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Abstract—Wireless Medical Sensor Networks (WMSNs) offer
ubiquitous health applications that enhance patients’ quality
of life and support national health systems. Detecting internal
attacks on WMSNs is still challenging since cryptographic
measures can not protect from compromised or selfish sensor
nodes. Establishing a trust relationship between sensor nodes is
recognized as a promising measure to reinforce the overall secu-
rity of Wireless Sensor Networks (WSNs). However, the existing
trust schemes for WSNs are not necessarily fit for WMSNs due
to their different operation, topology, resources limitations, and
critical applications. In this paper, the aforementioned factors
are regarded, and accordingly, two different methods to evaluate
the trust value have been proposed to fit in-body, on-body,
and off-body sensor nodes. Our Lightweight Trust Management
System (LTMS) provides a further line of defense to detect packet
drop attacks launched by compromised or selfish sensor nodes.
Moreover, simulation results show that LTMS is more robust
against complicated on-off attacks and can significantly reduce
the processing overhead.

Index Terms—Wireless Medical Sensor Networks (WMSNs),
TMS, internal attacks, on-off attacks.

I. INTRODUCTION

Wireless Medical Sensor Networks (WMSNs) offer a
promising technology that has many potential healthcare ap-
plications ranging from monitoring the physiological body
signals to actuation and drug delivery. Adopting such a rev-
olutionized solution will ease the daily patient life, improve
the performance of the overloaded medical staff, allow them
to timely intervene, and reduce the expenses of the health
systems.

Security concerns are still challenging obstacles to the
widespread adoption of WMSNs. Internal security threats,
such as packet drop attacks, may have catastrophic conse-
quences. Compromised, selfish, or even faulty Sensor Nodes
(SNs) may drop critical messages, such as urgent notifications
of abnormal heart rhythms or insulin dose release orders, and
consequently endanger the patient’s life. This kind of attack
can not be prevented by traditional cryptographic measures
as malicious SNs are already authenticated and may have
a copy of the security keys. Therefore, establishing a trust
relationship between SNs within the network is regarded
as a complementary security solution to the cryptographic
measures to protect the network from malicious activities [1].

Trust Management Systems (TMSs) offer a further level of
defense against internal attacks by monitoring other nodes’ be-

havior. Various potential applications emerge from establishing
a trust relationship between nodes ranging from routing [2] to
defeating threats [3]. Several TMSs have been introduced in
the literature for WSNs [3]–[6]; however, a limited number
have been proposed to fit WMSNs [1].

In addition to the security concerns inherited from Wireless
Sensor Networks (WSNs), WMSNs have unique characteris-
tics that impose further challenges in adopting the existing
security measures of WSNs. Therefore, operation requirements
such as traffic rates, network topology, resources limitations,
and intolerant applications must be taken into account in order
to design an effective trust scheme that fits WMSNs. First,
some SNs generate low traffic rates around 1 packet/s [7], such
as heart rate sensors. Second, the network topology of WMSNs
is a two-hop star topology in accordance with IEEE 802.15.6
standard [8]. Third, SNs, especially implanted ones, suffer
from strict resources limitations. For instance, The battery is
expected to last for years before getting replaced via surgery.
Hence, a lightweight trust scheme is a must. Fourth, WMSNs
provide very critical applications that can not tolerate any
prolonged detection periods.

On the other hand, although TMSs show promising solution
to detect packet drop attacks and other misbehaviors, they can
be gamed by intelligent adversaries. TMSs are prone to on-off
attacks, where adversary changes his behavior between good
and bad alternately in order to redeem himself from the burden
of bad behavior [9]. Moreover, adversaries can launch more
sophisticated on-off attacks by changing the packet drop rates
or launching on-off attacks with non-identical periods.

The main contribution of this paper is threefold. First,
we clarify the unique requirements of WMSNs. Second, a
novel lightweight and effective trust management scheme for
in-body, on-body, and off-body SNs is proposed. Third, a
comprehensive analysis is offered to show our scheme’s merit
in defending against complicated on-off attacks. Moreover, the
code of our simulation and proposed methods, together with
all experiments’ data, are made available at (https://github.
com/mshsyr/LTMS) for reproducibility purposes.

