
ZHANG, L., LIM, C.P. and YU, Y. 2021. Intelligent human action recognition using an ensemble model of evolving deep 
networks with swarm-based optimization. Knowledge-based systems [online], 220, article ID 106918. Available from: 

https://doi.org/10.1016/j.knosys.2021.106918  

 
 
 
 

 

This document was downloaded from 
https://openair.rgu.ac.uk 

Intelligent human action recognition using an 
ensemble model of evolving deep networks with 

swarm-based optimization. 

ZHANG, L., LIM, C.P. and YU, Y. 

2021 

https://doi.org/10.1016/j.knosys.2021.106918


Intelligent Human Action Recognition Using an 

Ensemble Model of Evolving Deep Networks with 

Swarm-based Optimization 

Li Zhang
1
, Chee Peng Lim

2
, and Yonghong Yu

3
 

1
Computational Intelligence Research Group 

Department of Computer and Information Sciences 

Faculty of Engineering and Environment 

University of Northumbria 

Newcastle, NE1 8ST, UK 

 
2
Institute for Intelligent Systems Research and Innovation 

Deakin University  

Waurn Ponds, VIC 3216, Australia 

 
3
College of Tongda 

Nanjing University of Posts and Telecommunications 

Nanjing, China 

 
Email: li.zhang@northumbria.ac.uk; chee.lim@deakin.edu.au; 

yuyh@njupt.edu.cn 

 

 

 
Abstract. 

Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to 

its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this 

research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks 

(CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A 

swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the 

deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning 

configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish 

effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI 

algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple 

elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional 

super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring 

solutions to overcome stagnation. Diverse CNN-BLSTM networks with distinctive hyper-parameter settings are 

devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN-BLSTM 

networks based on the average prediction probabilities. Evaluated using several publicly available human action 

data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with 

default and optimal settings identified by other search methods. The proposed SI algorithm also shows great 

superiority over several other methods for solving diverse high-dimensional unimodal and multimodal 

optimization functions with artificial landscapes. 

 

Keywords: Swarm Intelligence, Evolutionary Algorithm, Deep Hybrid Neural Network, Ensemble Classifier, 

and Human Action Recognition. 

1. INTRODUCTION 

Automatic understanding of human behaviours from video contents is a challenging task owing to dynamic 

background, viewpoint variations, rotations, camera motion, as well as small inter-class and large intra-class 

variations. Effective video encoding and representation methods play an important role in informing human 

action classification. The Convolutional Neural Networks (CNNs) show great superiority in deep feature 
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learning for image classification tasks. In addition, the Long Short-Term Memory (LSTM) networks are capable 

of extracting temporal dynamics in video sequences [1, 2]. As a variant of LSTM, the bidirectional LSTM 

(BLSTM) network is equipped with two hidden LSTM layers of opposite directions for sequential analysis. In 

comparison with that of LSTM, the learning mechanism of BLSTM provides additional context to the network 

by adopting both the past and future states simultaneously to facilitate time series prediction. Therefore, the 

combination of BLSTM and CNN is employed in this research, in view of their enhanced capabilities in video 

representation. However, the identification of optimal network hyper-parameters such as the number of hidden 

neurons, and the learning and dropout rates, is vital in determining network capabilities in extracting complex 

sequential patterns. This is a bottleneck in deploying BLSTM models to a new domain. As a result, a swarm 

intelligence (SI)-based algorithm is proposed in this research to optimize the model and learning hyper-

parameters of BLSTM networks.  

 

Specifically, we propose an ensemble of evolving CNN-BLSTM networks with optimal hyper-parameter 

identification for human action classification. In order to extract effective discriminative features, an ImageNet 

pre-trained GoogLeNet model is used for deep feature extraction from video frames. A BLSTM network is then 

employed to learn the temporal sequential patterns of the extracted deep frame features. The proposed SI 

algorithm is subsequently used to identify the optimal settings of the learning and dropout rates, as well as the 

number of hidden neurons in the BLSTM networks. The proposed SI algorithm incorporates hybrid crossover 

operators based on sine, cosine and tanh functions to generate promising offspring leaders. A parametric hyper-

plane surface for search coefficient assignment is also established. A versatile search process led by the yielded 

promising offspring solutions, the mean vector of these elite signals as well as the swarm leader is exploited to 

overcome stagnation. Diverse BLSTM networks with distinctive optimal hyper-parameter settings are devised 

by the proposed algorithm. An ensemble model is subsequently constructed by incorporating a set of three 

optimized CNN-BLSTM networks, in which the average of their prediction probabilities is exploited to reach 

the final prediction. Owing to the employment of dynamic crossover operators and three-dimensional (3D) 

super-ellipse search coefficients, the proposed SI algorithm provides significant capabilities in devising the 

ensemble CNN-BLSTM networks with optimal settings for video action classification. Figure 1 illustrates the 

system architecture. 

 

 

                

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
            

 

                  

 

Figure 1 The overall system architecture 

 

The contributions of this research are summarized as follows. 

 We propose an ensemble of evolving CNN-BLSTM networks for human action classification. In 

addition, a new SI algorithm is devised for optimal hyper-parameter selection. This is because the 

network structure and learning configurations, such as the learning and dropout rates and the number of 

hidden neurons, are important for extracting temporal dynamics from the deep features established in a 

BLSTM network. 

 The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine and 

tanh formulae for multiple elite offspring signal generation, as well as search coefficients extracted 

from a 3D super-ellipse eigenvector. Specifically, two remote swarm leaders are identified at the initial 

stage of the search process. Crossover operations based on sine, cosine and tanh functions are 

subsequently conducted to yield multiple elite offspring signals with the above two remote swarm 

leaders as the parent chromosomes. The resulting elite solutions are, therefore, capable of exploring the 

search space between the two remote leaders in different directions and scales, in order to increase 

search diversity. In comparison with single leader guided monotonous search operations, the proposed 

search process is a versatile one, where the promising offspring leaders, the mean vector of these elite 

signals, and the global best solution are randomly selected to overcome stagnation during the search 

process. Moreover, instead of using uniform or Gaussian distributions, the proposed model uses a 3D 

geometric hyper-plane surface for search coefficient generation, in order to accelerate convergence. 
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The empirical results indicate the statistical superiority of the proposed SI algorithm over other baseline 

methods for optimal hyper-parameter identification in BLSTM networks. 

 To overcome the bias issue of individual classifiers, we construct an ensemble model consisting of 

three optimized CNN-BLSTM networks by averaging their prediction probabilities. Since the base 

CNN-BLSTM networks have different optimized hyper-parameter settings, they possess great diversity 

and flexibility to enhance the classification performance through the ensemble approach. 

 Evaluated using several action data sets such as KTH, UCF50 and UCF101, the proposed SI algorithm 

indicates significant capabilities in identifying the optimal model settings for temporal sequential 

information extraction in BLSTM networks. Our evolving deep ensemble CNN-BLSTM networks 

illustrate statistically significant superiority over those with default and optimal settings identified by 

other classical and advanced search methods. The proposed SI algorithm also outperforms a number of 

classical and advanced search methods significantly for solving diverse high-dimensional unimodal and 

multimodal benchmark functions. 

 

The paper is organized as follows. Section 2 introduces classical search algorithms and their advanced variants 

for solving diverse optimization problems, as well as the related state-of-the-art studies on human action 

recognition. The proposed SI algorithm with adaptive crossover operators and super-ellipse coefficients is 

presented in Section 3. Section 4 introduces hyper-parameter identification for formulating the ensemble deep 

networks. A comprehensive evaluation is provided in Section 5. The concluding remarks and future research 

directions are presented in Section 6. 

 

2. RELATED WORK 
In this section, we introduce classical search methods and their advanced variants for solving diverse 

optimization problems. State-of-the-art related studies on human action recognition are also discussed. 

 

2.1 Evolutionary Algorithms and Their Variant Models 
Owing to the capability of achieving global optimality, evolutionary algorithms are effective for solving diverse 

optimization problems, such as feature selection [3-6], job scheduling [7], cluster centroid improvement [8, 9], 

parameter tuning [10], and deep architecture generation [11, 12]. Sundaramurthy and Jayavel [4] proposed a 

hybrid model incorporating Particle Swarm Optimization (PSO) with Grey Wolf Optimization (GWO) for 

discriminative feature selection, while the C4.5 Decision Tree (DT) was used for Rheumatoid Arthritis (RA) 

classification. The PSO method was responsible for the initial search of the optimal feature subsets, while the 

GWO model carried out a subsequent more refined feature selection procedure. In comparison with feature 

optimization using individual PSO and GWO models, the proposed hybrid model achieved a better RA 

classification performance. Shao et al. [13] proposed a PSO variant for optimal hyper-parameter identification 

for the LSTM networks in nickel price prediction. Adaptive acceleration coefficients based on sine functions, as 

well as an adaptive decreasing inertia weight, were proposed to increase search diversification. Their PSO 

variant optimized the time step and the numbers of neurons in two LSTM layers for the regression analysis. The 

yielded LSTM model outperformed a manually-designed LSTM network, AutoRegressive Integrated Moving 

Average (ARIMA), and the PSO-devised LSTM network. Chitradevi and Prabha [14] employed PSO, Cuckoo 

Search (CS), GA, and GWO for the segmentation of brain sub-regions, i.e. White Matter (GM), Corpus 

Callosum (CC), Grey Matter (WM), and Hippocampus (HC). These segmented regions were used as the inputs 

of a deep CNN model for Alzheimer disease (AD) diagnosis. The empirical results indicated that the multiple-

leader guided GWO method identified the most effective sub-regions and illustrated a better performance 

pertaining to image segmentation in comparison with other search methods.  

 

Sun et al. [12] employed the Genetic Algorithm (GA) for deep CNN architecture generation. Statistical measures 

and a variable-length gene encoding strategy were used to encode the initialization weights and network 

architectures, respectively. The Gaussian distribution was used to decode the network weights based on the 

statistical measures. The GA operators, including a slacked binary tournament selection and different types of 

mutation operations, were applied for offspring generation. Their model outperformed several state-of-the-art 

manually designed networks in performance evaluation using various data sets, including the Rectangle Images, 

MNIST and its variants. A performance predictor based on Random Forest (RF) was also developed by Sun et 

al. [15] to alleviate the heavy computational cost of evaluating deep CNNs in deep architecture generation. Deep 

networks with ResNet and DenseNet blocks were produced using a GA operator. The obtained network 

configurations and their corresponding accuracy rates were used for RF training. Each base model of RF was 

trained using a feature subspace. Good results with improved computational costs were achieved in large-scale 

image classification tasks. 

 



An enhanced chaotic PSO (CPSO) method was proposed by Zhang and Xin [16] for the identification of the 

optimal number of hidden neurons in LSTM for short-term traffic flow prediction. A pre-processing procedure 

based on a classification algorithm, namely Asym-Gentle Adaboost with Cost-sensitive Support Vector Machine 

(AGACS), was firstly performed to separate outliers from normal samples. The identified normal samples were 

subsequently used for hyper-parameter fine-tuning using CPSO in combination with LSTM. Moreover, a 

logistic map was used in the CPSO model for both population initialization and chaotic perturbation, in order to 

accelerate convergence and overcome stagnation. The CPSO-devised LSTM model achieved a better 

performance in traffic flow prediction, as compared with those from the Deep Belief Network (DBN), Recurrent 

Neural Network (RNN) and CNN models. Tsai et al. [17] conducted optimal network topology identification of 

the Multiple-layer Perceptron (MLP) using Simulated Annealing (SA) for the prediction of the number of bus 

passengers. The SA model was used to optimize the numbers of neurons of each of the three hidden layers in the 

MLP network. The SA-based MLP model outperformed other regression methods, including Support Vector 

Regressor (SVR), RF, and eXtreme gradient boosting (XGBoost) models in passenger number prediction tasks. 

 

A cosine-annealing PSO (COSPSO) model was proposed by Fielding and Zhang [11] to generate deep CNN 

architectures for image classification. The search parameters were yielded by exploiting the cosine functions. 

The PSO variant was used to identify the optimal numbers of five distinctive types of convolutional blocks in a 

CNN model. The optimized network achieved superior results with respect to the CIFAR-10 and CIFAR-100 

data sets. Emotion recognition based on electroencephalogram (EEG) and blood volume pulse (BVP) signals 

was performed by Nakisa et al. [18]. Differential evolution (DE) was used to optimize the LSTM hyper-

parameters, including the batch size and number of hidden neurons. The DE-optimized LSTM model 

outperformed those yielded by PSO, random search, Tree-of-Parzen-Estimators (TPE), and SA, in emotion 

identification. Two PSO variants with adaptive and random acceleration coefficients based on non-linear circle, 

sine, and spiral functions were proposed by Tan et al. [10]. The models were embedded into the MLP for 

discriminative feature selection as well as hyper-parameter (i.e. learning rate and regularization strength) fine-

tuning pertaining to a deep CNN model for skin cancer detection. Besides the adoption of adaptive and random 

coefficients, their PSO variants embedded sub-dimension-based search, multiple global promising solutions, and 

scattering procedures to overcome stagnation. Their models outperformed a number of advanced PSO and 

Firefly Algorithm (FA) variants in discriminative feature selection and hyper-parameter identification for 

melanoma classification. Yan et al. [19] used the LSTM networks for missing value prediction in data samples 

of water quality. The PSO algorithm was used to optimize the learning rate and the time step of the LSTM 

network. The yielded LSTM model outperformed other regressors, i.e. a manually-crafted LSTM, Bayesian 

Network, DT and Backpropagation Neural Network (BPNN), in missing value prediction.  

