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We present an effective optimization strategy that is capable
of discovering high-quality cost-optimal solution for 2D path
network layouts (i.e., groups of obstacle-avoiding Euclidean
Steiner trees) that, among other applications, can serve as
templates for complete ascent assembly structures. The main
innovative aspect of our approach is that our aim is not re-
stricted to simply synthesizing optimal assembly designs with
regard to a given goal, but we also strive to discover the best
trade-offs between geometric and domain-dependent optimal
designs. As such, the proposed approach is centered on a
variably constrained multi-objective formulation of the op-
timal design task and on an efficient coevolutionary solver.
The results we obtained on both artificial problems and re-
alistic design scenarios based on an industrial test case em-
pirically support the value of our contribution to the fields of

∗Address all correspondence related to this article to this author.

optimal obstacle-avoiding path generation in particular and
design automation in general.

1 Introduction
This work is primarily motivated by theoretical and

practical considerations related to engineering design au-
tomation processes. Concretely, the presented approach
stems from the desire to automatically generate cost-optimal
complete ascent assembly structures (CAA-Structures) – ex-
ternal access structures required by cranes, building facades,
over-sized industrial machines, etc. Fig. 1 shows an exam-
ple of a fairly complex CAA-Structure that is itself com-
posed from several types of ascent assembly modules (i.e.,
sub-assemblies) like rectangular and round platforms, stairs
placed at different inclinations, and ladders.



(a) (b)

Fig. 1. An example of an offshore crane where different ascent as-
sembly modules highlighted in red (a) are combined to form a fairly
complex CAA-Structure (b)

The task of designing individual ascent assembly mod-
ules, although very important, is rather repetitive and time
consuming. Recently, in light of strong financial and opera-
tional incentives, there has been a consistent and successful
effort to standardize individual ascent assembly modules and
to automate their design process [1]. As a result, the task
of automating the design of cost-optimal CAA-Structures
has itself become a feasible undertaking since it can be re-
garded as a search for a 3D “skeleton” (i.e., a pathway)
that indicates which ascent assembly modules are required
and how they should be placed in ordered to obtain a CAA-
Structure that provides the desired level of access with min-
imal costs1. In other words, discovering cost-optimal CAA-
Structures can be addressed as an automated design synthesis
challenge [2–4].

Within the broader goal of obtaining cost-optimal CAA-
Structures [5], the main novelty of our approach lies in
its ability to discover an accurate image of the trade-offs
between standard CAA-Structures (that must obey certain
constraints regarding existing ascent assembly modules and
ways of combining them) and more creative CAA-Structure
designs that can be obtained when freely exploring the design
space. Thus, our idea was to develop an efficient optimiza-
tion approach centered around a multi-objective problem for-
mulation that can ultimately offer human designers / decision
makers (DMs) insight regarding the particular challenges of
the CAA-Structure design task at hand as well as tentative
solutions with various degrees of “conformity” to standard
design practices. Apart from the focus on optimal trade-off
identification, the present work also extends and improves on
the preliminary study in [5] by:

1. examining a more advanced variation of the opti-
mization problem that also considers disjoint CAA-
Structures;

2. analyzing and evaluating optimization performance
more in depth on a larger and more varied set of bench-
mark and industrial test cases.

It is noteworthy that by tackling the design synthesis
task using the proposed optimal trade-off search, we intrin-

1We consider a general cost function that may or may not include a mon-
etary component. Conversely a maximization problem could also be formu-
lated when using a general utility function.

sically consider domain-based design restrictions (best prac-
tices) as soft constraints and, during the search, we automat-
ically single-out those minor violations (exceptions to the
domain-based design rules) that can deliver a maximal re-
ward (i.e., reduction of costs). Therefore, from an applica-
tion point of view, our approach is also innovative as, at the
end of the optimization process, it is able to provide the DM
with both domain-optimal CAA-Structure designs as well as
optimal variations of these designs that can considerably re-
duce costs.

The remainder of this work is organized as follows: Sec-
tion 2 is dedicated to formalizing the CAA-Structure op-
timization task based on the chosen modeling procedure
and on highlighting its connection with the well-known and
widely encountered (obstacle-avoiding) minimum Steiner
tree problem; Section 3 presents the motivation for and the
in-depth description of the proposed optimization strategy;
Section 4 describes the setup of the numerical (optimiza-
tion) experiments as well as the benchmark and industrial
test cases; Section 5 contains discussions of the results while
the conclusions and outlook are covered in Section 6.

2 Modelling and formal problem statement
In spite of the apparent simplicity suggested by the need

to discover a 3D “skeleton”, there is still a large set of par-
ticularities and uncertainties associated with real-life CAA-
Structure design tasks in modern engineer-to-order environ-
ments. In order to have a relevant but accessible formula-
tion for analyzing and comparing the performance of various
proofs of concept and optimization algorithms, for this ini-
tial research stage, we introduce and operate with a 2D model
abstraction of the optimal design task [5].

2.1 Description of model abstraction
A user that wishes to generate a cost-optimal CAA-

Structure is expected to provide at least three inputs: a hull
of a 3D model of the solid base (i.e., support object) to which
the CAA-Structure is to be attached, a set of desired points
of access on this structure and information regarding poten-
tial obstacles that are defined on the 3D solid base object.
The latter requirement is extremely relevant as obstacles are
meant to indicate severe restrictions (i.e., hard constraints)
regarding the placement of ascent assembly modules in cer-
tain areas.

For example, in Fig. 2a, we illustrate a simplified design
case that involves a cuboid structure, five access points and
four obstacle areas that are spread across three faces of the
cuboid. A far clearer representation of this academic auto-
mated design scenario can be obtained by unfolding the 3D
model. The result of the unfolding procedure, shown in Fig.
2b, is a 2D design surface that is characterized by a left edge
- right edge continuity – i.e., line segments exiting the left
edge at a certain height and orientation, should enter the right
edge at the same height and orientation in order to model the
circular structure of the facade. More importantly, as a result
of the unfolding, the task of discovering a cost-optimal 3D



“skeleton” of the ascent assembly is transformed into that of
synthesizing a simpler 2D design “skeleton”: a cost-optimal
2D path network layout on the 2D design surface that links
all the points of interest while avoiding the obstacle areas.