The remainder of this paper is organized into six sections
as follows. Related works are given in section II. Section
III overviews WMSNs. Our proposed scheme is presented
in section IV, followed by the experiments simulation and
analysis in section V. Finally, section VI concludes the paper.

https://github.com/mshsyr/LTMS
https://github.com/mshsyr/LTMS


II. RELATED WORKS

Trust and reputation systems emerge to defend against
internal attacks. Various methods to model the trust relation-
ship between nodes ranging from probability-based to fuzzy
logic are proposed in the literature for both Mobile Ad hoc
Network (MANET) and WSNs [3]–[5], [10]–[12]. However,
few research have targeted WMSNs [1], [13].

Many research are put forward based on the Bayesian infer-
ence since the future behavior can be inferred based on histor-
ical observations. Different kinds of probability distributions
are used for modeling in order to evaluate the trust value, such
as beta distribution [3], [12], [14], binomial distribution [13],
exponential distribution [11] and Gaussian distribution [15].
Although the probability theory offers a robust mathematical
basis to model trust and reputation systems, it needs prolonged
time to detect malicious activities since the trust value rep-
resents a long-term value [16]. To overcome this limitation,
different approaches are adopted in the literature. Longevity
factor, which gives more weight to recent observations, has
been widely used in the literature to reflect the current behavior
of the trustee [3], [11]–[14]. A sliding time window is also
proposed in the literature to enhance the malicious detection
rate [1], [5], [17]. However, the trust value in such schemes
represents a short-term value limited to the length of the
time window, which does not necessarily reflect the trustee’s
trustworthiness. Moreover, increasing the length of the time
window requires more processing overhead. The punishment
factor is another method to overcome the aforementioned
issue. It has been widely adopted in the literature to give more
weight to the bad behavior [10], [18], [19].

On the other hand, trust schemes proposed for either
MANET or WSNs have to be further assessed in terms
of WMSNs operating conditions, network topology, and re-
sources limitations. Authors in [1] proposed ReTrust, which
is a trust management scheme for WMSNs. According to the
authors, ReTrust is a lightweight and attack resistant scheme
that fits WMSNs. ReTrust adopts a sliding time window to
update the trust value by using a dynamic exponential decreas-
ing longevity factor in order to underweight old observations,
which causes a significant processing overhead. Many trust
schemes have used ReTrust as a benchmark scheme to contrast
with [5], [10], [17], [19], [20]. BDTMS [13] is a trust manage-
ment scheme for WSNs that targeting healthcare applications.
It uses a longevity factor to reflect the recent behavior of
the trustee. Neither ReTrust nor BDTMS considers the unique
characteristics of WMSNs, such as traffic rates, or evaluates
the processing overhead. However, these characteristics have
been considered in developing our trust management scheme
in order to fit WMSNs.

III. WIRELESS MEDICAL SENSOR NETWORKS

In this section, an overview of WMSNs is introduced. SNs
classifications and network topology are presented. Moreover,
the WMSNs threat model is discussed.

A. Overview

A single WMSN may comprise up to hundreds of patients’
Body Sensor Network (BSN). Each BSN consists of several
SNs that sense the physiological signs and the activities of the
body [21]. The maximum number of SNs within a single BSN
is set to 64 in accordance with IEEE 802.15.6 standard [8].
These bio-sensor nodes are distributed in, on, or off the body.
SNs have strict resources constraints, which play a significant
role in adopting any security measure. Moreover, in-body SNs
have their further power limitation as replacing the battery may
require surgery. For instance, pacemakers’ batteries, which is
lithium iodide cells, are expected to last for around seven years
before being replaced via surgery [22]. Fig 1 illustrates an
exemplary WMSNs in a hospital. All sensed information is
to be sent to the BSN’s sink node, which in turn forwards
this critical information to the medical server for processing.
Authorized physicians are then able to access the patients’
medical records and intervene if necessary.