 

Kang et al. [20] developed a non-inertial opposition-based PSO algorithm (NOPSO) for undertaking various 

unimodal and multimodal benchmark functions. A rotationally invariant semi-autonomous PSO model with 

directional diversity was proposed by Santos et al. [21] for solving the CEC2017 artificial landscapes. Another 

PSO variant, namely dynamic multi-swarm differential learning PSO, was proposed by Chen et al. [22]. It 

outperformed several classical search methods (such as DE) and PSO variants (such as Comprehensive Learning 

PSO) for solving 41 numerical benchmark functions. There are other studies in the literature pertaining to deep 

architecture generation and hyper-parameter fine-tuning using PSO and GA methods, such as Zhang and Lim 

[23], Sun et al. [24], Nayak et al. [25], and Tan et al. [26, 27]. 

 

2.2 Human Action Recognition 
A variety of state-of-the-art studies have been proposed for human action recognition, owing to the growing 

demand in real-world deployments, e.g. security and surveillance. A two-stream architecture was proposed by 

Simonyan and Zisserman [28]. It comprised two separate CNNs, i.e. spatial and temporal CNNs, for appearance 

and motion-based action recognition, respectively. Specifically, the individual video frames and multi-frame 

optical flow were used as the inputs of the two-stream CNNs, respectively. Several variations of the optical flow 

inputs, such as optical flow and trajectory stackings, were explored. The fusion of both networks was performed 

based on the softmax scores at the classification level using either averaging or a linear SVM. The SVM 

ensemble strategy performed the best in several human action data sets. Wang et al. [29] employed a spatio-

temporal pyramid network to fuse and reinforce the extracted spatial and temporal cues for human action 

recognition. Hierarchical fusion strategies in conjunction with a spatio-temporal compact bilinear operator 

embedded with attention mechanisms were proposed to effectively capture element-wise spatio-temporal 

interactions and attended features. The video-level representation was formed by aggregating the features from 

spatial, temporal, and attention streams. The model produced superior performances in several human action 

data sets. Owing to the expensive computational cost in estimating optical flow, Zhang et al. [30] performed 

real-time human action recognition using motion vectors, which can be extracted from video clips with a 

significantly lower cost. A deep learning scheme consisting of two modules was proposed, i.e. (1) video encoder 



for image and motion vector extraction, and (2) a two-stream architecture as in [28], where the motion vector 

instead of optical flow was used as the input of a temporal CNN model. To overcome imprecision and noise in 

the motion vectors, four transfer learning mechanisms, i.e. initialization transfer, supervision transfer and their 

combination, as well as deeply connected transfer, were proposed. The aim was to enhance the training process 

of the motion vector CNN based on the refined and subtle motion details extracted by the optical flow CNN. The 

model achieved promising performances, and it was significantly faster than those of many existing optical 

flow-based methods. 

 

Ullah et al. [31] conducted human action recognition using bi-directional LSTM in conjunction with AlexNet. 

The ImageNet pre-trained AlexNet was used to extract the deep features from every sixth frame of the video 

clips. Then, a BLSTM model was used to extract the temporal sequential information from the frame features. 

The BLSTM model was constructed by stacking two LSTM layers with respect to the forward and backward 

passes, respectively. The model showed great superiority over other methods in human action recognition using 

HMDB51, UCF101, and YouTube 11 data sets. Singh et al. [32] proposed a multi-stream CNN model 

incorporated with a BLSTM network for fine-grained human action detection. In comparison with action 

recognition where a single label is assigned to a video sequence, this human action detection method required 

the assignment of each label pertaining to each frame. Their work employed motion and appearance CNNs with 

VGG architectures dedicated to the full and cropped person-centric frames, respectively, for feature extraction. 

A fully-connected projection layer was used to yield a joint representation based on the outputs of the above 

multi-stream CNNs. The long-term temporal dynamics of the outputs of the projection layer were analysed using 

the BLSTM network for the subsequent human action prediction. Evaluated using the MPII Cooking 2 and the 

MERL Shopping data sets, their model showed enhanced performances.  

 

Dai et al. [33] proposed a two-stream LSTM network with visual attention mechanisms for human action 

recognition. Specifically, their end-to-end deep network comprised both ‘temporal’ and ‘spatial-temporal’ 

feature streams. The ‘temporal’ stream employed a temporal attention mechanism to identify the visual saliency 

in each optical flow image, while in the ‘spatial-temporal’ stream, the convolutional layers integrated with 

LSTM were employed to capture the spatial-temporal dynamics. In the latter, a spatial-temporal attention model 

was embedded, in order to allocate distinctive attention weights to the outputs of each extracted feature map. A 

joint optimization layer was used to fuse the attention feature vectors from the two streams. The combined losses 

from both streams and a third stream with the classifier trained using the fused feature vector were calculated to 

produce the final classification. Evaluated using UCF Sports, UCF11 and jHMDB data sets, this two-stream 

LSTM deep network outperformed other state-of-the-art methods. Khan et al. [34] performed human action 

recognition using feature fusion and selection based on hand-crafted histogram of oriented gradients (HoG) and 

deep CNN features. Pre-processing methods such as a 3D median filter and HSV colour transformation were 

firstly applied to increase the image contrast. A motion-based saliency detection method, consisting of motion 

and geometric feature extraction and Chi2 distance calculation, was subsequently applied to identify the region 

of interest (ROI). The ROI was used as the input for hand-crafted HOG feature extraction, while the deep 

features of the overall frame were extracted using AlexNet. Feature fusion was conducted based on both 

extracted feature vectors. The entropy-based feature selection was applied to identify the most discriminative 

features from the fused vector, while a multi-class SVM (M-SVM) was adopted for video classification. Their 

method achieved high classification accuracy rates as compared with those of existing studies in several human 

action data sets. 

 

Li et al. [35] proposed a VideoLSTM model for human action recognition. A motion-based attention scheme and 

convolutions in the soft-attention LSTM network were used for action localization and classification. Yang et al. 

[36] employed the attention-again model for human action classification. A CNN was used as the encoder for 

spatial feature extraction, while a LSTM network with two hidden layers and soft attention mechanisms was 

used as the decoder. da Silva and Marana [37] conducted human action recognition based on the extraction and 

encoding of 2D poses. The OpenPose framework was used to extract 2D poses in each frame. Then the poses 

were projected into a proposed straight line parameter space, where the spatio-temporal features such as 

trajectories and angles were extracted using a Bag-of-Poses mechanism. The model achieved enhanced 

performances in the evaluation of the KTH and Weizmann data sets. A biologically inspired visual mechanism 

with a dual fast and slow feature interaction was proposed by Yousefi and Loo [38] for human action 

recognition. Yu et al. [39] conducted video-based human action classification using Hierarchical Generative 

Adversarial Networks (HiGAN). Their model employed both low-level and high-level conditional GAN models 

to transfer knowledge learned from the image domain to the video domain by constructing a domain-invariant 

feature representation. The experimental studies indicated that the image classifiers trained with such domain-

invariant features showed impressive performance for video classification. Other state-of-the-art studies in 

human action recognition include a deep 3D Residual ConvNet (Res3D) [40] and compressed video action 



recognition (CoViAR) [41]. Comprehensive reviews on action classification are also provided by Jegham et al. 

[1], Rodríguez-Moreno et al. [2], Singh et al. [42], and Zhang et al. [43].  

3. THE PROPOSED SI ALGORITHM 

In this research, we propose an evolving ensemble deep learning model that consists of multiple CNN-BLSTM 

networks for human action recognition. Identifying the optimal model hyper-parameters, such as the learning 

and dropout rates as well as the number of hidden neurons, is crucial in ensuring the capability of extracting 

effective sequential patterns. Since this is a bottleneck in deploying BLSTM models to a new domain, a hybrid 

learning SI algorithm is proposed to optimize the relevant hyper-parameters. Specifically, the proposed SI 

algorithm incorporates diverse elite signals yielded by nonlinear functions and search coefficients generated 

using a super formula to increase search diversity. Hybrid learning based on distinctive adaptive formulae 

between two remote swarm leaders is performed to produce promising offspring solutions for expanding the 

search territory in different scales and directions. In comparison with single leader guided monotonous 

operations in classical methods, the proposed SI algorithm employs multiple position updating operations led by 

diverse elite indicators, as an attempt to overcome stagnation. Algorithm 1 illustrates the pseudo-code of the 

proposed SI algorithm. 

 

After the population initialization step, the global best solution and a remote second leader with a competitive 

fitness score and low position proximity are identified. A set of adaptive sine, cosine and tanh oriented functions 

is used to produce the crossover factors for hybrid offspring leader generation. Specifically, this hybrid leader 

generation process employs two strategies, i.e. random and adaptive crossover operations, with the 

abovementioned two remote swarm leaders as the parent chromosomes. The random and adaptive operations are 

selected randomly in each dimension for generating the promising offspring signals. Therefore, these resulting 

elite indicators are capable of exploring the search space between the two remote swarm leaders in a dynamic 

and nonlinear manner to increase search diversity. Subsequently, the algorithm randomly selects any of the 

yielded hybrid offspring leaders, the mean vector of these promising indicators, as well as the global best 

solution, for position updating. Instead of using uniform or Gaussian distributions, a super-ellipse parametric 

hyper-plane surface is employed for search coefficient generation, in order to accelerate convergence. We 

introduce each key proposed search mechanism comprehensively in the following sub-sections. 

 

Algorithm 1: Pseudo-Code of the Proposed SI Algorithm 

1. Start 

2. Initialize a swarm randomly; 

3. Evaluate the population; 

4. Sort the swarm based on fitness values and identify 𝑔𝐵𝑒𝑠𝑡; 

5. Calculate a 3D parametric surface using Equations (2)-(8); 

6. While (Stopping criterion is not satisfied)  

7. { 

8. Identify a second leader with a similar fitness score but low position correlation to 𝑔𝑏𝑒𝑠𝑡; 

9.     For each individual do { 

10. Generate the search coefficient using the above yielded 3D parametric surface; 

11. Generate the offspring leader 1 using the dimension-based operation in Equation (9); 

12. Generate the offspring leader 2 using the dimension-based operation in Equation (11); 

13. Generate the offspring leader 3 using the dimension-based operation in Equation (13); 

14. Calculate the mean position of the above three offspring leaders; 

15. Randomly select one of the following operations for position updating; 

16. 1. Conduct position updating as defined in Equation (1) using 𝑔𝑏𝑒𝑠𝑡; 

17. 2. Conduct position updating as defined in Equation (10) using offspring leader 1; 

18. 3. Conduct position updating as defined in Equation (12) using offspring leader 2; 

19. 4. Conduct position updating as defined in Equation (14) using offspring leader 3; 

20. 5. Conduct position updating as defined in Equation (15) using the mean position of 

the three offspring leaders; 

21.      } End For 

22.      Sort the overall swarm based on the fitness values and identify 𝑔𝐵𝑒𝑠𝑡;  

23. } Until (Stagnation) 

24. Output 𝑔𝐵𝑒𝑠𝑡; 
25. End 

 

3.1 The Proposed Search Operation following a Geometric Parametric Surface  



In this research, we propose a new position updating strategy to guide the search process. The particle movement 

follows a 3D nature-inspired parametric surface for performing global exploration. Equation (1) defines the 

proposed position updating operation.  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + ℎ𝑖
𝑡 × (𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖

𝑡)                                                              (1) 

 

where 𝑥𝑖
𝑡+1 and 𝑥𝑖

𝑡 represent the individual 𝑥𝑖 in the (𝑡 + 1)-th and the 𝑡-th iterations, respectively. The swarm 

leader 𝑔𝑏𝑒𝑠𝑡  is obtained after fitness evaluation of the overall swarm, while ℎ𝑖
𝑡 denotes the search coefficient 

extracted from a parametric surface simulating curves and shapes observed in nature. Equations (2)-(8) define 

the generated geometric hyperplane surface [44]. 
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where 𝜀 and 𝜎 denote the radiuses, while 𝑥, 𝑦, and 𝑧 represent the coordinates of the resulting 3D geometric 

hyper-plane. The growing factor, 𝑐, determines the scale of the produced hyper-plane surface. Based on trial-

and-error, we assign 𝑐 = 2 in this study. Figure 2 illustrates the parametric surface defined by Equations (2)-(8).   