(a) (b)

Fig. 2. A 3D model and the corresponding 2D design plane ob-
tained after unfolding. Access points are marked with blue circles
and obstacles are marked with red.

In Fig. 3 we present two different 2D path network lay-
outs that link the definition points illustrated in the academic
example from Fig. 2. It is noteworthy that both path net-
work layouts make use of several auxiliary points (3 for the
design in Fig. 3a and 5 for the design in Fig. 3b) and that the
number and the placement of these auxiliary points uniquely
determines the design of the pathway. Another observation is
that while both path network layouts are valid, as they don’t
span through obstacle regions, neither are optimal as their
overall length is not minimal. Furthermore, within the con-
text of designing CAA-Structures, the 2D “skeleton” from
Fig. 3b might be considered more realistic as it only uses
horizontally and vertically placed sub-assemblies (i.e., plat-
forms and ladders), while the solution from Fig. 3a achieves
a smaller overall total path length by placing its contained
sub-assemblies at non-standard angles.

(a) (b)

Fig. 3. Example of 2D path network layouts that link (blue) definition
points while avoiding (red) obstacle areas

The main advantage of the unfolding approach consists
in its ability to generate valuable proof-of-concept optimiza-
tion test scenarios that are both simple and useful (i.e., ap-
plicable to real-life CAA-Structure design synthesis tasks, as
shown in Section 4.3). The main disadvantage lies in the re-
strictiveness of the 2D abstraction, as very complicated 3D
models are very hard or even impossible to unfold (e.g., the
offshore crane presented in Fig. 1a).

Taking into consideration the main purpose of a CAA-
Structure is to provide access to various parts of a base ob-

ject, it makes sense to classify the above mentioned access
points into:

• entry points that are usually placed (at the bottom of the
base object) in such a way as to facilitate human access
on the CAA-Structure

• work points that are placed (at the upper levels of the
base object) in areas that must be made accessible to
humans for operational and maintenance purposes

The above classification of access points is quite impor-
tant because it helps differentiate between two main types of
2D path network layouts:

1. Fully connected layouts are the expected solutions of de-
sign scenarios that contain a single entry point or of de-
sign scenarios that impose a secondary restriction that
every access point should be reachable from any other
access point.

2. Disjoint layouts that are made up of several smaller fully
connected sub-layouts (one for each entry point) that
contain among themselves all the work points defined
in the design scenario.

While disjoint layouts are likely design solutions in
practice, for the sake of brevity, clearness, and generality, in
Section 2.2 we first recap the cost-optimization problem for-
mulation for fully connected layouts [5]. The more challeng-
ing disjoint formulation is obtained using a minimal mod-
ification, but both types of 2D path network layout prob-
lems are subsequently solved using the same multi-objective
based optimization strategy in order to demonstrate its ro-
bustness (i.e., performance invariance with regard to number
and order of access and entry points).

In Section 2.2 we provide formal arguments that the
resulting 2D path network layout problem is by no means
trivial as solving it in its simplest form actually means dis-
covering the minimum Euclidean Steiner tree that covers the
definition points. This means that the multi-objective based
strategy for designing optimal pathways we describe in the
present article is suitable for several other application do-
mains where the generation of minimum Euclidean Steiner
trees is a key interest: integrated circuit design [6, 7], trans-
portation systems [8], computer networks [9], urban plan-
ning [10], unmanned aerial vehicle routing [11]. Litera-
ture on obstacle-avoiding minimum Steiner trees is mainly
focused on the rectilinear case [12, 13] as this version has
direct application to the efficient design of electrical cir-
cuits. Nevertheless, a few approximation methods for the
(non-rectilinear) Euclidean version have also been proposed
[14, 15]. When comparing with all other approaches, the ef-
ficient and generic obstacle-avoiding Steiner tree synthesis
strategy we presently propose has two important advantages
that should make it of interest to a wider public:

1. It can generate a wide range of Pareto-optimal obstacle-
avoiding Steiner trees – e.g., ranging from rectilinear to
Euclidean as shown in Fig. 11 – for a given pathway
design problem during a single run as it can account for
multiple design objectives during the search.



2. It can optimally decompose a cost optimal design into
a specified number of independent obstacle-avoiding
Steiner trees (e.g., Figs. 6e and 10d).

2.2 Formalization of the path network layout problem
When considering a set of n user de-

fined access points / definition vertices
P = {p1, . . . , pn}, the goal of the (fully connected) 2D
optimal path network layout problem is to discover a
(graph) structure T of minimal cost that links all these
points. T must obviously span all the access points but
it may also contain up to k well-placed extra points (2D
vertices) S = {s1, . . . ,sk} that help minimize the total cost of
T . Thus, E, the set of possible edges that contains all the
segments that can be used to construct T , is defined over
the union P∪S = {p1, . . . , pn,s1, . . . ,sk}. When considering
a positive cost for connecting any two points, it is obvious
that T is in fact a tree. Formally, the resulting minimal
path optimization task can be defined as: “Determine
k ∈ N and s1, . . . ,sk ∈ R×R in order to minimize

f1(p1, . . . , pn,s1, . . . ,sk) = ∑
(i j)∈E

c(i, j)x(i j), (1a)

subject to:

x(i j) ∈ {0,1}, ∀(i j) ∈ E and (1b)

∑
(i j)∈E

xi j = (n+ k)−1 and (1c)

∑
(i j)∈E,i∈F, j∈F

xi j ≤ |F |−1, ∀F ⊆ P∪S, (1d)

where G = (P∪ S,E) is a complete graph.” The constraint
from Eqn. (1b) simply enforces clarity: a certain edge either
is or is not part of T . The constraint from Eqn. (1c) ensures
that T is fully connected and Eqn. (1d) guarantees that no
cycles can be formed (and thus T is a tree).

