber_20010616_1),
ignorespaces 2001. ignorespaces https://lta.cr.usgs.gov/gfl/&quest;img:672:125&amp;PTAGNAME&equals;ArcticSea
https://www.csie.ntu.edu.tw/&sim;cjlin/libsvm/
https://dx.doi.org/10.1109/TCYB.2020.2977750


586 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Yanmei Chai received the Ph.D. degree in computer
science and technology from the Northwestern Poly-
technical University (NWPU), Xi’an, China.

She is currently an Associate Professor with the
Central University of Finance and Economics, Bei-
jing, China. Her current research interests include
image fusion, gait recognition, data analysis, and
remote sensing.

Jinchang Ren (Senior Member, IEEE) received the
B.Eng. degree in computer software, M.Eng. degree
in image processing, and D.Eng. degree in computer
vision from Northwestern Polytechnical University
(NWPU), Xi’an, China, in 1992, 1997, and 2000, re-
spectively, and the Ph.D. degree in media computing
from the University of Bradford, Bradford, U.K., in
2009.

He is currently a Reader with the Department
of Electronic and Electrical Engineering, University
of Strathclyde, Glasgow, U.K. He has authored and

coauthored more than 300 journal and conference papers. His research interests
focus mainly on hyperspectral imaging, image processing, computer vision, big
data analytics, and machine learning.

Prof. Ren is an Associate Editor for several international journals including
the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS

AND REMOTE SENSING and Journal of The Franklin Institute.

Byongjun Hwang (Member, IEEE) received the
Ph.D. degree in microwave remote sensing from the
University of Manitoba, Winnipeg, MB, Canada, in
2008.

He is currently a Reader with the Department of
Biological and Geographical Sciences, School of Ap-
plied Sciences, University of Huddersfield, Hudder-
sfield, U.K. As a Geophysicist and Remote Sensing
Specialist, his research focuses on the dynamics and
thermodynamics of snow and sea ice in the Arctic.

Jian Wang received the Ph.D. degree in signal and
information processing from the Beijing University
of Posts and Telecommunications, Beijing, China.

He is currently an Associate Professor with the
Central University of Finance And Economics, Bei-
jing, China. His research interests include machine
learning, cloud computing, and intelligent education.

Dan Fan received the Ph.D. degree in computer
science and technology from Tsinghua University,
Beijing, China.

She is currently a Lecturer with the Central Uni-
versity of Finance and Economics, Beijing, China.
Her research interests include data mining, pattern
recognition, data analysis, adaptive modeling, and
edge computing.

Yijun Yan received the B.E. degree in electrical
engineering from the Shanghai University of Electric
Power, Shanghai, China, in 2012, and the M.E. and
Ph.D. degrees in electronic and electrical engineering
from the University of Strathclyde, Glasgow, U.K., in
2013 and 2018, respectively.

He is currently a Research Associate with the De-
partment of Electronic and Electrical Engineering,
University of Strathclyde. His research interests in-
clude hyperspectral imaging, machine learning, im-
age segmentation, and saliency detection.

Shiwei Zhu received the Ph.D. degree in management
science and engineering from the Beihang University,
Beijing, China, in 2011.

He is currently a Lecturer with the School of In-
formation, Central University of Finance and Eco-
nomics, Beijing, China. His research interests include
data mining, management information system, and
electronic commerce.


	coversheet_template
	CHAI 2021 Texture sensitive (VOR)


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