 

 
 

Figure 2 The parametric surface produced using Equations (2)-(8) 

 

As indicated in Figure 2, the generated curve surface depicts a stretching geometric shape. The ranges of 𝑥, 𝑦 

and 𝑧 dimensions are [-6.1476, 5.9029], [-6.2833, 6.2946], and [-3.6465, 3.6307], respectively. In each iteration, 

we randomly select a point from the generated 3D surface in Figure 2 for each individual. The maximum value 

among the 𝑥, 𝑦, and 𝑧 coordinates of this randomly selected point is used as the search coefficient, ℎ𝑖
𝑡, in 

Equation (1). The aim is to enable a comparatively larger search step towards the 𝑔𝑏𝑒𝑠𝑡  solution, therefore 

accelerating convergence while following the produced ‘flower-like’ geometric shape for position updating. The 

growing size of the generated surface is determined by parameter 𝑐, which can affect the size of the search step 

in position updating. Since we assign a distinctive but comparatively large search coefficient produced by the 

abovementioned process for each individual, the proposed operation is able to entail different search scales and 

directions towards the 𝑔𝑏𝑒𝑠𝑡  solution, therefore diversifying the search process.  

 

3.2 Crossover Operations for Hybrid Leader Generation 
After the identification of the global best solution, we extract a second swarm leader that has a competitive 

fitness score but with the lowest position proximity to the best leader. Besides using the global best solution to 



guide the overall swarm (as discussed in Section 3.1), the crossover operators are used to generate a set of hybrid 

elite signals, in order to overcome premature stagnation. These offspring leaders are yielded using sine, cosine 

and tanh oriented crossover probabilities, and the aforementioned two swarm leaders serve as the parent 

chromosomes. These offspring solutions are able to exploit the distinctive search regions between the two best 

leaders in different directions and scales, therefore avoiding stagnation.  

 

3.2.1 The first proposed crossover strategy 
Equation (9) defines the first hybrid optimal leader generation operation. It includes two strategies, i.e. adaptive 

and random crossover actions. Specifically, the adaptive crossover operation is applied to the randomly selected 

sub-dimensions of the generated offspring. For the remaining sub-dimensions of the offspring, the random 

crossover operation is adopted. 

 

𝐿1 = {
cos(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 ) × 𝑠𝑠𝑒𝑐  +  sin(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × sin(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × tanh(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × 𝑔𝑏𝑒𝑠𝑡, 𝑖𝑓 𝑑 ∈ [1, 𝑟𝑎𝑛𝑑𝑑𝑖𝑚𝑠]

cos(1.5 × 𝑟𝑎𝑛𝑑) × 𝑠𝑠𝑒𝑐  + sin(1.5 × 𝑟𝑎𝑛𝑑) × sin(1.5 × 𝑟𝑎𝑛𝑑) × tanh(1.5 × 𝑟𝑎𝑛𝑑) × 𝑔𝑏𝑒𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(9) 

 

where 𝑔𝑏𝑒𝑠𝑡  and 𝑠𝑠𝑒𝑐 represent the parent chromosomes of the global best solution and the remote second leader, 

respectively. 𝐿1denotes the yielded hybrid leader 1, while 𝑟𝑎𝑛𝑑 indicates a randomly generated value between 0 

and 1. In addition, both parameters 𝑡 and 𝑖𝑡𝑒𝑟𝑠 specify the current and the maximum numbers of iterations, 

respectively. As shown in Equation (9), the crossover probabilities are implemented using sine, tanh, and cosine 

formulae. Figure 3 depicts the search trajectories produced by 𝑐𝑜𝑠(𝑚) and 𝑠𝑖𝑛(𝑚) × 𝑠𝑖𝑛(𝑚) × 𝑡𝑎𝑛ℎ(𝑚), 

respectively, where 𝑚 ∈ [0, 1.5] is used to represent 1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 and 1.5 × 𝑟𝑎𝑛𝑑 in Equation (9). As shown in 

Figure 3, they indicate the increasing and decreasing mild shifts between the global best and the second remote 

leaders for generating the leader offspring. 

 

Referring to Equation (9), the first part indicates the adaptive method. This operation assigns adaptive crossover 

factors, i.e. the decreasing and increasing weights, to both parent chromosomes in randomly selected sub-

dimensions over iterations. As such, the procedure starts with a greater focus on the second leader before 

switching the attention to the global best solution. The gradients of the search transitions between the two swarm 

leaders are illustrated by two adaptive courses shown in Figure 3. Instead of purely using the adaptive 

weightings for offspring generation, the second crossover operation defined in the second part of Equation (9) 

inserts randomness and assigns randomly generated values from both curves in Figure 3 for offspring 

generation. This proposed leader generation mechanism is conducted for each individual in each iteration, in 

order to produce diverse bespoke optimal signals. The yielded offspring leader is subsequently used to lead the 

search process, as defined in Equation (10). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + ℎ𝑖
𝑡 × (𝐿1 −  𝑥𝑖

𝑡)                                                              (10) 

 

where 𝐿1 is the hybrid offspring leader yielded by Equation (9), and ℎ𝑖
𝑡 denotes the search coefficient based on 

Equations (2)-(8). The search action in Equation (10) is able to explore the regions between the two remote best 

leaders in an adaptive and dynamic way by following a geometric surface to overcome local optima traps. 

 

 
Figure 3 The adaptive search trajectories generated using cos(𝑚) (blue line) and sin(𝑚) × sin(𝑚) × tanh(𝑚) 

(red line) respectively, where 𝑚 ∈ [0, 1.5] 

 

3.2.2 The second proposed crossover strategy 
To further diversify the search process, another crossover strategy for hybrid leader generation is formulated, as 

defined in Equation (11).  



 

𝐿2 = {
cos(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 ) × cos(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 ) × 𝑠𝑠𝑒𝑐  + sin(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × sin(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × 𝑔𝑏𝑒𝑠𝑡, 𝑖𝑓 𝑑 ∈ [1, 𝑟𝑎𝑛𝑑𝑑𝑖𝑚𝑠]

cos(1.5 × 𝑟𝑎𝑛𝑑) × cos(1.5 × 𝑟𝑎𝑛𝑑) × 𝑠𝑠𝑒𝑐  + sin(1.5 × 𝑟𝑎𝑛𝑑) × sin(1.5 × 𝑟𝑎𝑛𝑑) × 𝑔𝑏𝑒𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(11) 
 

where 𝐿2 indicates the hybrid offspring leader 2. As indicated in Equation (11), the crossover factors are 

implemented using adaptive and random sine and cosine formulae. Figure 4 illustrates the trajectories produced 

by 𝑐𝑜𝑠(𝑚) × 𝑐𝑜𝑠(𝑚) and 𝑠𝑖𝑛(𝑚) × 𝑠𝑖𝑛(𝑚), respectively, where 𝑚 ∈ [0, 1.5] is used to represent 1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 

and 1.5 × 𝑟𝑎𝑛𝑑 in Equation (11). Again two search mechanisms, i.e. the adaptive and random operations, are 

employed in Equation (11) for generating the leader offspring by exploiting the search region between the global 

best solution and the remote second leader. 

 

 
 

Figure 4 The adaptive search trajectories generated using cos(𝑚) × cos(𝑚) (blue line) and sin(𝑚) × sin(𝑚) 

(red line) respectively, where 𝑚 ∈ [0, 1.5] 
 

As indicated in Figure 4, the yielded curves are comparatively steeper and show faster transitions between the 

two best leaders, in comparison with those produced using Equation (9) and illustrated in Figure 3. Therefore, 

the offspring elite signal generation is dominated by the second swarm leader at the initial stage, while the 

impact of the global best solution is increased more radically over the iterations. Moreover, both the adaptive 

and random crossover operations defined in Equation (11) are taken into account for offspring production. The 

resulting indicators extend the search territory by exploring the distinctive search regions between the two 

remote leaders, as compared with those exploited in Equation (9). 

 

The offspring solution is subsequently used to lead the search procedure defined in Equation (12). A distinctive 

super-ellipse search coefficient, ℎ𝑖
𝑡, is also extracted from the parametric super-ellipse surface defined in 

Equations (2)-(8) for each individual in the swarm. Based on Equation (12), each individual is equipped with 

different degrees of momentum and energy to explore the bespoke promising regions, in order to overcome 

stagnation.  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + ℎ𝑖
𝑡 × (𝐿2 − 𝑥𝑖

𝑡)                                                          (12) 

 

3.2.3 The third proposed crossover strategy 
Another offspring leader generation mechanism is also defined in Equation (13). This new crossover operation is 

implemented using another set of sine and cosine formulae. Figure 5 signifies the trajectories produced by 

𝑐𝑜𝑠(𝑚) × 𝑐𝑜𝑠(1.5 × 𝑚) and 𝑠𝑖𝑛(𝑚) × 𝑐𝑜𝑠(0.1 × 𝑚) respectively, where 𝑚 ∈ [0, 1.5] is used to represent 

1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 and 1.5 × 𝑟𝑎𝑛𝑑 in Equation (13). Again, the crossover operations follow the adaptive scheme in 

randomly selected sub-dimensions with the rest of the elements manufactured using the random mechanism. As 

indicated in Figure 5, the adaptive trajectories illustrate a comparatively early crossing with the sharpest 

diminishing and increasing momentum in comparison with those defined in Equations (9) and (11). This leads to 

more drastic switching of the search emphasis between the two swarm leaders. In other words, the effect of the 

second leader is decreasing sharply whereas the impact of the global best solution is increasing drastically 

during the search process. This phenomenon enables the newly generated leader to explore wider search regions 

in comparison with those based on Equations (9) and (11). The generated offspring leader is used to lead the 

search process, as defined in Equation (14), where the search coefficient ℎ𝑖
𝑡 also follows a parametric surface.   

 

𝐿3 = {
cos(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 ) × cos(1.5 × 1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠 ) × 𝑠𝑠𝑒𝑐  +  sin(1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × cos(0.1 × 1.5 × 𝑡/𝑖𝑡𝑒𝑟𝑠) × 𝑔𝑏𝑒𝑠𝑡 , 𝑖𝑓 𝑑 ∈ [1, 𝑟𝑎𝑛𝑑𝑑𝑖𝑚𝑠] 

cos(1.5 × 𝑟𝑎𝑛𝑑) × cos(1.5 × 1.5 × 𝑟𝑎𝑛𝑑) × 𝑠𝑠𝑒𝑐  +  sin(1.5 × 𝑟𝑎𝑛𝑑) × cos(0.1 × 1.5 × 𝑟𝑎𝑛𝑑) × 𝑔𝑏𝑒𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

(13) 

 



𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + ℎ𝑖
𝑡 × (𝐿3 − 𝑥𝑖

𝑡)                                                          (14) 

 

 

 
 

Figure 5 The adaptive search trajectories generated using cos(𝑚) × cos(1.5 × 𝑚) (blue line) and sin(𝑚) ×
cos(0.1 × 𝑚) (red line) respectively, where 𝑚 ∈ [0, 1.5] 

 

Besides the search operation led by each offspring solution, the three hybrid offspring leaders produced thus far 

are averaged to indicate the promising elite region in the search space, which is used to guide the search process 

as defined in Equation (15). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + ℎ𝑖
𝑡 × (𝑚𝑒𝑎𝑛(𝐿1+𝐿2+𝐿3) − 𝑥𝑖

𝑡)                                              (15) 

 

where 𝑚𝑒𝑎𝑛(𝐿1+𝐿2+𝐿3) denotes the mean position of the three generated offspring leaders. Each individual in 

the swarm moves towards this elite indicator by following a super-ellipse parametric hyper-plane surface.  

 

The proposed leader generation mechanisms produce a variety of distinctive optimal signals and enable the 

search process to effectively balance between diversification and intensification, in an attempt to overcome 

stagnation. Diversified geometric super-ellipse coefficients are assigned to each individual, in order to equip it 

with different accelerated search steps to move towards the elite signals. These proposed search mechanisms 

account for the significant capabilities of the proposed SI algorithm in overcoming local optima traps and 

achieving global optimality. It is used to optimize the hyper-parameters of deep BLSTM networks for human 

action recognition. We introduce the proposed ensemble CNN-BLSTM networks with optimal hyper-parameter 

identification in detail in the next section. 

 

4. THE PROPOSED ENSEMBLE MODEL OF DEEP NETWORKS FOR HUMAN 

ACTION RECOGNITION 
We employ a hybrid CNN-BLSTM model, i.e., a CNN encoder and a BLSTM decoder, for video action 

classification. In the literature, hybrid CNN-LSTM networks have been used for time series analysis, computer 

vision, and language processing tasks in recent years, including energy consumption prediction [45], visual 

question answering [46], and image description generation [47, 48]. As such, this hybrid architecture is adopted 

in this research. Instead of using LSTM as the decoder, we employ the BLSTM network because of its superior 

capabilities in video interpretation. In comparison with the existing video action recognition methods which 

employ spatial and temporal cues separately, the proposed hybrid model embeds CNN and BLSTM networks in 

series to capture temporal dynamics between the deep spatial features. Moreover, many existing studies rely 

heavily on computationally expensive pre-processing steps, such as motion information extraction using optical 

flow, and show significant restrictions to tackle real-time video classification tasks. In contrast, the proposed 

CNN-BLSTM model does not depend on optical flow extraction, and is capable of performing video action 

classification in real time. 