In order to obtain the problem formulation for disjoint
layouts, let us consider a set PE ⊆ P,PE 6= /0 that reunites the
(user-defined) entry points. Constraint (1c) must be adapted
to ∑(i j)∈E xi j = (n+ k)− |PE | and we must additionally en-
sure that each disjoint component contains an entry point,
i.e., ∀p∗ ∈ P\PE ,∃L⊆ P∪S : p∗ ∈ L∧L∩PE 6= /0 such that:

∑
(i j)∈E,i∈L, j∈L

xi j = |L|−1. (1e)

The function c(i, j) from Eqn. (1a) denotes the cost of
linking vertices i and j. In the case of ascent assemblies,
this cost usually has a strong financial nature and can be
defined as the combined price of individual modules (i.e.,
platform, stair, and ladder segments) required to construct
a walkway between points i and j and of connecting these
modules (e.g., welding). While it is expected that, in the
general case, c(i, j) is proportional to the Euclidean distance

between the two vertices, in more realistic scenarios, obsta-
cles and other penalties do influence the cost function.

For example, when considering a slightly more realis-
tic description of optimal layouts for CAA-Structures, one
would likely consider inside c(i, j) a large penalty Γ(i j) for
assembly modules that extend into obstacle areas when con-
necting vertices i and j and another smaller penalty for as-
sembly modules that are not placed at a preset angle require-
ment – e.g., platforms should be placed at an angle of exactly
0◦ to the horizontal axis, stairs at 45◦, and ladders at 90◦. All
these ”allowed/preferred” design angles should be provided
as a user defined set, e.g., U = {0,45,90}. The resulting
angle-aware cost function could be defined as:

c(i, j) = dist(i, j)
(

1+
minB(i j)

100
z
)
+Γ(i j) (2)

where z is a parameter (0 ≤ z ≤ 4) that controls the magni-
tude of the angle penalty and B(i j) is a set that contains the
absolute differences between α(i j) – the horizontal angle of
the segment (i j) – and the allowed placement angles stored
in U . For instance, given the aforementioned composition of
U , B(i j) = {|α(i j)− 0|, |α(i j)− 45|, |α(i j)− 90|}. For the set
of tests we report over in the present study, dist(i, j) marks
the 2D Euclidean distance between vertices i and j.

The variably constrained cost-template from Eqn. (2)
provides a simple but effective way to introduce via prede-
fined parameters (like U and z) domain-specific constraints
in the optimal design formulation for 2D path network lay-
outs.

It is noteworthy to remark that when z = 0 in Eqn. (2)
and one does not consider obstacle areas and a left-right con-
tinuity of the design plane, c(i, j) is reduced to the Euclidean
distance and Eqns. (1a) (1b), (1c), and (1d) form the def-
inition of the well-known Euclidean Steiner Tree Problem
(ESTP) [16]. Although they represent the simplest cases of
the (fully connected) 2D path network layout problems we
aim to solve, ESTPs are proven to be NP-hard [17]. Never-
theless, ESTPs have also been intensively studied by mathe-
maticians and computer scientists and this opens up the pos-
sibility to compare (in part) our proposed solving strategy
with other results from literature on standard benchmarks.
In the context of ESTPs, the k points that help minimize the
2D path layout between the access points are called Steiner
points and throughout this work we shall also maintain this
naming in the context of optimal path network layouts for
CAA-Structures.

Finally, in the context of path network optimization
tasks for ascent assemblies, opting for a value of z = 0 in
Eqn. (2) would result in a problem definition that enables
the optimizer to freely explore the design space and quite
possibly discover innovative designs (i.e., innovative ways
of connecting the desired access points). However, the best
results of such an “open” definition would (likely) only be in-
terpreted as optimal design “suggestions” as building them to
specification would be unfeasible. When opting for a larger
value of the penalty parameter z and a realistic list of stan-



dard allowed angles, good results of the more ”restricted”
path optimization problem are far more likely to resemble
“blueprints” of the ascent assembly.

Our idea is to solve both the “open design” and “re-
stricted design” formulations at the same time (even if they
are conflicting), by combining them inside a multi-objective
optimization problem (MOOP). The advantage of pursuing
such an approach is directly linked to what one commonly
expects when solving a MOOP. Whenever multiple objec-
tives are involved, there is usually no single design that
solves the problem as there is no single design that is su-
perior across all objectives. The solution to a MOOP [18]
usually consists of a set of Pareto optimal designs (notation:
PS for Pareto set). Each element from the PS has the prop-
erty that it is not fully dominated (i.e., worse or equal with
respect to all objectives) by any other possible element in
the design space. Since Pareto optimal sets can be infinite
and / or very hard to determine, one is usually satisfied with
finding a reasonably accurate (discrete) approximation in the
form of a Pareto non-dominated set (notation: PN) which
is based on a weaker membership condition: an element of
the PN cannot be fully dominated by any other element of
the PN. This means that the PN captures the trade-offs be-
tween the objectives to be optimized. In our case, the PNs
will provide a decision maker with a set of optimal designs
that illustrate the trade-offs of moving from design “sugges-
tions” (geometric optimality) to design “blueprints” (domain
specific optimality). The final decision regarding the best in-
dividual design for a given problem is in essence a subjective
one, but having an objective image of the existing trade-offs
should enable the DM to make a more informed choice.

3 Optimization procedure

The NP-hard nature of ESTPs – the easiest type of
fully connected 2D path network layout problems we aim
to solve – motivates our strong preference for a meta-
heuristic-based solver. Furthermore, since our goal is to
have a multi-objective approach, the evolutionary-based op-
timization paradigm represented an obvious choice as multi-
objective evolutionary algorithms (MOEAs) have been (his-
torically) proven to be the most successful meta-heuristic
solving technique [19] with various useful applications to en-
gineering design [20–23]. In light of this, some of the lexicon
throughout the remainder of this work is tailored for the field
of evolutionary computation.

It must be emphasized that, despite their proven robust-
ness, much like natural evolution itself, MOEAs are stochas-
tic processes for which there are no general guarantees with
regard to global solution optimality, success ratio and time
required for convergence. Thus, like all meta-heuristic op-
timization strategies, MOEAs are generally intended as a
measure of last resort for scenarios in which deterministic
solvers perform rather poorly (and most NP-hard problems
offer prime examples of such scenarios).