B. Network Model

SNs are classified into three different types based on their
role. Sink node is the gateway of the BSN to other BSNs or
the internet. End SNs are designed to sense the body signals
and exchange the messages with the sink if they are in direct
communication or via relay SNs when they are out of the
communication range. The topology of the BSN is a two-
hop star topology as defined in IEEE 802.15.6 [8]. In this
research, we differentiate between two types of SNs based on
their resources limitations and traffic rates as follows.

• In-body SNs are end nodes implanted inside the hu-
man body to sense the vital signs of the body, such
as pacemakers. They have minimal resources, and their
power source is expected to last for years. They use low
traffic rates around 1 packet per second [7]. These unique
features of resources and traffic rates impose further
requirements to deploy any proposed TMS.

• On-body and off-body SNs are distributed on the body
surface or in the vicinity of the body. They have better re-
sources and processing capabilities. Moreover, replacing
nodes’ batteries does not require surgical interventions.
They usually use higher traffic rates as they are expected
to relay messages for implanted SNs, for example.

This differentiation is used to propose two different trust
evaluation methods.

C. Threat Model

BSN is prone to different security threats because of the
sensitive data it generates and the broadcast nature of the
wireless networks. Potential security threats are classified
into external and internal. Protecting from external threats is
achieved using cryptographic measures [4]. Internal attacks are
usually launched by SNs that have passed the authentication
process and may have had a copy of the security keys. These
SNs are regarded as legitimate SNs from the cryptographic
measures perspective. By monitoring the behavior of the SNs
within the BSN, TMSs can defend against internal attacks,
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Fig. 1: Network Structure

such as packet drop attacks. Dropping packets is not just able
to disrupt the network operation, but it may endanger the
patient’s life by dropping physician notification messages or
drug delivery orders.

On the other hand, the process of evaluating the trust based
on direct observations is vulnerable to on-off attacks, where
the malicious node changes its behavior between malicious
and benign alternately with a view to keep itself undetected
[19]. The on-off attack cycle consists of on and off periods.
Malicious agent behaves badly during the on period and well
during the off period. Therefore, defending against this kind
of attack requires a robust design.

IV. LTMS EVALUATION MODEL

In this section, our proposed trust evaluation scheme for
WMSNs is presented. Two methods are proposed to evaluate
the trust value. The first is introduced for in-body SNs, while
the second is for on-body and off-body SNs.

A. Definitions

The process of evaluating the trust value of nodes within
the network is done in a distributed manner, where each node
has its instance of the trust evaluation engine. As the trust
relationship is established between two entities for a specific
task, we refer to the party who performs the action as an
agent and the party who monitors the agent and holds the
trust value as a subject. The action could be any service
provided by an agent to a specific subject, which is packet
forwarding in our case. Reputation is defined as the perception
that the agent does not have any intention to change its known
behavior. Therefore, reputation value is inferred directly from
the observation history. Trust is defined as having adequate
confidence in the agent’s future behavior. It is a subjective
value as the subject may consider different factors to evaluate
the trust value that are not necessarily related to the agent’s
honesty. In this context, we assume that the subject overhears
the agent to observe forwarded packets, which considered

good behavior and dropped packets, which considered bad
behavior. These direct observations are used to evaluate direct
trust in order to identify malicious agents. Reputation-based
trust is defined as follows:

Tij(t) = f(Repij(t)) (1)

where Tij(t) represents the trust value maintained by the
subject i for the agent j at the time unit t and Repij(t) is the
reputation value.