 

Specifically, a pre-trained CNN model extracts deep spatial features from the video frames, while a BLSTM 

network analyses the temporal sequential cues from the extracted features of the video frames. The proposed SI 

algorithm is subsequently employed to optimize the learning rate, dropout rate, and the number of hidden 

neurons of the BLSTM network. Diverse optimized BLSTM models with a variety of distinctive learning 

configurations are yielded. An ensemble model is constructed by combining three optimized CNN-BLSTM 

networks for human action classification.  

 

We first employ the ImageNet pre-trained GoogLeNet to extract the spatial feature vectors from video frames, 

owing to its efficient feature description capabilities. Before conducting feature transformation, several pre-



processing steps are performed, which include centre-cropping where we crop the longest edges of a video and 

re-size it to the input size (i.e. 224×224) of GoogLeNet. We also extract 30 frames per second from each video 

clip for deep feature extraction, in order to better capture the detailed and granular variations between frames for 

sequential analysis. The ‘activations’ function associated with the last pooling layer of the GoogLeNet is used to 

extract the feature vectors from the sequences of the video frames. The obtained sequences of feature vectors are 

then used as inputs to the BLSTM network for human action classification.  

 

               

                    

                  

               
                    

 

                   

               
 

 

Figure 6 The proposed CNN-BLSTM architecture for each base model 

 

In comparison with the unidirectional LSTM network, the BLSTM decoder is able to employ both forward and 

backward dependencies in deep frame features for classification purposes. Specifically, it embeds two LSTM 

layers of opposite directions to learn the temporal sequential dynamics from the deep spatial features. The 

information from the backward and forward passes is used simultaneously to inform the output layer. Based on 

the existing and empirical studies, it shows superior performances over those of unidirectional LSTM networks 

in time series analysis [31, 49]. The employed CNN-BLSTM architecture in this research for each base model is 

illustrated in Figure 6.  
 

As shown in Figure 6, we design the BLSTM model with the following topology, i.e. a sequence input layer, a 

bidirectional LSTM layer, a dropout layer, a fully connected layer, a softmax layer, and a prediction layer. 

Particularly, the BLSTM layer is used to capture the bidirectional temporal dependencies from the sequences of 

extracted deep feature vectors. As we know, the network configurations, such as the number of hidden neurons 

of the BLSTM layer and the dropout rate of the dropout layer, as well as the training settings such as the 

learning rate, play important roles in determining the network capabilities in sequential information extraction.  

As such, an automated hyper-parameter selection process is developed using the proposed SI algorithm. The 

detailed search ranges of these hyper-parameters are provided in Table 1. 

 

The number of hidden units of the BLSTM layer indicates the amount of dynamics and dependencies stored 

between the time steps. If the number of hidden neurons is too small, the model may not be able to capture the 

complex dynamic dependencies between the deep frame features effectively. If the number of hidden neurons is 

too large, the model is more likely to suffer from overfitting by capturing noisy, excessive, and redundant 

information. On the other hand, the dropout layer randomly ascribes zero to the input elements with a given 

dropout mask. Specifically, the dropout factor acts as a control threshold that determines the likelihood of any 

input elements to be dropped out. Such a dropout operation is able to change the network topology, and it plays 

an important role in preventing the issue of overfitting. A reasonable dropout rate leads to an optimal trade-off 

between network diversity and convergence, while a smaller setting is likely to result in restricted model 

diversity. Other network hyper-parameters, such as the learning rate, also have a significant impact on the 

learning behaviours. A larger learning rate is more likely to result in suboptimal solutions, while a smaller 

setting may lead to a less efficient learner with a slow convergence rate. In order to obtain an effective network 

and learning configuration, we utilize the proposed SI algorithm to identify the optimal settings of the hyper-

parameters of BLSTM. 

Table 1 Optimized hyper-parameters 

 
Optimized factors Search ranges 

Learning rate [5e-5, 5e-4] 

Dropout rate [0.1, 0.7] 

The number of hidden units of the BLSTM layer [400, 1800] 
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The following parameter settings are used for optimal hyper-parameter identification, i.e. dimension=3 and the 

maximum number of function evaluations=population (15) × a maximum number of iterations (10). For each 

data set, we employ the officially published training and test splits for model evaluation. The published training 

set has also been further divided into training and validation sets for hyper-parameter selection.  

 

The proposed SI model initializes a swarm where each element of an individual is used to represent each of the 

optimized hyper-parameters. The proposed search operations are used to guide each individual in the search 

process pertaining to optimal parameter settings. For the fitness evaluation, the hyper-parameters recommended 

by each individual are used to establish the BLSTM network and its associated learning configuration. The 

BLSTM network is then trained and evaluated using the newly split training and validation sets for fitness 

evaluation. The resulting deep network with the most optimal hyper-parameter settings is indicated by the global 

best solution. It is further fine-tuned using the combined training and validation sets with larger numbers of 

training epochs, before it is evaluated with the unseen test set.  

 

Moreover, video sequences that are comparatively longer than the typical cases can embed a large amount of 

padding in the training process. This can result in a negative impact on the classification performance. As such, 

temporal augmentation techniques such as random cropping or subsampling of the consecutive frames are 

employed to tackle the long video sequences. In addition, we employ the Adam optimizer for training the 

BLSTM network. The L2Regularization term is used in the loss function to prevent overfitting. This is achieved 

through assigning additional penalties on the layer parameters during optimization. We employ a mini-batch size 

of 16 and shuffle the video sequences every epoch in the training process. The input video frames are re-sized to 

224×224, in order to match the input size of the encoder (GoogLeNet). 

 

The hyper-parameter optimization process is conducted for a series of 10 runs to produce 10 optimized BLSTM 

networks, each with a distinctive network and learning configuration. These optimized networks are re-trained 

using three larger numbers of epochs (e.g. 15, 20, and 30) to yield 30 distinctive BLSTM networks using the 

combined training and validation sets. Next, a number of ensemble classification models are constructed. Each 

contains a set of three CNN-BLSTM networks with different optimized settings as the base classifiers. In other 

words, three optimized CNN-BLSTM networks are included in one ensemble model where Figure 6 illustrates 

the structure of each optimized base network. These base networks possess different layer structures and 

learning configurations, in order to enhance the ensemble model diversity. Finally, the average of the prediction 

probabilities is used to produce the final prediction result based on the outputs of the base networks. A 

comprehensive evaluation of the proposed ensemble model is provided in the next section. 

 

5. EVALUATION 
We evaluate the efficiency of the proposed ensemble model of evolving CNN-BLSTM networks using three 

human action data sets, i.e. KTH, UCF50 and UCF101. KTH [50] is a constrained data set, which has a total of 

2,391 video sequences from 25 subjects. The video sequences are categorized into six actions, i.e. walking, 

jogging, running, boxing, hand-waving, and hand-clapping. We utilize the official training, validation, and test 

splits [50, 51] from two different sets of 8 subjects and the remaining 9 subjects, respectively, in model 

evaluation. The data set has a spatial resolution of 160×120. Unlike the KTH data set, both UCF50 [52] and 

UCF101 [53] are obtained from YouTube. They are realistic human action clips with a frame resolution of 

320×240. Specifically, a total of 6,618 video samples from 50 classes are included in UCF50, while UCF101 

contains 13,320 videos from 101 classes. For both UCF50 and UCF101, the video clips of each action class are 

divided into 25 groups, with 4 to 7 clips in each group. The clips in one group have similar characteristics such 

as the same actors or scenes. Following other related studies, we employ the leave-one-group-out cross-

validation method for UCF50, and the first official training and test split for UCF101, in model evaluation. 

Example video frames from the KTH, UCF50 and UCF101 data sets are illustrated in Figure 7. 

 

We employ the original PSO algorithm [54] and 9 modified PSO models for performance comparison, i.e. 

Genetic PSO (GPSO) [55], Autonomous Group PSO (AGPSO) [56], a Bare-bones PSO variant (BBPSOV) [3], 

PSO with genetic and random mutation operators (GMPSO) [57], Dynamic Neighbourhood Learning PSO 

(DNLPSO) [58], COSPSO [11], a modified PSO (MPSO) with time-varying acceleration coefficients and an 

adaptive inertia weight factor [25], Enhanced Leader PSO (ELPSO) [59], and a PSO variant (PSOVA) with 

elliptical coefficients [23]. As illustrated in Table 2, the parameter settings of these baseline methods are based 

on the original studies, while the experimental settings of our model are obtained via trial-and-error. An 

ensemble model of CNN-BLSTM networks with the default hyper-parameter settings is also employed for 

performance comparison, where learning rate=1e-4, dropout rate=0.1, and the number of hidden units=400. As 

mentioned earlier, the ensemble networks with the default and optimal settings identified by each search method 

re-size the input frames to 224×224, in order to match the input size of the encoder network. 



 

 

 
 

Figure 7 Example video frames from the KTH, UCF50 and UCF101 data sets 

 

Table 2 Parameter settings of the proposed and the baseline methods 
Method Parameter setting 

PSO [54] maximum velocity=0.6, inertia weight=0.5, acceleration coefficients 𝑐1= 𝑐2= 1.5 

GPSO [55] maximum velocity=0.6, inertia weight=0.9, acceleration parameters 𝑐1 = 2.6, 𝑐2 = 1.5 

AGPSO [56] maximum velocity=0.6, adaptive decreasing 𝑐1 and increasing 𝑐2 over generations, 
inertia weight=0.9−(0.9−0.4)×(t)/(MaxGeneration), where t and MaxGeneration 

represent the current and maximum iteration numbers, respectively. 

BBPSOV [3] attraction and evading coefficients generated using the logistic map 

MPSO [25] time-varying acceleration coefficients and an adaptive inertia weight factor 

COSPSO [11] cosine annealing oriented search parameters 

ELPSO [59] 𝑐1=𝑐2=2, standard deviation of Gaussian mutation=1, scale parameter of Cauchy 

mutation=2, scale factor of DE-based mutation=1.2, inertia 

weight=0.9−(0.9−0.4)×( 𝑡−1)/(MaxGeneration−1), where 𝑡 and MaxGeneration represent 
the current and maximum iteration numbers, respectively. 

GMPSO [57] maximum velocity=0.6, inertia weight=0.5, acceleration constants 𝑐1 = 𝑐2 = 1.5, standard 

deviation of Gaussian distribution=1, scaling factor of Cauchy distribution=2, crossover 

probability=0.6, mutation probability=0.05 

DNLPSO [58] 𝑐1=𝑐2=1.49445, refreshing gap=3, regrouping period=5, inertia 

weight=0.9−(0.9−0.4)×( 𝑡−1)/(MaxGeneration−1), where 𝑡 and MaxGeneration represent 
the current and maximum iteration numbers, respectively. 

PSOVA [23] maximum velocity=0.6, inertia weight=0.6, with elliptical search parameters 

Prop. model search coefficients generated by a 3D super-ellipse parametric hyper-plane surface, 

crossover factors for the two remote leaders produced by nonlinear sine, cosine and tanh 
functions  

 

5.1 Evaluation Using the KTH Data Set 
We first evaluate the proposed ensemble model of CNN-BLSTM networks using the KTH data set. All the 

2,391 video sequences are employed for evaluation. The proposed SI algorithm is used to identify the optimal 

settings of the learning and dropout rates as well as the number of hidden neurons of the BLSTM network. The 

official training-test split of the data set [50, 51] is adopted in this research, where the training, validation, and 

test sets comprise video sequences from two different sets of 8 subjects and the remaining 9 subjects, 

respectively. We employ the training and validation sets in the learning stage for hyper-parameter search, where 

the classification accuracy of the validation set is used as the fitness score.  

 

The following experimental settings are employed, i.e., maximum number of function evaluations=population 

(15) × maximum number of iterations (10). A training epoch of 10 is employed during fitness evaluation. The 

optimized network with the most optimal settings is selected based on the global best solution. A series of 10 

runs is performed for each search method in order to devise a number of optimized CNN-BLSTM networks with 

distinctive optimal hyper-parameters and the BLSTM layer structures.  

 

We then re-train each devised base network using the combined training and validation sets in three larger 

numbers of training epochs, i.e. 15, 20 and 30. A total of 30 base CNN-BLSTM networks with distinctive hyper-

KTH UCF50 UCF101 
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parameters are thus obtained. We aggregate a set of three base networks into an ensemble model based on the 

average of prediction probabilities. The mean classification performance of the yielded 10 ensemble models is 

provided in Table 3 for performance comparison. 