3.1 Solution codification
A very important aspect of trying to solve the problem

described in Section 2.2 is represented by the encoding of
individuals / candidate solutions. First and foremost, a good
encoding should be simple (general) in order to be compat-
ible with many fitness assessment strategies and in order to
allow for an immediate extension to 3D scenarios. Secondly,
the encoding should also be flexible as the number of Steiner
points required by each problem is unknown. Although the
latter characteristic seems to hint towards a variable-length
encoding, we argue in favour of a fixed-length variant in
which the maximal number of the Steiner points expected to
be discovered (i.e., k∗) is preset at a sufficiently large level.
For example:

• in the case of ESTPs, one can use the mathematically
proven [16] upper bound k∗ = n−2

• in the case of all the ascent assembly optimization prob-
lems presented in Section 4 we experimented with sev-
eral settings in the range n≤ k∗ ≤ 3n.

The task of “deciding” the exact number of Steiner
points required for solving the problem at hand is “passed”
to the fitness assessment method described in the next sec-
tion. Apart from the extra simplicity that enables the us-
age of various standard genetic operators, our choice for a
fixed-length encoding is also motivated by the desire to coun-
teract potential solution bloating - a well-known and harm-
ful phenomenon in terms of both solution quality and con-
vergence speed that is associated in the field of evolution-
ary computation (genetic programming in particular) with
combinations of strong (evolutionary) selection pressure and
variable-length encodings [24].

After opting for fixed-length encodings, we
adopted a basic real-valued vector representation
~x = (x1,x2, . . . ,x2k∗−1,x2k∗) of solution candidates. The
understanding is that, given the 2D encoded vertex v(i,~x)
1≤ i≤ k∗:

• x2i−1 denotes the horizontal coordinate of v(i,~x).
• x2i denotes the vertical coordinate of v(i,~x).

A visual example of the proposed encoding is presented
in Fig. 4.

The minimum and maximum ranges for xi ∈ ~x are set
according to the design scenario definition limits in the case
of CAA-Structures and to the extreme coordinate values of
the definition points in the case of ESTPs. By definition,
Steiner points cannot exist outside these minimum and max-
imum ranges.

3.2 Fitness assessment of primary objectives
Let o1(~x) denote the ability of the vertices encoded in

a given candidate solution ~x to minimize Eqn. (1a) when
considering a Euclidean cost function. In order to estimate
o1(~x), we employ a two-step process:

• Firstly, we build the union between all the k∗ vertices
encoded by~x and the n definition points of the optimiza-
tion scenario: S~x = {v(1,~x), . . . ,v(k∗,~x)}∪{p1, . . . , pn}.



• Secondly, starting with p1, we apply Prim’s algorithm
[25] in order to construct MTn,~x – the partial minimum
spanning tree (MST) over the set S~x that contains all n
definition points. MTn,~x is a partial MST because the
construction / synthesis process is interrupted once all
the definition points have been added to the tree.

Any vertex encoded in~x that remains unlinked by MTn,~x has
the property that its placement is highly likely not to im-
prove in any way the formation of an optimal-cost path be-
tween all the definition points {p1, . . . , pn} – i.e., this ver-
tex is deemed as having a low chance of being a potential
Steiner point. We mark with si,~x, i ∈ {1, . . . ,m}, m ≤ k∗

the vertices encoded in ~x that are part of MTn,~x. Compared
with the unlinked vertices, any si,~x has a better chance of be-
ing useful in constructing an optimal path between the def-
inition points and is thus deemed a potential Steiner point.
When considering previous notations, and denoting with
Φ(MTn,~x) the total cost associated with MTn,~x, we have that
Φ(MTn,~x) = f1(p1, . . . , pn,s1,~x, ...sm,~x) where function f1 is
defined in Eqn. (1a).

We argue that o1(~x) can be well approximated by
Φ(MTn,~x) because the closer the set of potential Steiner
points in ~x is to {s1, . . . ,sk}, i.e., to the actual Steiner point
set that represents the solution to Eqn. (1a), the closer
f1(p1, . . . , pn,si,~x, ...sm,~x) is to f1(p1, . . . , pn,s1, . . .sk).

In order to better illustrate how fitness is estimated when
considering the fixed-length real-valued encoding, in Fig. 4
we plot the partial MST of a candidate solution ~x that con-
tains 10 design variable as it encodes a total of k∗ = 5 2D
vertices. We assume that m = 3 and consider a hypothetical
mapping of the three potential Steiner points (black) and of
the two unlinked points (grey). Regarding the two unlinked
points, it is important to note that encoded vertex no. 3 –
defined by x5 and x6 – is placed inside an obstacle area (so
linking it would incur a severe penalty) while encoded vertex
no. 5 – defined by x9 and x10 – is placed at a considerable
distance from any other point. In other words, a very good
solution candidate must have:

• sufficient potential Steiner points placed in nearly ideal
locations;

• all the other encoded vertices placed out of the way, in
positions that do not negatively influence the construc-
tion of MTn,~x.

It is noteworthy that in the case of fully connected 2D
path network layouts, the construction process for MTn,~x can
be started by automatically initializing the tree structure with
any definition point (not just p1). In the case of disjoint lay-
outs, the only difference is that the construction process must
be initialized by adding all the user-defined entry points.

Furthermore, the computation of MTn,~x is compatible
with various settings of the cost function. For instance, in
order to define a multi-objective optimization problem that
aims to present the DM with the trade-offs between geomet-
rical (i.e., Euclidean) and domain specific optimal solutions,
apart from o1(~x), one should also define a second primary
objective o2(~x) by parameterizing the variably constrained

Fig. 4. Example of a solution candidate ~x for which k∗ = 5 and
m = 3 and of the resulting MTn,~x

cost-template from Eqn. (2) with relevant angle-restrictions.
The compliance of a candidate solution with o2(~x) can be
estimated by simply using the angle-constrained cost func-
tion during the computation of the partial MST. Extensions
of the MTn,~x-based fitness assessment strategy to 3D cases
are straightforward.

In light of all the aforementioned reasons, one can ar-
gue that, despite its apparent complexity, the proposed fitness
assessment procedure is very well suited for the considered
optimization problem.