B. Beta Distribution based Trust Model

In this paper, we consider the packet forwarding service
to evaluate the trust relationship between the subject and
the agent as it is an essential service for multi-hop ad-hoc
wireless networks. In this case, the subject maintains two
time series s(t) and u(t) for successful and unsuccessful
actions, respectively. The observed action has two states to
represent if the packet is forwarded successfully or not. These
observations are considered a sequence of trials with binary
outcomes (Successful, Unsuccessful), which forming a binary
space of disjoint elements. Therefore, this binomial Bayesian
reputation system can be modeled using a Beta Probability
Density Function (PDF) as follows.

f(px|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1
x (1− px)β−1

where


0 ≤ px ≤ 1

α > 0

β > 0

(2)

There are two restrictions for Eq. 2. The first is px 6= 0 if
α < 1, and the second is px 6= 1 if β < 1. The reputation
value is the expected value of Eq. 2 and is defined in Eq. 3.

Repij(t) = E(px)

=
αt

αt + βt

(3)

where Repij(t) represents the reputation value maintained by
the subject i for the agent j, E(px) is the expected value of
the beta distribution, x represents the outcome of successful
actions, α and β are the probability distribution function shape
parameters or the levels.

The reputation value is updated by updating the beta
distribution shape parameters α and β. To the best of our
knowledge, all the probability distribution based TMSs use
the same updating mechanism to update the reputation value
by incorporating a longevity factor to give more weight to the
current observations as shown in Eq. 4 and Eq. 5

αt = λ.αt−1 + s(t) (4)

βt = λ.βt−1 + u(t) (5)

where λ is the longevity factor and 0 ≤ λ ≤ 1, s(t) and
u(t) are the number of observations at the time unit t for



both successful and unsuccessful time series, respectively. The
value of λ specifies the exponential decay of the observation
history. Smaller values can adopt recent behavior change better
than bigger ones; however, the observation history is forgotten
quickly. Therefore, the values 0.8 and 0.9 are widely used in
the literature for λ [5], [13].

C. The Proposed Method for In-Body SNs

The beta based reputation evaluation model provides a
robust basis on the theory of statistics to evaluate the trust
relationship between SNs [23]. However, the beta model, in
its current form, fails to detect malicious behavior effectively.
It needs more time to reflect any behavior change, which does
not fit the critical applications of the WMSNs. Authors in
[16] compare the effectiveness of beta based reputation model
with hidden Markov models and report this drawback. This
issue applies to other probability distribution based reputation
models as they all use the same updating technique to update
the reputation value. The traditional updating mechanism uses
a single weight exponential smoothing technique, which fails
to reflect any sudden malicious behavior fast because the
evaluated reputation value represents the long-term expected
value of the probability distribution. Therefore, it needs more
time to detect any malicious behavior [9]. This drawback
may be exploited by a smart adversary to launch complicated
attacks such as on-off attacks.

In [9], we have introduced a novel updating mechanism
to allow fast detection of any behavior change. Although
the proposed method shows prompt reaction to any sudden
behavior change, smart adversaries can take advantage of the
model dynamicity to launch complicated on-off attacks. There-
fore, our proposed method adopts the asymmetry principle
of trust, which considers the trust as a fragile thing that is
hard to earn, but easy to lose [24]. Adopting this technique
can defend against on-off attacks and make the response to
any malicious activity faster. We update the beta levels by
incorporating the current slopes bt and dt of the successful and
unsuccessful time series, respectively. Taking into account that
the difference between two subsequent time units is always
one, Eq. 6 and Eq. 7 show how slopes are computed.

bt = ω(αt − αt−1) + (1− ω)bt−1 (6)

dt = ω(βt − βt−1) + (1− ω)dt−1 (7)

where bt and dt are the slopes at the time unit t, ω is
the weighting coefficient and 0 ≤ ω ≤ 1. The smoothing
coefficient ω impacts the detection response speed, which is
maximized when ω = 1, and this means it just depends on
the current change of beta levels. As incorporating the slopes
into the updating mechanism can reflect any sudden change
in behavior, which makes earning and losing trust identical,
algorithm 1 deals with this concept to make the trust value
easy to lose and hard to earn.