 

Table 3 The mean accuracy rates of the KTH data set over 10 runs 
  
Models 

 

Methodologies 

 

Accuracy rates 

 

Rank sum 

Prop. SI Algorithm-based Ensemble Prop. SI algorithm + ensemble CNN-BLSTM 

model 

0.963 n/a 

PSO-based Ensemble PSO + ensemble CNN-BLSTM model 0.9413 + 
GPSO-based Ensemble GPSO + ensemble CNN-BLSTM model 0.9452 + 

BBPSOV-based Ensemble BBPSOV + ensemble CNN-BLSTM model 0.9508 + 

AGPSO-based Ensemble AGPSO + ensemble CNN-BLSTM model 0.9341 + 
MPSO-based Ensemble MPSO + ensemble CNN-BLSTM model 0.9236 + 

COSPSO-based Ensemble COSPSO + ensemble CNN-BLSTM model 0.9389 + 

GMPSO-based Ensemble GMPSO + ensemble CNN-BLSTM model 0.9523 + 
ELPSO-based Ensemble ELPSO + ensemble CNN-BLSTM model 0.9259 + 

DNLPSO-based Ensemble DNLPSO + ensemble CNN-BLSTM model 0.9398 + 

PSOVA-based Ensemble PSOVA + ensemble CNN-BLSTM model 0.9483 + 
Ensemble Model with Default 

Settings 

Ensemble CNN-BLSTM model with default 

parameter settings 

0.9218 + 

 

As illustrated in Table 3, the proposed ensemble model of CNN-BLSTM networks yields the best mean 

accuracy rate of 96.3%. This is followed by the ensemble deep networks devised by the GMPSO, BBPSOV and 

PSOVA models with the mean accuracy rates of 95.23%, 95.08% and 94.83%, respectively. Since the optimized 

base CNN-BLSTM learners yielded by each search method are equipped with distinctive learning and network 

settings, their resulting ensemble models demonstrate significant diversity in comparison with the one with 

default settings.  

 

The Wilcoxon rank sum test is conducted to ascertain the statistical difference in performance of the proposed SI 

algorithm over the baseline methods in hyper-parameter fine-tuning. The symbols, i.e. ‘+’, ‘=’ and ‘-’, indicate 

whether our ensemble model is statistically better, the same, or worse than those yielded by the baseline 

methods. As indicated in Table 3, our devised ensemble model shows statistically better performance over those 

of all the baseline methods with all the p-values lower than 0.05, as indicated by the ‘+’ symbol. 

 

Table 4 The mean optimal hyper-parameters and accuracy rates over 10 runs for the KTH data set  

 
  Accuracy Learning rate Dropout rate Hidden units 

Prop. SI mean 0.963 0.00018 0.2815 864 

MPSO mean 0.9236 0.0001 0.1310 632 

ELPSO mean 0.9259 0.0003 0.2979 779 
PSO mean 0.9413 0.00014 0.3005 817 

GPSO mean 0.9452 0.00022 0.4373 945 

COSPSO mean 0.9389 0.00013 0.3879 1039 
GMPSO mean 0.9523 0.00027 0.3227 1075 

PSOVA mean 0.9483 0.0001 0.2242 1113.7 

BBPSOV mean 0.9508 0.00028 0.3827 1114 
DNLPSO mean 0.9398 0.00015 0.2483 1236 

AGPSO mean 0.9341 0.0001 0.2805 1302 

 

Table 4 shows the mean results of the identified hyper-parameters over a set of 10 runs. In comparison with the 

settings identified by all the baseline methods, the proposed SI algorithm identifies a moderate mean learning 

rate, a moderate mean dropout rate, and a moderate mean number of hidden neurons. The empirical results 

indicate that such moderate model settings offer the required flexibilities in capturing the long-term temporal 

dependencies between deep frame features for human action classification. The deep networks constructed by 

the BBPSOV and GMPSO models yield competitive performances, which illustrate larger numbers of hidden 

neurons in combination with larger learning and dropout rates to balance between convergence and diversity. 

DNLPSO and AGPSO recruit larger numbers of hidden neurons and smaller learning and dropout rates, which 

are highly susceptible to overfitting. MPSO and ELPSO devise the BLSTM layers with the smallest numbers of 

hidden neurons, leading to restricted capabilities in capturing the temporal sequential dependencies and 

compromising the performance. 

 

The confusion matrix of the proposed ensemble model of CNN-BLSTM networks is provided in Table 5. As 

shown in Table 5, the action categories of boxing, hand-clapping and walking are recognised with perfect 

accuracy (100%), while the remaining ones, i.e., hand-waving, jogging, and running, are identified with good 



accuracy rates of more than 90%. Owing to the similarity in actions, such as jogging and running, both 

categories have been misclassified as each other in some cases. The clips of hand-waving have also been 

misclassified as the instances of hand-clapping occasionally. Overall, the devised ensemble model shows great 

superiority in identifying different action categories in the KTH data set. 

 

In addition, Table 6 shows a comparison with the related studies. Since the existing studies have used different 

training and test sets, as well as different input sizes, Table 6 serves as an approximate performance comparison 

between the proposed model and the baseline methods. As mentioned earlier, our model re-sizes the video 

frames to 224×224 in order to match the input size of the encoder network, while other existing studies employ a 

variety of input sizes to balance between performance and computational cost. Among the baseline methods, 

Jaouedi et al. [61] and Zhang et al. [66] achieved the best performances. Specifically, Jaouedi et al. [61] used  

the same input size (224×224) as in this research with three methods, i.e. (1) Gaussian mixture model 

(GMM)+Kalman filter (KF)+k-Nearest Neighbours (KNN), (2) Gated Recurrent Neural Network (GRNN), and 

(3) GMM+KF+GRNN, for action classification. Moreover, their best results were obtained using the 

GMM+KF+GRNN method. GMM and KF were first used for background subtraction and bounding box 

extraction, respectively, and a simple GRNN model with one hidden Gated Recurrent Unit (GRU) layer was 

used for feature extraction and classification. Since GRU is a simplified LSTM unit, it has comparatively limited 

learning capabilities in capturing complex temporal dynamics from the frame features. In addition, their ROI 

extraction procedures based on GMM and KF are prone to noise, leading to limited capabilities in tackling 

regional proposal generation in realistic videos with complex scenes (e.g. as those in UCF101). Their 

GMM+KF+GRNN model achieved an accuracy rate of 96.3%, while the other two methods, i.e. 

GMM+KF+KNN and GRNN, produced accuracy rates of 71.1% and 86%, respectively. Instead of using the 

official training-test split of the KTH data set [50, 51], their work employed an aspect ratio of 75-25 for forming 

the training and test sets. In comparison with our model, a comparatively larger training set and a smaller test set 

have been used for evaluation. Furthermore, our model outperforms another top performer, i.e. Zhang et al. [66], 

where global silhouette and local optical flow have been used for action classification with a comparatively 

larger input size, i.e. 514×670. In short, our ensemble model of evolving CNN-BLSTM networks depicts 

competitive results, and it is among the top performers for human action classification with the KTH data set. 

 

Table 5 The confusion matrix of the proposed ensemble network for the KTH data set 

 
 boxing handclap. handwav. jogging Running walking 

boxing 1 0 0 0 0 0 

handclap. 0 1 0 0 0 0 

handwav. 0 0.0556 0.9444 0 0 0 

jogging 0  0 0.9167 0.0833 0 

running 0 0 0 0.0833 0.9167 0 

walking 0 0 0 0 0 1 

 

Table 6 Performance comparison for the KTH data set 

 
Studies Methodology Input size Accuracy rates 

Babu et al. [60] Meta-cognitive radial basis function network 160×120 0.9044 

Jaouedi et al. [61] GMM+KF+KNN (75-25 for training and test split) 224×224 0.711 

Jaouedi et al. [61] GRNN (75-25 for training and test split) 224×224 0.86 
Jaouedi et al. [61] GMM+KF+GRNN (75-25 for training and test split) 224×224 0.963 

Fu et al. [62] Sparse coding-based space-time video representation - 0.9433 

Liu et al. [51] Hierarchical clustering multi-task learning - 0.943 
Latah [63] 3D CNN+SVM (70-30 for training and test split) 80×60 0.9034 

Zhang et al. [64] 3D CNN - 0.9167 

Rodriguez et al. [65] Maximum a posteriori (MAP) adapted GMM+simplex-
Hidden Markov Model (SHMM) 

160×120 0.942 

Zhang et al. [66] Global silhouette+local optical flow 514×670 0.95 

Yousefi and Loo [38] A dual fast and slow feature interaction 200×142 0.9007 

Naidoo et al. [67] Spatial-temporal analysis and bag of visual words (80-

20 for training and test split) 

- 0.82 

Dasari and Chen [68] MPEG compact descriptors for visual search feature 
trajectories with Fisher Vector (FV) encoding 

- 0.875 

Tong et al. [69] Deep nonnegative matrix factorization - 0.9396 

Najar et al. [70] Unsupervised learning of finite full covariance 
multivariate generalized GMMs 

- 0.9197 

Leyva et al. [71] Spatio-temporal binary feature descriptor  - 0.9305 

This research Prop. SI algorithm-optimized evolving ensemble 

deep networks 

224×224 0.963 

 



5.2 Evaluation Using the UCF50 Data Set 
In this evaluation, all the 6,618 video clips in the UCF50 data set [52] are used in the experiments. In order to 

compare with related studies, we employ the leave-one-group-out cross-validation method reported in [52] for 

evaluation. As an example, at the training stage, we employ the video clips from randomly selected 24 out of 25 

groups from each action class for optimal hyper-parameter selection. The remaining group from each action 

class is used for evaluating the resulting model.  

 

We further divide the learning samples from 24 groups using an aspect ratio of 80-20 into the training and 

validation sets, respectively. The accuracy rate of the validation set is used as the fitness score. The deep CNN-

BLSTM network with the most optimal configuration is selected based on the global best solution. We combine 

the training and validation sets into a larger set, i.e. the video clips from 24 groups of each action class, to re-

train the identified network. Three optimized base networks are aggregated based on the averages of prediction 

probabilities. The yielded ensemble model is assessed with the remaining unseen group for performance 

comparison. We subsequently select another set of 24 groups for training with the remaining group for 

evaluation. As such, the mean results from both experimental studies are used for performance comparison. 

 

The experimental settings of the optimal network hyper-parameter selection are as follows, i.e. maximum 

number of function evaluations=population (15) × maximum number of iterations (10). For each search method, 

a series of 10 runs is performed for each pair of the training and test settings using the above process, in order to 

devise a number of optimized CNN-BLSTM networks with distinctive optimal hyper-parameters and the 

BLSTM layer structures. To balance between performance and computational efficiency, we employ a 

comparatively smaller learning epoch=3 at the training stage, in comparison with the training epoch of 10 for the 

KTH data set. Each optimized base model is subsequently trained using the original training set (i.e. the clips of 

24 groups from each class) with three larger numbers of training epochs, i.e. 25, 30 and 50. 

 

We aggregate three CNN-BLSTM networks into an ensemble model based on the average of prediction 

probabilities to yield the final output. The mean classification performance of various ensemble models with 

respect to both test groups with a series of 10 runs for each group is provided in Table 7. 

 

Table 7 The mean accuracy rates for the UCF50 data set  
 

Models 

 

Methodologies 

 

Accuracy rates 

 

Rank sum 

Prop. SI Algorithm-based Ensemble Prop. SI algorithm + ensemble CNN-BLSTM 

model 

0.9222 n/a 

PSO-based Ensemble PSO + ensemble CNN-BLSTM model 0.8856 + 

GPSO-based Ensemble GPSO + ensemble CNN-BLSTM model 0.8872 + 

BBPSOV-based Ensemble BBPSOV + ensemble CNN-BLSTM model 0.9004 + 

AGPSO-based Ensemble AGPSO + ensemble CNN-BLSTM model 0.8720 + 
MPSO-based Ensemble MPSO + ensemble CNN-BLSTM model 0.8665 + 

COSPSO-based Ensemble COSPSO + ensemble CNN-BLSTM model 0.8911 + 

GMPSO-based Ensemble GMPSO + ensemble CNN-BLSTM model 0.8856 + 
ELPSO-based Ensemble ELPSO + ensemble CNN-BLSTM model 0.8642 + 

DNLPSO-based Ensemble DNLPSO + ensemble CNN-BLSTM model 0.8732 + 

PSOVA-based Ensemble PSOVA + ensemble CNN-BLSTM model 0.8833 + 
Ensemble Model with Default Settings Ensemble CNN-BLSTM model with default 

parameter settings 

0.8599 + 

 

As illustrated in Table 7, the ensemble model of evolving deep networks constructed by the proposed SI 

algorithm achieves the best mean accuracy rate of 92.22%. As compared with other baseline search methods, the 

proposed SI algorithm employs diverse accelerated search strategies led by multiple leaders to overcome 

stagnation. Our optimized base networks with distinctive model and learning settings indicate great superiority 

over those yielded by other search methods. The ensemble model generated by BBPSOV shows a competitive 

performance of 90.04%, owing to the adoption of attractiveness and evading actions with chaotic search 

coefficients in its search strategies. The COSPSO, GPSO, GMPSO, and PSO devised ensemble networks also 

illustrate good performance with accuracy rates of 89.11%, 88.72%, 88.56% and 88.56%, respectively. In 

addition, the ensemble model yielded by each search method possesses significant diversity and illustrates better 

performance than that of the ensemble model with default settings. 

 

We conduct the Wilcoxon rank sum test to indicate the statistical significance of the proposed SI algorithm 

against other baseline methods. As indicated in Table 7, our devised ensemble model shows statistically better 

results over those of the baseline methods with all the p-values lower than 0.05, as indicated by the ‘+’ symbol.  