3.3 Artificial secondary objective
When considering the main motivation behind the

present work (i.e., optimizing real-life industrial designs), it
is highly likely that a more advanced future model abstrac-
tion might yield secondary requirements regarding optimal-
ity. For instance, these requirements might relate to:

• the complexity of the overall CAA-Structure design
(i.e., number of different module types that is required),

• ensuring different levels of ease-of-access for different
definition points,

• CAA-Structure building time given present stocks of in-
dividual ascent assembly modules,

• concerns regarding aesthetic impact
• theoretical considerations regarding algorithm perfor-

mance.

Such possible secondary requirements appear to be rather
conflicting with the currently identified primary one (i.e.,
geometrically-related cost minimization). Furthermore,
modeling some of these secondary requirements by extend-
ing the cost function in Eqn. 2 via penalties and rewards is
expected to be extremely cumbersome. Alternatively, for-
malizing them as optimization objectives in their own right
would be more natural and should yield better results from
the perspective of a DM.

Motivated largely by the previous considerations but
also by initial attempts to simultaneously optimize o1(~x) and
o2(~x) that were less successful than anticipated (showing
signs of premature convergence), we defined an artificial sec-



ondary objective oa(~x). This secondary objective is designed
to be (slightly) conflicting with the main ones described in
Section 3.2 and is defined as:

oa(~x) =
1

n−1

(
n

∑
r=2

imprMST (r) ∗2sizeMST (r)

)
−1.1m, (3)

where:

imprMST (r) = Φ(MTr,~x)−Φ(MSTr) and

sizeMST (r) = 3− 3Φ(MSTr)

Φ(MSTn)
.

Inside Eqn. (3), when considering that pr is the rth user
defined access point, in an analogous way to Φ(MTn,~x), we
have that:

• Φ(MSTr) is the cost of the minimum spanning tree
constructed over the set {p1, . . . , pr}, i.e., Φ(MSTr) =
f1(p1, . . . , pr);

• Φ(MTr,~x) is the total cost of the partial mini-
mal spanning tree constructed over the union S~x =
{v(1,~x), . . . ,v(k∗,~x)}∪{p1, . . . , pr}

This means that oa(~x) computes the average level to which~x
is able to solve Eqn. (1a) for every incremental subset of def-
inition points that is obtained when constructing the minimal
spanning tree over {p1, . . . , pn}. The smaller the subset the
more important it is weighted inside the average and there
is a small bonus for candidate solutions that achieve good
results with a reduced number m of potential Steiner points.

Finally, we have chosen to always add oa(~x) to the 2D
path network optimization problems to be solved, as an extra
objective to be minimized. This means that:

• when wishing to simultaneously optimize both Eu-
clidean and domain specific cost functions, we consider
a MOOP with three objectives (the two primary ones
and oa(~x)).

• even when the overall goal is to optimize a single cost
function (e.g., ESTPs), we formulate a MOOP with two
objectives (by also considering oa(~x) alongside the pri-
mary objective).

Although empirically validated by all the results pre-
sented in Section 5, the inclusion of oa(~x) alongside the main
path minimization objective(s) is highly counter-intuitive.
The reasoning for this decision is two-fold:

• oa(~x) is engineered to induce both some level of nich-
ing during the evolutionary search as well as a biasing
of the multi-objective search towards robust candidate
solutions that encode potential Steiner points which are
generically well placed – i.e., able to improve the total
minimal path in key locations that are common to many
sub-paths.

• Having a (more complex) multi-objective formula-
tion enables us to check whether our assumption that
Φ(MTn,~x) is a good enough approximation for o1(~x) and
/ or o2(~x) also holds when faced with a conflicting opti-
mization objective that, to a certain extent, aims to steer

the evolutionary search towards 2D path layouts that are
not necessarily cost-optimal.

3.4 The Multi-Objective Solver
In order to solve the previously introduced multi-

objective optimization problems, we performed a limited set
of initial tests with NSGA-II [26] – a well-known classical
multi-objective evolutionary algorithm – and with DECMO2
[27]. The latter is a newer hybrid and adaptive evolution-
ary approach specially designed for rapid convergence on a
wide class of problems. DECMO2 was designed to capi-
talize on previous insights [28] that very competitive results
can be obtained by a cooperative coevolutionary strategy that
combines the SPEA2 evolutionary model [29] that uses sim-
ulated binary crossover [30] and polynomial mutation op-
erators [31] with the GDE3 [32] / DEMO [33] evolution-
ary model that exploits the very good performance exhibited
by the DE/rand/1/bin differential evolution operator [34] on
continuous optimization problems.

The third MOO paradigm incorporated in DECMO2
comes in the form of an archive of elite solutions that is main-
tained according to a decomposition-based principle similar
to the one proposed in MOGLS [35] and popularized by
MOEA/D-DE [36]. This role of this archive is to enable
DECMO2 to deliver well-spaced Pareto non-dominated sets.

As DECMO2 exhibited a better overall balance between
convergence speed and final solution quality (in terms of both
Pareto optimality and PN spacing), we adopted it as the de-
fault solver for all the numerical optimization tests we report
over.

4 Experimental setup
Although the performed numerical experiments range

from simple (but well-studied) ESTP-related optimization
tasks to ever more complicated / realistic 2D path network
layout that have immediate applicability in optimal design of
CAA-Structures, we have chosen to use a fixed and largely
standard parameterization of DECMO2 in order to also eval-
uate the robustness of the multi-objective solver.

4.1 DECMO2 parameterization
For all the numerical experiments we report on, we used

a total population size of asize =400 for DECMO2 and the
standard (literature recommended) parameter settings for the
coevolved subpopulations of the solver.

In the case of MOOPs with two objectives (one primary
+ the artificial) we evaluated 100.000 solution candidates
during each optimization run (i.e., 250 generations) and in
the case of MOOPs with three objectives (two primary + the
artificial) we allowed DECMO2 to generate 400.000 solution
candidates. We report on the best result out of 3 independent
repeats for each numerical experiment.

Since the artificial objective of our MOOPs (described in
Section 3.3) is mainly used to ensure spacing in the MOEA
during the run and does not have any practical importance for
DMs when assessing the overall result of the optimization



runs, we always only report the best discovered solution(s)
with regard to the primary objectives defined in Section 3.2.
This means that for MOOPs with two objectives (one pri-
mary + the artificial) we only report the best discovered de-
sign with regard to either o1(~x) (Euclidean costs) or o2(~x)
(domain-specific costs that reflect angle-wise penalties).