During the attack, the slope bt maintains negative values;
hence, the level αt may accumulate negative values depending
on the duration of the attack. At the same time, the level

Algorithm 1: Updating mechanism
Input: Observations & beta shape parameters at t and
t− 1

Output: Updated shape parameters
initialization;
while true do

if bt−1 ≤ 0 && dt−1 > 0 then
αt = λ(αt−1 + bt−1) + s(t);
βt = λ(βt−1 + dt−1) + u(t);
bt = αt − αt−1;
dt = βt − βt−1;

else
αt = λ.αt−1 + s(t);
βt = λ.βt−1 + u(t);
bt = αt − αt−1;
dt = βt − βt−1;

end
end

βt, which refers to the malicious activities, develops over the
attack duration with a view to make forgetting the bad behavior
harder. Therefore, the trust value is evaluated using Eq. 8.

Tij(t) =

{
αt

αt+βt
for αt > 0

0 otherwise
(8)

D. The Proposed Method for On-Body and Off-Body SNs

In this subsection, we propose our method to evaluate the
trust value for on-body and off-body SNs. These SNs still have
resources limitations; however, the processing capabilities are
higher than the implanted ones. More importantly, replacing
batteries of on-body and off-body SNs does not require
surgical intervention. Therefore, a further level of protection
to defend against on-off attacks is introduced to enhance the
overall security.

The reputation value evaluated using beta models represents
a long-term value. It reflects the accumulated long observation
history. Although this feature is useful to assess the trustwor-
thiness of the SNs, it can be exploited by adversaries to launch
sophisticated attacks. Many trust management schemes in the
literature adopt the sliding time window technique in order to
address this security concern [1], [5], [17]. Adopting a sliding
time window has some limitations as the trust value reflects
only the length of the time window; moreover, it requires more
processing each time the trust value is computed.

Our proposed method for on-body and off-body SNs incor-
porates the short-term and long-term reputation values along
with our proposed updating mechanism in order to defend
against on-off attacks. This protection module is only triggered
when an on-off behavior is detected. The first cycle of the on-
off attack is considered as just a malicious activity because
the on-off attack is a repeated malicious activity that can only
be detected from the second cycle. Therefore, if the same
behavior reoccurs, the on-off module is triggered to defend



against on-off attacks. The detailed process is shown in the
algorithm 2.

Algorithm 2: Trust evaluation for on-body and off-
body SN

Input: Updated beta shape parameters & Repij(t− 1)
Output: Trust value
initialization;
while true do

if αt ≤ 0 then
Repij(t) = 0;

else
Repij(t) = αt

αt+βt
;

end
if Repij(t− 1) ≥ thr1 && Repij(t) < thr1 then

if malicious > 0 then
cycle = t−malicious;
malicious = 0;

else
malicious = t;

end
end
if cycle > 0 && Trust(t− 1) < thr2 then

ShRepij(t) = mean(Repij(t− period : t);
Trustij(t) = min(ShRepij(t), Repij(t));

else
Trustij(t) = Repij(t);
cycle = 0;

end
end

where thr1 represents the threshold to differentiate between
malicious and benign SNs, which is usually set to 0.5 in the
literature [5], [10]–[13], thr2 represents the expected trust-
worthiness that the SNs have in normal operation, ShRepij(t)
represents the short-term reputation value at the time unit t,
and cycle and malicious are two variables to differentiate
between sudden misbehavior and on-off attacks.

V. SIMULATION AND ANALYSIS

In this section, our proposed trust management scheme for
WMSNs is simulated and analyzed. The simulator NS-3.30
[25] is used to run the simulation scenarios. All SNs have
the ability to forward packets, while one of them acts as a
sink. AODV routing protocol [26] is installed in each SN to
relay packets to the sink. However, it has been modified to
simulate malicious activities by introducing new attributes to
launch packet drop attacks, which will be detailed in the next
paragraph. Traffic is generated based on the exponential dis-
tribution using the parameterized probability density function
shown in Eq. 9

p(x; b) =

{
µe−µx x ≥ 0

0 x < 0
x ∈ [0, b] (9)

where µ is the rate parameter, and b is the bound parameter.
As the exponential distribution is theoretically unbounded, the

bound b is defined to make the generated values bounded over
the interval [0, b].