 

 



Table 8 The mean optimal hyper-parameters and accuracy rates over 20 runs for the UCF50 data set 

 
  Accuracy Learning rate Dropout rate Hidden units 

Prop. SI mean 0.9222 0.00028 0.3452 839.3 
MPSO mean 0.8665 0.0001 0.1053 649.8 

GPSO mean 0.8872 0.0001 0.3382 699.5 

BBPSOV mean 0.9004 0.0002 0.4644 754 
COSPSO mean 0.8911 0.00032 0.5134 932 

PSO mean 0.8856 0.00018 0.4305 942.2 

GMPSO mean 0.8856 0.0001 0.2356 948.3 
PSOVA mean 0.8833 0.00023 0.3195 979.1 

DNLPSO mean 0.8732 0.00026 0.4154 1024 

AGPSO mean 0.872 0.0001 0.3979 1110.6 
ELPSO mean 0.8642 0.00023 0.3418 1130.5 

 

Table 8 shows the mean hyper-parameters identified over 20 runs of each search method for both test groups 

(with 10 runs in each test group). Owing to the employment of larger training and validation sets in comparison 

with those of KTH, we can observe different search behaviours with respect to each search method. The 

proposed SI algorithm and the BBPSOV model identify moderate mean numbers of hidden neurons, moderate or 

larger mean learning rates and dropout rates in comparison with those from other search methods. Such network 

settings illustrate competitive capabilities in capturing the bidirectional long-term dependencies of deep features 

between the time steps. The identified moderate or large mean dropout rates of both models lead to a reasonable 

trade-off between network diversity and convergence speed. The MPSO and GPSO constructed models have the 

smallest hidden network configurations, which show limitations in capturing the delicate temporal dependencies, 

therefore their suboptimal performance. On the contrary, DNLPSO, AGPSO and ELPSO identify the largest 

numbers of hidden neurons, which are susceptible to preserving noisy, excessive and redundant motion details, 

therefore their inferior classification results.  

 
Figure 8 The confusion matrix of the proposed ensemble model for UCF50 

 

 
 

Figure 9 The mean accuracy rate for each class in UCF50 

 



HulaHoop JugglingBalls YoYo 

JugglingBalls Nunchucks PullUps RopeClimbing 

SkateBoarding 

The confusion matrix of our devised ensemble model for UCF50 is illustrated in Figure 8, while the detailed 

mean accuracy rates are illustrated in Figure 9. As indicated in Figure 9, the devised ensemble network achieves 

good accuracy rates for the UCF50 data set. Specifically, it achieves over 80% accuracy rates for 44 action 

categories, and a total of 33 classes have an accuracy rate of 100%. There are only three classes, i.e. 

JugglingBalls, HulaHoop and Nunchucks with accuracy rates lower than 70%. As an example, as indicated in 

Figure 10, owing to a high degree of similarity in the motions performed as well as the shared spatial 

background details, the JugglingBalls actions are misidentified as YoYo. In addition, the HulaHoop videos are 

misclassified as SkateBoarding while the Nunchucks actions are misrecognised as JugglingBalls occasionally. 

There are also other classes that show a high degree of inter-class similarity, such as RopeClimbing and PullUps, 

where the former is misidentified as the latter in some cases, and vice versa. Overall, our devised deep ensemble 

network produces superior performance for the classification of most action categories in UCF50. Owing to the 

identification of sufficient number of hidden neurons, our ensemble model captures the temporal relationships 

effectively from the spatial features, leading to enhanced discriminative capabilities for most action categories. 

 

 

 
 

 

Figure 10 Examples of misclassification cases for UCF50 

 

Table 9 illustrates a comparison with related studies for UCF50. Since different training and test sample sizes, 

input frame resolutions, as well as data augmentation techniques, were adopted in related methods, Table 9 

serves as a rough comparison. Moreover, many existing studies employed the original video frame size of 

320×240 (e.g. Kantorov and Laptev [73] and Uijlings et al. [76]) or a modified frame size of 256×256 (e.g. Liu 

et al. [77]). Comparatively, our proposed model uses a comparatively smaller frame resolution of 224×224. As 

indicated in Table 9, our ensemble networks devised by the proposed SI algorithm depict a competitive 

performance in comparison with those of the existing state-of-the-art studies, providing an alternative solution 

for solving human action classification problems.  

 

Table 9 Performance comparison for the UCF50 data set 

 
Studies Methodology Input size Accuracy rates 

Reddy and Shah [52] Moving and stationary pixels+motion features - 0.769 

Wang et al. [72] Dense trajectories and motion boundary descriptors - 0.856 
Dasari and Chen [68] MPEG compact descriptors for visual search feature 

trajectories with FV encoding 

- 0.548 

Kantorov and Laptev [73] MPEG flow+FV 320×240 0.822  
Narayan and Ramakrishnan [74] Object trajectories+causality descriptors -  0.894 

Luo et al. [75] Combined linear dynamical systems and cuboids 

based distances with class dependent weights 

- 0.8474   

Uijlings et al. [76] HOG+histograms of optical flow (HOF)+motion 

boundary histograms (MBH)  

320×240 0.818 

Liu et al. [77] Convolutional neural random fields 256×256 0.865 
Wang et al. [78] HOF+MBH+FV+automatic human detection -  0.917 

Wilson and Mohan [79] Sparsity-based coherent and noncoherent dictionaries+ 
action bank features 

- 0.663 

Zhang et al. [80] Dynamical information + background information - 0.8276 

Zhang et al. [81] A maximum margin part (MMP)-based method+a 
recursive part elimination 

- 0.924 

Leyva et al. [71] Spatio-temporal binary feature descriptor (STB)+FV - 0.8305 

This research Prop. SI algorithm-optimized evolving ensemble 

deep networks 

224×224 0.9222 

 

5.3 Evaluation Using the UCF101 Data Set 
The UCF101 data set [53] is employed for further evaluation of the proposed model. We utilize all the 101 

classes with a total of 13,320 videos for human action classification. The first official training-test split of the 



UCF101 data set is adopted in our experiment, where the video clips of the first 7 groups from each class are 

used for evaluation while those in the remaining 18 groups from each class are used for training. An aspect ratio 

of 80-20 is employed to further divide the training set for learning and validation of hyper-parameters. The 

training experimental set-up of UCF50 is adopted in this experiment, i.e. maximum number of function 

evaluations=population (15) × maximum number of iterations (10), with maximum learning epoch=3. For each 

search method, a series of 10 runs is conducted to produce the base CNN-BLSTM models with distinctive 

networks and learning hyper-parameters. Each optimized base model is subsequently trained using the original 

training set (i.e. the video clips of 18 groups from each class) with larger numbers (i.e. 25, 30, and 50) of 

training epochs. Then, an ensemble model incorporating three base optimized CNN-BLSTM networks is 

constructed where the average of prediction probabilities is used to produce the final output. Table 10 presents 

the mean classification results of the ensemble models with respect to each search method. 

 

Table 10 The mean accuracy rates for the UCF101 data set over 10 runs 
 
Models 

 
Methodologies 

 
Accuracy rates 

 
Rank sum 

Prop. SI Algorithm-based Ensemble Prop. SI algorithm + ensemble CNN-BLSTM 

model 

0.8478 n/a 

PSO-based Ensemble PSO + ensemble CNN-BLSTM model 0.8239 + 

GPSO-based Ensemble GPSO + ensemble CNN-BLSTM model 0.8364 + 

BBPSOV-based Ensemble BBPSOV + ensemble CNN-BLSTM model 0.8399 + 
AGPSO-based Ensemble AGPSO + ensemble CNN-BLSTM model 0.8353 + 

MPSO-based Ensemble MPSO + ensemble CNN-BLSTM model 0.8319 + 

COSPSO-based Ensemble COSPSO + ensemble CNN-BLSTM model 0.8389 + 
GMPSO-based Ensemble GMPSO + ensemble CNN-BLSTM model 0.8242 + 

ELPSO-based Ensemble ELPSO + ensemble CNN-BLSTM model 0.8299 + 

DNLPSO-based Ensemble DNLPSO + ensemble CNN-BLSTM model 0.8308 + 
PSOVA-based Ensemble PSOVA + ensemble CNN-BLSTM model 0.8369 + 

Ensemble Model with Default Settings Ensemble CNN-BLSTM model with default 

parameter settings 

0.8131 + 

 

As illustrated in Table 10, the developed ensemble model achieves the best mean accuracy rate of 84.78% for 

the classification of 101 classes in UCF101. The proposed SI algorithm employs distinctive promising global 

indicators with dynamic accelerated search steps that follow a 3D geometric surface to overcome stagnation and 

achieve global optimality. The empirical results indicate the efficiency and robustness of the identified hyper-

parameters of our optimized base networks in comparison with those from other search methods. The devised 

ensemble models of BBPSOV, COSPSO, and PSOVA also show reasonable performance with accuracy rates of 

83.99%, 83.89% and 83.69%, respectively. In addition, the ensemble model constructed by each search method 

indicates significant diversity to overcome biases and variance of the base networks, whereas the ensemble 

model with default settings depicts constrained model flexibility owing to the adoption of base learners with 

similar settings. The superiority of our optimized ensemble model is also evidenced by the statistical test. As 

shown in Table 10, our result distributions are significantly different from those of the baseline methods with all 

the p-values lower than 0.05, as indicated by the ‘+’ symbol.  

 

Table 11 The mean optimal hyper-parameters and accuracy rates over 10 runs for the UCF101 data set 

 
  Accuracy Learning rate Dropout rate Hidden units 

Prop. SI mean 0.8478 0.0001 0.2372 802 
MPSO mean 0.8319 0.0001 0.1634 575 

GPSO mean 0.8364 0.00023 0.2711 610.33 

BBPSOV  mean 0.8399 0.00023 0.2431 642 
COSPSO mean 0.8389 0.00025 0.2954 830 

PSOVA mean 0.8369 0.0002 0.3893 862 

AGPSO mean 0.8353 0.00017 0.4761 939.33 
ELPSO mean 0.8299 0.00017 0.1894 960 

PSO mean 0.8239 0.0002 0.2355 972.67 

DNLPSO mean 0.8308 0.0005 0.3949 1204 
GMPSO mean 0.8242 0.0001 0.1058 1551 

 

The mean hyper-parameters identified over a series of 10 runs are provided in Table 11. The devised deep 

networks by the proposed model possess comparatively smaller learning rates with medium numbers of hidden 

neurons and dropout rates. Such network topologies show superior capabilities in capturing sufficient 

discriminative temporal patterns of the deep features without suffering from a constrained or excessive storage 

of dependencies between time steps. In contrast, the DNLPSO and GMPSO models select comparatively larger 

numbers of hidden neurons, while MPSO and GPSO yield smaller numbers of hidden neurons in the BLSTM 

layers. The empirical results indicate that the networks identified by DNLPSO and GMPSO are more likely to 



suffer from overfitting by capturing excessive information between the video sequences. On the other hand, the 

networks yielded by MPSO and GPSO are constrained owing to the limited learning capabilities. 

 

We further conduct a theoretical comparison between the proposed SI algorithm and the baseline methods. In 

GPSO [55], the PSO algorithm is integrated with a crossover operator to further enhance the swarm diversity. In 

AGPSO [56] and COSPSO [11], adaptive linear and nonlinear search coefficients are incorporated into the PSO 

algorithm to accelerate convergence, while both time-varying acceleration coefficients and the inertia weight 

factor are embedded in MPSO [25]. DNLPSO [58] employs the neighbouring historical best experiences for 

position updating. ELPSO [59] uses a series of distribution probabilities and mutation mechanisms to further 

enhance the global best solution, while GMPSO [57] enhances the swarm leader by adopting both genetic 

operators and random walk strategies. 

 

The above PSO variants and the original PSO algorithm conduct a monotonous search operation guided by 

single leader for position updating. Therefore, they are more likely to be trapped in local optima. On the other 

hand, besides using the logistic map as the search parameters, BBPSOV [3] employs a mean vector of the local 

and global promising solutions, as well as a mean position of the local and global worst particles, to guide the 

attractiveness and evading actions, respectively. In particular, it assigns fixed and equal weightings to the local 

and global best solutions throughout the search iterations pertaining to the mean leader vector generation. 

Therefore, the model is subject to a less efficient trade-off between exploitation and exploration during the 

search course. A similar case is also applied to PSOVA [23]. In PSOVA, besides using the swarm leader and a 

randomly selected neighbouring elite solution for position updating, it employs a mean vector of all the 

neighbouring fitter solutions to guide the search process. Fixed and equal weights are assigned to the 

neighbouring promising solutions throughout the search course pertaining to the mean leader vector generation, 

therefore a less efficient trade-off between intensification and diversification. 

 

In comparison with these baseline methods, the proposed SI algorithm employs a versatile search process led by 

multiple distinctive promising indicators to overcome stagnation. Instead of assigning fixed weights to the 

parent chromosomes for hybrid leader generation as in BBPSOV and PSOVA, the proposed SI algorithm 

employs dynamic weight factors, i.e. adaptive and random weights based on sine, cosine and tanh formulae, to 

yield elite offspring signals, resulting in a balance between intensification and diversification. Instead of using 

adaptive and chaotic search parameters, e.g. as in AGPSO and BBPSOV, respectively, the proposed SI 

algorithm equips each individual with distinctive super-ellipse geometric search coefficients extracted from a 3D 

hyper-plane surface, in order to exploit the optimal regions with different forces and scales in accelerating 

convergence. In this regard, when the search process guided by the global best solution stagnates, the operations 

led by each of the yielded elite signals and the mean of these promising solutions are able to drive the search out 

of local optima. Therefore, the proposed model outperforms other baseline methods in achieving global 

optimality. The empirical results indicate that competitive network configurations are formulated, which 

illustrate statistically better performance than those from the baseline methods for human action classification. 