4.2 ESTP benchmark and academic test cases
In order to demonstrate the ability of our approach, we

compared the results obtained by DECMO2 on 25 problems
from a benchmark ESTP set [37] with those of two refer-
ence solvers: one based on a geometrically motivated heuris-
tic [38] and another one that is based on artificial neural net-
works [39]. For comparative purposes we also refer the best
known results suggested in [37], although the means through
which these results were determined is not described.

For initial insight on how our method performs on opti-
mization scenarios that are more representative for the ascent
assembly domain, we proceeded to apply DECMO2 on 6
academic test cases. The first one (notation: A1) is illustrated
at the beginning of this paper in Fig. 2. The other five aca-
demic test cases (notation: A2 through A6) are derivations
based on the challenging placement of the 14 access points
from problem no. 12 of the ESTP benchmark set. Their aim
is to test if and how DECMO2 is able to adapt optimal de-
signs when confronted with an ever more difficult placement
of obstacles and multiple entry points.

On all the ESTP and academic tests we used the setting
z = 0 to parameterize the cost function from Eqn. (2) and
thus optimized the minimum Euclidean distance of the fully
connected 2D path network layout.

4.3 Industrial test case
The most realistic cost-optimal CAA-Structure design

scenario we investigated was proposed by Liebherr-Werk
Nenzing GmbH (LWN) [40] – a manufacturer of a wide
range of products including various types of cranes. More
specifically, we investigated cost-optimal CAA-Structures
that allow access to user-specified regions of interest on the
gantry of a mobile harbour crane (please see Fig. 5a). Figure
5b presents an expert-designed CAA-Structure attached to
the gantry and we aim to use the unfolding-based 2D model
abstraction from Fig. 5c (obtained by vertically stacking
two cuboids) to explore complementary optimal designs that
might provide interesting insights to LWN.

Across all the industrial optimization scenarios we used
four different cost settings (i.e., primary objectives):

• C1 — The first cost setting uses a value of z = 0 to pa-
rameterize the cost function from Eqn. (2). Given the
infinite degrees of freedom, optimal designs discovered
for this setting are expected to have the smallest total
path network (Euclidean) distance and can be used as a
generic structural reference when assessing more con-
strained cost-optimal designs.

• C2 — The second cost setting uses a value of z= 4 and a
list of preferred design angles U = {0,45,90} and aims

(a) (b)

(c)

Fig. 5. A CAD model of the gantry of a Liebherr mobile har-
bour crane with highlighted user-specified access points (a) expert-
designed ascent assembly solution (b) and complementary 3D and
unfolded 2D model abstraction (c)

to deliver ascent assembly designs that only use the three
standard assembly components: horizontal platforms,
stairs and vertical ladders.

• C3 — The third cost setting uses a softer angle-wise
constraint factor of z = 1 and a minimal list of preferred
design angles U = {0,90} and aims to deliver ascent as-
sembly designs that have a real-life minimal cost as they
only use horizontal platforms and vertical ladders.

• C4 — The fourth cost setting uses a value of z = 4 and a
minimal list of preferred design angles U = {0,30,45}
and aims to deliver CAA-Structures that offer a higher
degree of access (no mandatory use of hands) by only
using platform modules and two types of staircase mod-
ules (mild and regular inclination).

It is important to observe that, when reporting to the def-
initions of the primary objectives from Section 3.2, C1 maps
perfectly to o1(~x) as it aims to minimize the Euclidean dis-
tance while C2, C3, and C4 are different variants of o2(~x)
that enforce different domain specific angle preferences.

Firstly, in order to obtain an image of the best achiev-
able Euclidean and domain-specific cost-optimal designs of
the LWN CAA-Structure, we considered three test case vari-
ations involving a single primary objective (notation: TC1,
TC2, and TC3) in which a single ground access (i.e., en-
try) point is placed at different positions along the horizontal
axis.

Secondly, we also analyzed a fourth scenario (notation:
TC4) that, while still considering a single primary objective
during the optimization, explores the expert approach of us-
ing two ground entry points. The aim of TC4 is to explore
the reduction in cost that can be achieved by investigating
disjoint layouts of the CAA-Structure.

Thirdly, the most complex optimization we carried out
based on the industrial scenario provided by LWN aimed to
discover the best trade-offs in the context of TC1 between
optimal solutions under the Euclidean C1 cost setting and
optimal solutions under a stricter (i.e., z = 4) domain specific



C3 cost setting.

5 Results
While the optimal design results related to the indus-

trial CAA-Structure are expected to be more interesting to
the reader, we would like to draw attention that the perfor-
mance of our approach on various ESTPs and academic test
cases is also very important as it offers good insight into the
efficiency and generality of the presently proposed method
of designing cost-optimal 2D path network layouts.

5.1 Performance on artificial problems
The comparative performance of our approach on

benchmark ESTPs is presented in Tab. 1 and indicates that
our solving strategy based on DECMO2 and a MOOP for-
mulation (with one primary objective and one artificial ob-
jective) is very competitive for ESTP instances that have a
low-to-medium number of definition (access) points.

Thus, while the results obtained by the neural network
approach from [39] are 1.7% worse than those of the base-
line (when averaging over all 25 ESTPs), our evolutionary
approach delivers an average improvement of 0.96% over
the baseline which is quite considerable given the fact that
the domain specific heuristic [38] only achieves an average
improvement of 0.28%. In fact, DECMO2 is able to find the
best solution for 22 out of the 25 ESTPs and for 13 out of the
15 ESTPs with an unknown optimum. Even though, in prac-
tice, marginal improvements can be easily negated by mod-
eling errors and / or slight changes in assumptions, the ESTP
benchmark results are encouraging as they indicate that our
quite generic solving strategy can discover very good mini-
mum Steiner tree approximations across various scenarios.