During the simulation, benign SNs drop received packets
from others with a drop ratio of 10%, whereas the packet drop
ratio of malicious SNs is 75% unless otherwise indicated. The
decision to forward or drop a packet is taken randomly for
each received packet individually. The simulation consists of
two phases. In the first phase, the network is initialized, and the
malicious SNs behave well to increase their trustworthiness.
During the second phase, they launch on-off attacks in order to
disrupt the network operation and keep themselves undetected.
The first phase of the simulation is 50s, while the second phase
is 150s unless otherwise indicated. The subject continues to
interact with malicious agents even after they are detected in
order to study the behavior of the trust schemes under on-off
attacks as the trust value is developing over time. The on and
off periods are identical during the simulation unless otherwise
indicated, and the time unit is set to 1 second.

A. Security and Efficiency Analysis

In this subsection, we present the efficiency analysis of our
two methods to evaluate the trust value. We have assessed the
robustness of the direct trust evaluation methods of a set of
trust management schemes proposed for WSNs [4], [5], [11],
[12] and WMSNs [1], [13] under on-off attacks. Both ReTrust
[1] and RaRTrust [5] show good performance in defending
against on-off attacks. This performance can be attributed to
adopting the sliding time window technique, which can only
reflect the recent behavior of SNs. Therefore, both ReTrust and
RaRTrust have been chosen to contrast our scheme with. Table
I shows the parameters of each scheme. It is worth mentioning
that we adopt the same parameters values as declared in their
publications as they reflect the best performance. Moreover,
the longevity factor λ for our scheme is set to equal or higher
than other schemes as smaller values enhance the detection
performance of trust management schemes and may make the
comparison unfair. The exponential slope weight ω is set to
1 as discussed earlier. The expected trustworthiness parameter
thr2 is set to 0.85, indicating that benign nodes have a trust
value between 0.85 and 1. On the other hand, table II shows
the simulation parameters, which have been chosen with a
view to represent the environment of BSN. We use nine SNs
to build a BSN as illustrated in Fig. 1, which are sufficient to
reflect the behavior of the TMS. Packet size is set to 264B in
accordance with IEEE 802.15.6 standard.

TABLE I: Trust Schemes Parameters

Scheme Parameters
ReTrust [1] φ=0.9, Time Window (TW)=6 time units
RaRTrust [5] λ=0.8, TW=6 time units
LTMS λ=0.9, ω = 1, thr2 = 0.85



TABLE II: Simulation Parameters

Parameter Value
Application Poisson random traffic
Exponential transmission
interval µ 1, 2, 10, 100

Packet size 264B
Routing Protocol AODV (modified version)
Radio Range 1m
Propagation delay model Constant speed propagation delay
Propagation loss model Range propagation loss
Number of SN 9
Time unit 1s
Simulation Time 200s, 400s

1) Trust Evaluation for In-Body SNs: In-body SNs have
very tough resources limitations. They are designed to perform
a specific function. For instance, a patient who has a heart
problem may have an Implantable Cardioverter Defibrillator
(ICD) to monitor his/her heart rate and treat any abnormal
heart rhythms. Similarly, an implanted insulin pump monitors
and controls the blood sugar level. These functions generate
low traffic rates. Monitoring the heart rate, for example,
generates a traffic rate of around 1 packet/s [7]. Therefore,
existing trust management schemes must be assessed under
low traffic rates. Fig. 2 illustrates how the trust value is
developing under on-off attacks for a low traffic rate. The
on-off cycle is set to 10 time units, and the traffic rate µ
is set to 1 and generated exponentially. Algorithm 1, referred
to as LTMS(1) is contrasted with ReTrust [1] and RaRTrust
[5]. Results show that both RaRTrust and ReTrust struggles to
work properly under low traffic rates. In RaRTrust, the trust
evaluation process fails most of the time as just a few points
appear in the figure because the first step of the trust evaluation
is calculating the forwarding ratio at the current time unit,
which fails due to the lack of observations at certain time units.
Although ReTrust is able to evaluate the trust value during the
simulation time, it fails to reflect the good behavior during
the first phase when no attack is occurring. In the second
phase, the trust value fluctuates around the threshold without
being able to reflect the bad behavior. On the other hand, our
proposed algorithm LTMS(1) can reflect the actual trust value
when the agent is behaving well; furthermore, when the attack
is running, it shows a quick response, and it can keep the trust
value under the threshold most of the time.
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Fig. 2: Trust evaluation for in-body SNs