 

Table 12 The mean computational costs (in seconds) of one fitness evaluation for the proposed method and 10 

baseline methods 

 
 Prop. SI MPSO GPSO BBPSOV COSPSO GMPSO PSOVA DNLPSO AGPSO ELPSO PSO 

KTH 124.7138 88.5894 144.0221 214.1905 165.5687 170.0996 223.1243 240.5063 282.2271 114.1644 119.2525 

UCF50 351.3564 292.687 270.052 299.1994 430.4293 468.6627 487.1719 516.2275 593.7988 598.3891 461.7416 

UCF101 484.9916 365.8315 399.376 427.9021 558.7587 1461.791 605.5556 920.4534 652.8815 697.4448 689.2222 

 

We subsequently conduct computational efficiency comparison between the proposed model and 10 baseline 

methods for hyper-parameter search during the training stage. Since fitness evaluation is the most time-

consuming component of each search method, we provide the mean computational cost of one fitness evaluation 

with respect to each method in Table 12. The experiments are conducted using one NVIDIA GTX 1080Ti 

consumer GPU. Specifically, in one fitness evaluation, the devised BLSTM network is trained and tested with 

the training and validation data sets for each problem. As indicated in Table 12, on average, the proposed model 

illustrates a comparatively lower mean computational cost for one fitness evaluation as compared with those 

from most of the baseline methods. The computational efficiency of our devised networks is attributed to the 

identification of moderate BLSTM layer settings, which result in moderate network complexity. In contrast, the 

deep networks devised by MPSO have the smallest numbers of hidden neurons. This results in comparatively 

lighter settings of the BLSTM layers, therefore lower the computational cost, but at the expense of a constrained 

storage of temporal dependencies. On the other hand, PSOVA, GMPSO, DNLPSO and AGPSO identify larger 

numbers of hidden neurons in the BLSTM networks, resulting in higher degrees of network complexity and 

higher mean computational costs. Overall, the proposed model achieves an efficient trade-off between 



performance and computational cost. In addition, its computational costs are better than those from most of the 

baseline methods for optimal hyper-parameter search with all the test data sets. 

 

Since we employ video frames as the inputs for human action classification, we select related studies that use 

video frames (i.e. RGB data only) as the inputs for performance comparison. Table 13 illustrates a comparison 

with several existing studies for the UCF101 data set. Since a variety of network architectures and different 

training and test strategies and data augmentation techniques have been reported, Table 13 serves as an 

approximate performance comparison. Many of the existing studies [28, 83, 86, 35, 87, 88, 36] employed the 

same input size (i.e. 224×224) as in our experiment, owing to the fact that it is widely used for many CNN 

encoders (e.g. VGG-16, VGG-19, GoogLeNet, ResNet-50 and ResNet-152). A slightly larger input size of 

227×227 was adopted by Donahue et al. [85] and Ullah et al. [31], because of the requirement of their encoder 

networks (such as AlexNet). Other studies, e.g. Karpathy et al. [82] and Varol et al. [89], used input sizes of 

170×170 and 112×112, respectively, to balance between performance and computational cost. Besides using 

224×224 at the training stage, He et al. [87] employed multiple input scales at the test stage to further enhance 

performance.  

  

As indicated in Table 13, with RGB images as inputs, CNN-based methods have been popularly used for human 

action classification, e.g., shallow [28] and deep [83] ConvNets, multiresolution CNNs [82], ResNet-50 [87], 

ResNet-152 [87], VGG-16 [88], and CNN with long-term temporal convolutions (LTC-CNN) [89]. On top of 

using CNNs, other studies added LSTM networks, which include a ConvLSTM network [84], long-term 

Recurrent Convolutional Network (LRCN) [85], soft attention LSTM [86], and VideoLSTM [35]. However, the 

networks in most of the above related studies using CNN-LSTM architectures employed a single unidirectional 

LSTM layer with a fixed number of hidden units, which could constrain the performance. Note that in Ng et al. 

[84], although the model employed a slightly smaller input size of 220×220, their encoder network was pre-

trained using 1 million sport videos. Our CNN encoder and those of other studies were pre-trained using 

ImageNet only. Moreover, several CNN-LSTM networks were also proposed by Yang et al. [36], which 

embedded two or three LSTM layers as well as attention mechanisms. In their so-called attention-again model, 

the attention mechanisms were used multiple times in the LSTM layers, in order to achieve better performance. 

Ullah et al. [31] employed AlexNet as the encoder and the BLSTM network as the decoder for human action 

classification. Their study employed an aspect ratio of 60-20-20 for forming the training, validation, and test 

sets, instead of using the official training and test split, resulting in a comparatively smaller test size. Another 

limitation of such ad-hoc split is that it allocates videos with similar characteristics from the same group of each 

action into both training and test sets, leading to bias in performance.  

 

Table 13 Performance comparison with related studies using RGB images only for the UCF101 data set 

 
Studies Methodologies Input size Accuracy rates 

Karpathy et al. [82] Slow fusion CNNs 170×170 0.654 

Simonyan and Zisserman [28] ConvNet (CNN-M-2048) 224×224 0.728 

Simonyan and Zisserman [83] A deep ConvNet 224×224 0.774 
Ng et al. [84] LSTM with 30 Frame Unroll 220×220 0.775 

Donahue et al. [85] LRCN networks 227×227 0.829 

Sharma et al. [86] Soft attention LSTM 224×224 0.77 
Li et al. [35] VideoLSTM 224×224 0.796 

He et al. [87] ResNet-50 224×224 (& 

other scales) 

0.823 

He et al. [87] ResNet-152 224×224 (& 

other scales) 

0.834 

Feichtenhofer et al. [88] VGG-16 224×224 0.826 
Varol et al. [89] CNN with long-term temporal convolutions (LTC-

CNN) 

112×112 0.824 

Yang et al. [36]  ConvLSTM (three LSTM layers) 224×224 0.817 
Yang et al. [36] ConvLSTM (two LSTM layers) 224×224 0.824 

Yang et al. [36] ConvLSTM+attention 224×224 0.841 

Yang et al. [36]  Attention-again  model (GoogLeNet) 224×224 0.854 
Ullah et al. [31] AlexNet-BLSTM (using own split of 60-20-20 with a 

smaller test set) 

227×227 0.9121 

Leyva et al. [71] STB+FV - 0.716 

This research Prop. SI algorithm-optimized evolving ensemble 

deep networks 

224×224 0.8478 

 

 

Our ensemble networks compare favourably with most of the related studies using the RGB images as the 

inputs. They incorporate diverse base models with a variety of optimal settings to achieve enhanced 

performance. Firstly, our ensemble model of deep networks takes the advantage of the BLSTM layer to preserve 

and process information from both the past and the future for human action classification, in comparison with 



unidirectional LSTM layers used in the existing studies [84, 85, 86, 35]. Comparing with manually-designed 

fixed model and training settings used in the existing studies, our ensemble model of networks exploits the 

interactive effects of the associated hyper-parameters and employs diverse optimal network topologies and 

learning settings for addressing the classification problem. This leads to an effective preservation of bidirectional 

discriminative sequential and motion dependencies for improving the performance, while overcoming the 

overfitting and underfitting issues. Indeed, as indicated in the empirical results, owing to the employment of 

optimized numbers of hidden units in BLSTM layers, our ensemble model discovers the temporal relationships 

effectively. Moreover, by combining base models with distinctive network and training settings, our ensemble 

learning mechanism is able to increase model diversity for boosting the classification performance. 

 

Next, we conduct human action classification using both video frames and motion information as the inputs. 

Motivated by the two-stream model [28] and some related studies [84, 88, 89], where both RGB data and motion 

information (such as optical flow) are used as the inputs for classification, we combine our ensemble model with 

a motion CNN to further enhance performance in this additional experimental study. The optical flow images are 

used as the inputs of our motion CNN because they provide extra motion details of the human actions for 

classification.  

 

Specifically, the TV-L1 optical flow images in [28] (derived using the method in [90]) are employed in this 

research. We fine-tune the ImageNet pre-trained ResNet101 model using the optical flow images with 30 epochs 

for human action classification. At the training stage, we randomly select 16 video clips in each mini-batch. A 

stack of optical flow images is further randomly chosen in each video clip. During the test stage, a set of 19 

optical flow images is uniformly selected in each video clip. The majority voting strategy is used to yield the 

video-level prediction based on the prediction results of the 19 optical flow images. As illustrated in Table 14, 

the ResNet101 model obtains an accuracy rate of 76.55% for UCF101. The prediction results of our ensemble 

model and the ResNet101 network are then combined by taking the averages of prediction probabilities. Since 

the proposed ensemble model embeds spatial and temporal dynamics extracted from the video sequences, while 

the motion ResNet101 model is trained using new optical flow images, both networks illustrate significant 

complementary characteristics for performance enhancement. The integration of both models yields an accuracy 

rate of 92.09%. The corresponding confusion matrix is provided in Figure 11.  

 

Table 14 The integration of the proposed ensemble CNN-BLSTM model and motion ResNet101 

 
Model Accuracy rate 

The proposed SI-devised ensemble CNN-BLSTM network  0.8478 

Motion ResNet101 (optical flow) 0.7655 

Ensemble using the average of probabilities  0.9209 

 
Figure 11 The confusion matrix of the proposed ensemble model integrated with motion ResNet101 for the 

UCF101 data set 

 



FrontCrawl BreastStroke JumpRope JumpingJack 

BrushingTeeth ShavingBeard HandstandWalking HandstandPushups 

 
 

 
Figure 12 The mean classification accuracy rate for each class in UCF101 

 

Figure 12 illustrates the detailed mean classification accuracy rates of UCF101 from our integrated network. The 

integrated model is able to achieve good classification accuracy for most of the action categories. Specifically, a 

total of 90 classes are recognised with over 80% accuracy rates, among which 39 classes illustrate a perfect 

accuracy rate of 100%. There is only one class, FrontCrawl, with an accuracy rate lower than 60%. As an 

example, FrontCrawl tends to be misclassified as BreastStroke. As indicated in Figure 13, both categories have 

extremely similar background details (e.g. swimming pools), which become the dominating spatial features and 

result in misclassification. Similarly, owing to the fine-grained actions and shared spatial background details, the 

JumpRope actions are misclassified as those of JumpingJack and vice versa, while BrushingTeeth actions are 

misclassified as those of ShavingBeard. HandstandWalking actions are also misidentified as those of 

HandstandPushups, occasionally. Overall, our integrated network achieves good classification results for most 

action categories in UCF101. Again, owing to the employment of optimized numbers of hidden units, it 

discovers the temporal relationships effectively. By incorporating with additional optical flow information, our 

model demonstrates enhanced discriminative capabilities for action classification.   

 

 

 
 

 

Figure 13 Examples of misclassification cases for UCF101 

 

Table 15 shows the performance comparison with related studies using both RGB and motion inputs for the 

UCF101 data set. As shown in Table 15, the two-stream model which includes spatial and temporal CNNs was 

proposed by Simonyan and Zisserman [28], while various variants of the two-stream method were used in other 

related studies, e.g. different types of fusion of the spatial and temporal CNNs [88], the integration of the two-

stream method and LSTM [84], the employment of motion-based attention based on optical flow and 

convolutional operations for spatial information storage [35], the implementation of long-term temporal 

convolutions in space-time CNNs [89], the adoption of motion vectors instead of optical flow as the inputs to the 



temporal CNN [30, 91], and the proposal of a lightweight generator network to extract more refined 

Discriminative Motion Cue (DMC) representations [92]. Note that most of the existing studies [28, 88, 35, 30, 

91, 92] employed the same input size, i.e. 224×224, as that of this research. 

 

In comparison with these related studies, our integrated network achieves comparable performance. The devised 

ensemble model is equipped with base CNN-BLSTM networks with diverse optimal network configurations, 

and it delivers an impressive performance. The integration of the motion ResNet101 model and our ensemble 

model offers significant complementary capabilities. In short, the proposed ensemble model of evolving deep 

networks and its integration with a motion ResNet101 model depict superior performances, and serve as 

alternative solutions for human action classification. 