The results of the six academic CAA-Structure design
scenarios are presented in Fig. 6. The solution for A1 seems
rather simple but one should notice how the placement of the
three Steiner points is optimized such that these points are
all situated in the immediate vicinity of obstacle corners. For
the test cases A2 through A6, we must first highlight that the
14 access points can be grouped in 4 clusters:

• the four points under the central obstacle structure can
be reunited in a bottom cluster;

• the six densely packed points in the central-right part of
the 2D design canvas form a right cluster;

• the two points above the central obstacle structure form
a top cluster;

• the two points in the center of the 2D canvas form a cen-
tral cluster that is surrounded on 3 sides by obstacles.

These clusters offer little room for intra-cluster path opti-
mization and the case-specific placement of obstacle areas
(and entry points in the case of A5 and A6) aims to discover
if the solver is able to speculate various cost-optimal oppor-
tunities for inter-cluster connection. The results indicate that
the DECMO2-based solving strategy is up to the task as:

• the solution for A2 uses a gap in the massive central
obstacle structure to connect the central cluster to the

Table 1. Comparative performance of DECMO2 on ESTPs. Best
results are highlighted and ∗ marks problems with an unknown opti-
mum.

Problem
Id. [37] n

Minimum Euclidean Steiner Tree
Baseline
[37]

Ref. 1
[38]

Ref. 2
[39]

DECMO2

1 5 1.6644 1.6644 1.6650 1.6644
2A 7 2.0776 2.0776 2.0778 2.0776
2B 8 2.1387 2.1387 2.1393 2.1387
2C 6 2.0440 2.0440 2.0460 2.0441
2D 12 2.1842 2.2223 2.2979 2.1842
2G∗ 7 1.6018 1.5878 1.7019 1.5594
3 6 1.5988 1.6472 1.6553 1.5988
6∗ 9 1.2862 1.2733 1.3024 1.2733
11∗ 64 3.8380 3.8513 3.9707 3.8274
12∗ 14 1.7222 1.7222 1.7989 1.7067
14∗ 5 1.8181 1.8181 1.8300 1.8181
15A 5 0.5130 0.5130 0.5236 0.5130
16C 4 1.1781 1.1781 1.1802 1.1781
18∗ 12 1.0421 1.0332 1.0782 1.0241
19B∗ 19 2.8408 2.8567 2.9689 2.8286
20∗ 18 2.2295 2.2295 2.3248 2.2258
21∗ 19 2.1393 2.1381 2.1842 2.1393
24 14 1.4248 1.4350 1.4379 1.4248
24A 15 1.4312 1.4312 1.4328 1.4312
25∗ 10 1.4180 1.4180 1.4877 1.4179
26∗ 20 2.2770 1.9767 1.9785 1.9785
28∗ 16 2.3446 2.3671 2.4048 2.3309
29∗ 17 2.1974 2.1974 2.2076 2.1869
30∗ 19 1.9358 1.9358 1.9852 1.9309
31∗ 16 1.3999 1.4220 1.4343 1.3660

path that connects the bottom cluster to the right cluster;
• the solution for A3 is able to profit from the left edge -

right edge continuity (that is facilitated by the removal of
the thin right-most obstacle) and still connects the cen-
tral cluster to the path that connects the bottom cluster
to the right cluster;
• the obstacle placement in A4 finally forces a linear link

of the clusters (central→ bottom→ right→ top) where
cost gains can be made by placing Steiner points close
to obstacle corners;

• the existence of two entry points in A5 (one for the bot-
tom and one for the right cluster) facilitates a solution
with a disjoint layout that does not require the longest
intra-cluster paths (i.e., those connecting to the bottom
cluster in A2, A3, and A4);

• the solution for A6 is able to profit from the existence
of three entry points spread across the bottom, top, and



right clusters.
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Fig. 6. Results for the four academic test cases

5.2 Results for the LWN industrial test case
In the Liebherr mobile harbour crane scenario, when

considering the four different cost settings, the best solutions
discovered for the three test case variants that feature a single
(ground) entry point are plotted in Figs. 7, 8 and 9.

A visual inspection of the results for each test case re-
veals that imposing angle-wise restrictions on the overall de-
sign of the ascent assembly can be successfully accommo-
dated by the DECMO2-based optimization strategy. Fur-
thermore, while angle-wise restrictions do influence the op-
timization outcome, the generic (star-shaped) structure that
characterizes the expert CAA-Structure design is confirmed
by all the cost-optimal results obtained for this somewhat
simplistic test case.

As specific observations related to the discovered opti-
mal CAA-Structure designs, it is noteworthy that:

• The less restrictive setting z = 1 in C3 can results in de-
signs that apart from platforms and ladder segments also
feature ramps as shown in Fig. 7c.

• The cost setting C4 is the only one that delivers solu-
tions (e.g., Fig. 8d) that, like the expert-designed CAA-
Structure illustrated in Fig. 5b, link to the top access
point exclusively via staircases. This indicates that ac-
counting for ease-of-access concerns for each defini-
tion point should be enforced in future extensions of the
model abstraction.

• Shifting the ground entry point along the horizontal axis
induces a negligible local effect under very restrictive
angle-wise settings (Figs. 7c, 8c, and 9c) but the ef-
fect on the overall design of assembly can be larger and
global when considering more degrees of freedom, as
shown by the cost-optimal designs in Figs. 7a and 9a or
those in Figs. 8b and 9b.

The four cost-optimal designs obtained for TC4, the sce-
nario that considers two (ground) entry points, are shown in
Fig. 10. Compared to the single entry point variants, these
designs are far simpler as they are based on a disjoint layout
that (in part) resembles and validates the overall form of the
expert-based solution from Fig. 5b. If the decision to have
a disjoint CAA-Structure would not be cost-optimal, the re-
sults from Fig. 10 would look nearly identical to those from
Fig. 9 and the extra (bottom right) entry point would remain
un-linked to any of the other access points.

The LWN optimization results (for MOOPs with a sin-
gle primary goal) presented so far indicate that using a con-
tinuous problem formulation and a limited set of domain-
dependent restrictions can yield several innovative optimal
design suggestions that can in turn:

• inspire an expert / DM to consider solutions that might
otherwise be overlooked;

• validate the optimality of a general design decision made
by an expert – e.g., use multiple (ground) entry points
in the hopes of achieving a more cost-optimal disjoint
CAA-Structure.