2) Trust Evaluation for On-Body and Off-Body SNs: In this
experiment, we evaluate our proposed method for on-body and
off-body SNs. The simulation is run for 400s, where an on-off
attack is launched after the first phase. The on and off periods
of the attack are set to 30 time units, and the traffic rate µ is set
to 100. After three consecutive cycles, the attack is paused to
study the behavior of acquiring trust, then the attack resumes.
Fig. 3 illustrates how trust value is developing under the attack.
Both ReTrust and RaRTrust demonstrate similar behavior.
Both lose and earn trust easily, which causes fluctuations
around the threshold during the on-off attack. On the other
hand, our method LTMS(2) demonstrates an outperforming
behavior. It loses the trust quickly when malicious activity
is detected, while it makes the trust harder to earn in the
off period. The first cycle of the on-off attack is regarded as
just malicious behavior. Therefore, from the second cycle on,
LTMS(2) makes earning trust during the off period harder as
shown between the time units 200 and 250. Moreover, if the
attack reoccurs, it maintains the same behavior.
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Fig. 3: Trust evaluation for on-body and off-body SNs

B. Performance Analysis

In this subsection, we compare the average processing time
consumed by each of the trust management schemes using
the MATLAB platform. The test is carried out on Intel Core
i5-8500T processor at 2.1GHz and 8GB RAM using the data
sets generated by our simulation scenarios. Fig. 4 illustrates the
average processing time of ReTrust, RaRTrust, LTMS(1) and
LTMS(2). RaRTrust consumes the highest average processing
time of 3.2× 10−4s, while ReTrust shows a better processing
overhead compared with RaRTrust as it consumes around
2.74 × 10−4s. On the other hand, our method LTMS(1) for
in-body SNs consumes the lowest processing time among all
trust schemes. It consumes 0.85× 10−4s, which saves around
73% and 69% of the processing time of RaRTrust and ReTrust,
respectively. Moreover, our method for on-body and off-body
SNs consumes around 1.7 × 10−4s average processing time,
which saves around 47% and 38% of the processing time of
RaRTrust and ReTrust, respectively.

C. On-Off Performance Metric

In order to assess the effectiveness of trust management
schemes under on-off attacks, we introduce the on-off Attack
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Detection Metric (ADM). ADM is defined in Eq. 10 as the
ratio of the detection time to the on-off attack time.

ADM =
|DT |
|AT |

(10)

where |DT | denotes to the number of the time units when the
attack is detected, and |AT | denotes the total number of time
units of the on-off attack.

This metric is able to reflect the robustness of the trust
management schemes under on-off attacks. The performance
of our proposed methods will be evaluated in the following
different scenarios.

1) Variable Traffic Rates: Two sets of traffic rates are
chosen. The first contains low traffic rates (µ = 1, µ = 2),
which represents the traffic of the in-body SNs, whereas the
second set (µ = 10, µ = 100) is chosen for medium and high
traffic rates. Fig. 5a-5d show the detection rate performance
of the aforementioned schemes for different traffic rates and
different on-off attacks cycles.

For low traffic rates, RaRTrust shows the lowest detection
rates for all on-off attack cycles. It struggles to detect the on-
off attacks with a detection rate of around 0 for µ = 1, while
ReTrust shows better performance compared with RaRTrust.
It detects around 65% of the on-off attacks when the on-off
cycle is 10 time units. By increasing the duration of the on-off
attack cycle, the performance of ReTrust decreases to around
60%. On the other hand, our proposed methods demonstrate
superior performance compared with ReTrust and RaRTrust
with detection rates up to 80% and 93% for LTMS(1) and
LTMS(2), respectively.

For medium and high traffic rates, RaRTrust starts to defend
against on-off attacks with a detection rate of around 50%
for µ = 10 and around 40% for µ = 100. In contrast with
RaRTrust, ReTrust shows better performance with a detection
rate starts at around 76% and decreases to 60% for µ = 10,
and starts at around 86% and decreases to reach 62% for µ =
100. On the other hand, our method LTMS(2) shows the best
performance in detecting the on-off attacks. For µ = 100, it
starts at just below 98% for the on-off cycle 10 time units
and reaches around 88% for the on-off cycle 40 time units.
For µ = 10, it starts at just below 97% and reaches 80% for
the on-off cycle 40 time units. It is worth mentioning that our
lightweight method for in-body SNs LTMS(1) shows better
results than both ReTrust and RaRTrust in detecting on-off

attacks for medium and high traffic rates with a significantly
lower processing overhead.
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Fig. 5: The detection performance for variable traffic rates

2) Variable Drop Rates: In this experiment, we evaluate the
attack detection performance for different packet drop rates.
The drop rate varies from 10% to 100% during the on period
instead of the previous fixed drop rate of 75%. Fig. 6a and
6b illustrate the detection rates for two different on periods
20 and 50 time units, where the traffic rate µ is set to 100.
ReTrust and RaRTrust detect attacks starting from the drop
rate of 40%. Between 40% and 50%, ReTrust and RaRTrust
show identical results, then ReTrust overcomes RARTrust in
the detection rate.

On the other hand, our proposed methods are able to detect
attacks starting from 30% drop rate. LTMS(2) shows superior
performance comparatively, while LTMS(1) shows a close
performance to ReTrust between 50% and 100%.
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Fig. 6: The detection performance for variable drop rates

3) Non-Identical Periods: In this experiment, more sophis-
ticated on-off attacks are launched by varying the on and off
periods. Obviously, it is harder to detect on-off attacks when
the on period is less than the off period. Hence, the on period
is set to be a ratio of the off period ranging from 10% to
100%. The traffic rate µ is set to 100. Two on periods 20 and



50 time units are used to evaluate the performance. Fig. 7a
and 7b show the detection performance of the aforementioned
trust schemes when the on period is 20 and 50 time units. For
on period equals to 10% of the off period, both ReTrust and
RaRTrust show detection rate greater than 0. However, from
our point of view, two sequential time units of bad behavior are
not enough to destroy the earned trust. ReTrust and RaRTrust
adopt a sliding time window to calculate the trust; meaning,
they adopt the most recent changes regardless of the history of
the agent as illustrated before in Fig. 2 and 3. By increasing
the ratio of the on period, the performance of both ReTrust and
RaRTrust is enhanced for both on periods; however, ReTrust
shows better performance.

On the other hand, LTMS(1) and LTMS(2) detect attacks
starting from 20% and 10% for the on periods 20 and 50,
respectively. LTMS(1) shows a close performance to ReTrust.
However, LTMS(2) shows prominent performance compar-
atively after 30% and 60% for the on period 20 and 50,
respectively.
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Fig. 7: The detection performance for different on-off ratios

VI. CONCLUSION AND FUTURE WORK

Security concerns prevent the widespread adoption of the
WMSNs advancements. Trust management provides signif-
icant means to reinforce the security of WMSNs. In this
paper, we propose a trust evaluation model for WMSNs. Our
proposed scheme uses a novel updating and evaluating mecha-
nisms. LTMS is a lightweight and attack-resistant trust scheme
for in-body, on-body, and off-body SNs. The experimental
results show that LTMS outperforms the state of the art trust
management schemes while preserving resources, making it a
suitable candidate to meet WMSNs security requirements. In
the future, LTMS will be developed to incorporate recommen-
dations from SNs in the vicinity securely.
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