In Fig. 11 we display a filtered 2D Pareto front (nota-
tion: PF) projection of the PN discovered by DECMO2 when
simultaneously optimizing LWN TC1 for the Euclidean (i.e.,
C1) and domain specific (i.e., C3) cost settings. As a first
remark, it is noteworthy that the PF contains both extreme
objective-wise optimal solutions (that best minimize C1 and
C3) as well as a large set of well-spaced trade-off solutions.
This is a strong indication that DECMO2 is able to discover
a high-quality PN and thus successfully tackle this multi-
objective optimization task that features two primary objec-
tives.

In Fig. 11, we also illustrate four Pareto-optimal CAA-
Structure designs: the two designs at the extremes of the PF
and two trade-off designs. We would argue that such a Pareto
representation is extremely useful to the DM as it can help
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Fig. 7. CAA-Structure optimization results for the LWN TC1 optimization scenario using different cost functions
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Fig. 8. CAA-Structure optimization results for the LWN TC2 optimization scenario using different cost functions
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Fig. 9. CAA-Structure optimization results for the LWN TC3 optimization scenario using different cost functions
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Fig. 10. CAA-Structure optimization results for the LWN TC4 optimization scenario using different cost functions

to immediately identify minor “local trade-offs” (i.e., design
variations) that can be worthwhile to consider. For example:

• The best solution with regard to C1 (bottom right corner)
is the geometrically ideal design and has an Euclidean
cost of about 1450 and a domain-specific cost of about
2425.

• The best solution with regard to C3 (top left corner) has
an Euclidean cost of about 1650 and also a domain-
specific cost of about 1650 (as it doesn’t violate any
angle-wise constraints).

• By providing access to the right-most definition point
via a steep staircase / slanted ladder module, trade-off

solution no.1 has an Euclidean cost of 1550 and a do-
main specific cost of about 1750. Thus, when compar-
ing with the geometrical and domain-specific ideals, this
solution reduces Euclidean costs by ≈ 50% of the to-
tal possible since (i.e., 100

1650−1450 ) by accepting a loss of
≈ 13% (i.e., 100

2425−1650 ) with regard to domain-specific
costs.

Although trade-off solution no. 2 might prove interest-
ing when aiming to further move towards geometric optimal-
ity, one should note that this design features 5 modules that
break the domain specific restrictions (imposed by C3) of us-



Fig. 11. Pareto optimal solutions for LWN TC1 when considering the C1 and C3 cost settings

ing only platform and vertical ladder ascent assembly mod-
ules. As such, trade-off solution no. 1 can be seen as the
best compromise solution as it delivers a consistent improve-
ment with regard to geometric optimality at the expense of a
somewhat minor violation of domain specific restrictions.

6 General conclusions and outlook
In the present work we have introduced an initial, prac-

tical model abstraction for the task of automating the cost-
optimal design of complete ascent assembly structures. In
order to tackle the 2D Path network layout problem that
emerges from the aforementioned model abstraction in a
domain-realistic manner, we propose a design synthesis pro-
cedure based on a multi-objective problem formulation and
an advanced coevolution-based solver – DECMO2. As re-
sults obtained on benchmark and academic test cases were
very encouraging, we also applied our approach on a real-
life CAA-Structure design scenario provided by an industrial
partner.

The results for the real-life CAA-Structure optimization
scenario also empirically support the validity of our approach
for both fully connected and disjoint designs. Thus, by em-
ploying appropriate cost functions, formalizing the CAA-
Structure optimization problem on a continuous design space
facilitates the synthesis of a wide range of innovative designs
that provide engineers with valuable insight regarding the
best achievable solutions and the trade-offs between the best
geometrical CAA-Structure design (that requires infinite de-
grees of freedom and possibly new types of assembly mod-
ules) and the best practical (i.e., domain specific / currently

constructible) CAA-Structure design that only requires tra-
ditionally used ascent assembly modules.

In the future we plan to investigate the hybridization po-
tential between our current approach and a complementary
design strategy [41] that is based on a discretization of the
design surface and that delivers competitive results on CAA-
Structure optimization scenarios with strong angle-wise re-
strictions.

Since the evolutionary-based search logic of our
DECMO2-based solving strategy is very loosely bound to
the 2D model abstraction, future work will also revolve
around solving the cost-optimal design problems directly in
3D space. The reason is that the simple 2D representation
is rather restrictive for several real world applications. Since
the extension to 3D design scenarios could be coupled with a
switch to a simulation-based fitness evaluation function (that
is likely far more computationally-intensive), an analysis of
the best basic parallelization options [42,43] for the resulting
optimization / design synthesis scenarios might also prove
very useful.
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[33] Robič, T., and Filipič, B., 2005. “DEMO: Differential
evolution for multiobjective optimization”. In Inter-
national Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005), Springer, Springer Berlin
/ Heidelberg, pp. 520–533.

[34] Storn, R., and Price, K. V., 1997. “Differential evo-
lution - a simple and effcient heuristic for global opti-
mization over continuous spaces”. Journal of Global
Optimization, 11(4), December, pp. 341–359.

[35] Jaszkiewicz, A., 2002. “On the performance of
multiple-objective genetic local search on the 0/1 knap-
sack problem - A comparative experiment”. IEEE
Transactions on Evolutionary Computation, 6(4),
pp. 402–412.

[36] Zhang, Q., Liu, W., and Li, H., 2009. The performance
of a new version of MOEA/D on CEC09 unconstrained
MOP test instances. Tech. rep., School of CS & EE,
University of Essex, February.

[37] Soukup, J., and Chow, W., 1973. “Set of test problems
for the minimum length connection networks”. ACM
SIGMAP Bulletin, 15, pp. 48–51.

[38] Beasley, J. E., 1992. “A heuristic for euclidean and rec-
tilinear Steiner problems”. European Journal of Oper-
ational Research, 58(2), pp. 284–292.

[39] Bhaumik, B., 1994. “A neural network for the Steiner
minimal tree problem”. Biological Cybernetics, 70(5),
pp. 485–494.

[40] Liebherr-Werk Nenzing GmbH. http://www.
liebherr.com/en-GB/35267.wfw. Accessed:
2017-03-06.

[41] Hellwig, M., Entner, D., Prante, T., Zăvoianu, A.-C.,
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