 

Table 15 Performance comparison with related studies using both RGB and motion inputs for the UCF101 data 

set 

 
Studies Methodologies Input Size Accuracy rates 

Simonyan and Zisserman [28] Two-Stream CNNs (RGB+Flow) 224×224 0.88 

Ng et al. [84] Two-Stream+LSTM (RGB+Flow) 220×220 0.886 

Feichtenhofer et al. [88] Two-Stream (VGG-16) (RGB+Flow) 224×224 0.906 
Li et al. [35] VideoLSTM (RGB+Flow) 224×224 0.892 

Varol et al. [89] LTC-CNN (RGB+Flow) 112×112 0.917 

Zhang et al. [30] Enhanced motion vector CNN (EMV-CNN) 
(RGB+Motion Vector) 

224×224  0.864 

Zhang et al. [91] Deeply transferred motion vector CNN (DTMV-
CNN) (RGB+Motion Vector) 

224×224 0.875 

Shou et al. [92] DMC-Net (ResNet-18) (Compressed Videos+Flow) 224×224 0.909 

This research Prop. SI algorithm-optimized evolving ensemble 

deep networks + motion ReseNet 101 

224×224 0.9209 

 

5.4 Evaluation Using Benchmark Functions 
To further indicate the efficiency of the proposed SI algorithm for solving high-dimensional optimization 

problems, we employ a set of unimodal and multimodal benchmark functions for performance comparison. The 

employed test functions include Dixon-Price, Rotated Hyper-Ellipsoid, Rosenbrock, Sphere, Sum of Different 

Powers, Sum Squares, Ackley, Griewank, and Powell. The first six artificial landscapes are unimodal functions 

with single global optimum, while the remaining ones are multimodal functions with multiple local minima. The 

definitions of these benchmark functions are provided in Jordehi [59], Zhang et al. [93] and Pandit et al. [94]. 

 

Besides using the aforementioned baseline models, we use a set of additional search methods, i.e. the original 

FA and its variant models, for performance comparison, as these new methods illustrate significant 

performances for solving diverse unimodal and multimodal benchmark functions. Specifically, the new baseline 

methods include the original FA [95], FA with random attraction (RaFA) [96], a modified FA (MFA) [97], FA 

with neighbourhood attraction (NaFA) [98], and a repulsive FA (RFA) [94]. Table 16 shows the parameter 

settings of these additional baseline methods, which are extracted from their original studies. 

 

Table 16 Parameter settings of the additional baseline methods 

 
Method Parameter setting 

FA [95] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.5 

NaFA [98] absorption coefficient=1.0, Levy’s index=1.5, and randomization parameter 

𝛼(𝑡 + 1) = (
1

9000
)

1

𝑡
× 𝛼(𝑡) where 𝑡 is the current iteration. 

RaFA [96] absorption coefficient=1.0, Levy’s index=1.5, randomization parameter=0.5, using 

Cauchy distribution for global best enhancement. 
MFA [97] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 

randomization parameter=0.5 

RFA [94] attractiveness=1.0, randomization parameter=0.25, absorption coefficient=1.0, 

repulsive force factor=0.6, repulsive immune threshold=0.1 

 

We employ a dimension of 200 to assess the model efficiency in tackling these high-dimensional unimodal and 

multimodal benchmark problems. To ensure a fair comparison, a maximum number of function 

evaluations=4,000 is used as the termination criterion of each search method. This moderate experimental 

setting is able to better indicate the convergence rate of each search method. A series of 30 runs is performed, in 

order to eliminate any random factors. The mean, minimum, maximum, and standard deviation results over 30 

runs are used as the main performance criteria for comparison. Table 17 depicts the detailed results, with the 

best ones highlighted in bold. 



 

Based on Table 17, the proposed SI algorithm illustrates significant capabilities in tackling these high-

dimensional optimization problems. It yields the best results for all the test functions, except for Dixon-Price, 

where RFA [94] has the best mean of global minimum. For unimodal functions, i.e. Rosenbrock, Sphere and 

Sum Squares, the proposed SI algorithms achieves the global optimality with the best mean fitness scores of ‘0’, 

as compared with those of all the classical search methods and advanced PSO and FA variants. The statistical 

Wilcoxon rank sum test is conducted. As shown in Table 18, since nearly all the p-values are lower than 0.05, 

our results show statistically significant differences to those of the baseline methods in nearly all test cases. The 

only exception is Dixon-Price, where our model and RFA have similar performance distributions. Besides 

obtaining the best results in nearly all test cases, the proposed SI algorithm illustrates a significantly faster 

convergence rate than those of all 15 baseline methods. 

 

The superior performance of the proposed SI algorithm is attributed to the injection of diverse position updating 

strategies guided by multiple elite signals with accelerated super-ellipse coefficients. These characteristics 

provide competitive advantages of the proposed SI algorithm over the monotonous operations of the baseline 

methods with fixed, random and adaptive search steps. In short, the devised mechanisms, which include adaptive 

crossover operators based on sine, cosine and tanh functions as well as 3D super formula oriented search 

coefficients, account for the significant superiority of the proposed SI algorithm over the baseline methods in 

solving diverse unimodal and multimodal benchmark functions. They are also useful for devising the ensemble 

model of evolving deep networks as shown in the experiments of human action classification. 

 

Table 17 Evaluation results of various benchmark functions with dimension=200 

 
  Prop. SI PSOVA BBPSOV GPSO AGPSO DNLPSO ELPSO GMPSO COSPSO MPSO RaFA 

Ackley mean 8.88E-16 1.69E+01 2.05E+01 1.98E+01 1.82E+01 1.65E+01 1.70E+01 5.04E+00 1.86E+01 1.82E+01 1.73E+01 
 min 8.88E-16 1.63E+01 2.03E+01 1.95E+01 1.77E+01 1.42E+01 1.66E+01 3.64E+00 1.82E+01 1.75E+01 1.68E+01 
 max 8.88E-16 1.75E+01 2.06E+01 2.01E+01 1.88E+01 1.89E+01 1.73E+01 7.08E+00 1.88E+01 1.89E+01 1.79E+01 
 std 0.00E+00 2.98E-01 7.44E-02 1.52E-01 3.02E-01 1.27E+00 2.08E-01 7.02E-01 1.73E-01 2.83E-01 2.85E-01 
Dixon mean 2.21E+00 4.13E+05 1.29E+08 7.68E+07 7.01E+06 6.87E+06 1.94E+07 2.28E+05 2.66E+07 8.59E+07 1.68E+06 
 min 2.50E-01 1.71E+05 1.12E+08 5.66E+07 3.29E+06 1.22E+06 1.87E+06 5.27E+04 1.77E+07 6.14E+07 7.20E+05 
 max 1.05E+01 6.34E+05 1.43E+08 1.07E+08 1.16E+07 4.05E+07 2.42E+07 4.44E+05 3.32E+07 1.24E+08 2.52E+06 
 std 2.71E+00 1.12E+05 7.35E+06 1.06E+07 1.94E+06 9.06E+06 4.04E+06 1.03E+05 3.69E+06 1.89E+07 3.97E+05 
Griewank mean 1.96E-15 8.86E-05 5.28E+03 3.61E+03 1.09E+03 9.47E+02 1.62E+03 2.39E+00 2.07E+03 3.34E+03 5.14E+02 
 min 0.00E+00 5.98E-08 4.94E+03 3.18E+03 9.13E+02 4.71E+02 1.34E+03 1.65E+00 1.84E+03 2.60E+03 3.84E+02 
 max 5.88E-14 4.64E-04 5.59E+03 4.05E+03 1.32E+03 1.58E+03 1.88E+03 3.83E+00 2.35E+03 4.20E+03 6.39E+02 
 std 1.07E-14 1.25E-04 1.42E+02 2.36E+02 1.05E+02 3.15E+02 1.14E+02 5.25E-01 1.16E+02 3.41E+02 5.88E+01 
Rothyp mean 2.07E-16 9.05E+05 2.44E+07 1.66E+07 4.31E+06 3.41E+06 7.52E+06 2.65E+04 9.05E+06 1.55E+07 2.24E+06 
 min 0.00E+00 5.53E+05 2.28E+07 1.33E+07 2.78E+06 1.73E+06 6.32E+06 1.35E+04 7.78E+06 1.21E+07 1.88E+06 
 max 6.20E-15 1.27E+06 2.56E+07 1.89E+07 5.30E+06 5.60E+06 8.36E+06 5.71E+04 1.05E+07 1.89E+07 2.69E+06 
 std 1.13E-15 1.70E+05 8.81E+05 1.15E+06 6.21E+05 9.93E+05 4.79E+05 1.04E+04 6.60E+05 1.74E+06 2.13E+05 
Rosenb mean 0.00E+00 3.01E+05 2.00E+07 1.20E+07 1.79E+06 8.23E+05 2.53E+06 2.14E+04 4.54E+06 4.87E+06 1.18E+06 
 min 0.00E+00 1.52E+05 1.65E+07 8.30E+06 1.28E+06 1.60E+05 1.60E+06 1.02E+04 3.37E+06 3.65E+06 8.90E+05 
 max 0.00E+00 4.62E+05 2.20E+07 1.56E+07 2.82E+06 2.86E+06 3.19E+06 5.47E+04 6.00E+06 6.09E+06 1.38E+06 
 std 0.00E+00 6.97E+04 1.31E+06 1.67E+06 4.04E+05 7.02E+05 3.23E+05 1.07E+04 5.80E+05 6.28E+05 1.35E+05 
Sphere mean 0.00E+00 6.29E+01 1.55E+03 1.06E+03 3.16E+02 2.33E+02 4.72E+02 4.60E+01 6.10E+02 9.46E+02 1.44E+02 
 min 0.00E+00 4.67E+01 1.39E+03 9.48E+02 2.39E+02 1.03E+02 4.00E+02 3.19E+01 5.38E+02 7.58E+02 1.07E+02 
 max 0.00E+00 9.57E+01 1.68E+03 1.22E+03 3.74E+02 4.53E+02 5.24E+02 6.76E+01 6.78E+02 1.08E+03 1.74E+02 
 std 0.00E+00 1.07E+01 6.31E+01 7.39E+01 3.91E+01 9.92E+01 3.02E+01 8.02E+00 3.58E+01 7.41E+01 1.80E+01 
Sumpow mean 7.37E-25 4.18E-05 2.18E+00 2.16E+00 6.48E-04 1.23E-03 3.22E-02 3.98E-06 1.66E-01 8.09E+00 8.83E-06 
 min 0.00E+00 5.64E-07 1.45E+00 7.65E-01 4.68E-07 1.41E-08 8.47E-04 4.33E-12 5.10E-02 4.60E+00 9.98E-08 
 max 2.21E-23 2.67E-04 3.00E+00 3.00E+00 8.22E-03 2.44E-02 9.72E-02 3.12E-05 3.87E-01 1.39E+01 4.21E-05 
 std 4.04E-24 5.90E-05 4.08E-01 5.66E-01 1.59E-03 4.51E-03 2.53E-02 8.78E-06 8.66E-02 2.67E+00 1.09E-05 
Sumsqu mean 0.00E+00 5.77E+03 1.52E+05 1.02E+05 2.74E+04 2.10E+04 4.59E+04 4.07E+03 5.57E+04 9.58E+04 1.40E+04 
 min 0.00E+00 3.79E+03 1.35E+05 9.07E+04 2.23E+04 9.23E+03 3.55E+04 2.66E+03 5.16E+04 7.50E+04 1.14E+04 
 max 0.00E+00 7.69E+03 1.66E+05 1.20E+05 3.37E+04 3.90E+04 5.43E+04 6.56E+03 6.12E+04 1.22E+05 1.71E+04 
 std 0.00E+00 1.07E+03 7.52E+03 6.85E+03 3.51E+03 8.05E+03 3.49E+03 8.40E+02 2.14E+03 9.94E+03 1.42E+03 
Powell mean 8.55E-12 1.76E+03 2.61E+05 1.47E+05 1.71E+04 1.19E+04 4.01E+04 1.50E+03 4.78E+04 1.46E+05 7.02E+03 
 min 0.00E+00 6.53E+02 1.79E+05 1.07E+05 1.22E+04 2.91E+03 2.70E+04 6.76E+02 3.65E+04 7.57E+04 5.36E+03 
 max 2.57E-10 2.56E+03 3.19E+05 2.30E+05 2.44E+04 2.53E+04 5.14E+04 2.68E+03 5.55E+04 2.38E+05 9.39E+03 
 std 4.68E-11 4.58E+02 3.34E+04 2.74E+04 3.13E+03 6.12E+03 5.93E+03 5.42E+02 3.79E+03 3.92E+04 9.59E+02 

 
  Prop. SI MFA NaFA RFA FA PSO 

Ackley mean 8.88E-16 2.07E+01 1.52E+01 1.03E-02 1.31E+01 1.76E+01 
 min 8.88E-16 2.07E+01 1.44E+01 9.33E-03 1.19E+01 1.69E+01 
 max 8.88E-16 2.07E+01 1.63E+01 1.13E-02 1.46E+01 1.81E+01 
 std 0.00E+00 1.08E-14 5.00E-01 6.02E-04 6.99E-01 3.29E-01 
Dixon mean 2.21E+00 1.16E+08 1.49E+06 1.02E+00 8.45E+05 1.93E+06 
 min 2.50E-01 1.16E+08 5.86E+05 1.02E+00 4.44E+05 1.19E+06 
 max 1.05E+01 1.16E+08 2.28E+06 1.03E+00 1.48E+06 3.29E+06 
 std 2.71E+00 1.36E-08 3.82E+05 3.00E-03 2.56E+05 5.41E+05 
Griewank mean 1.96E-15 5.09E+03 4.94E+02 3.01E-03 2.86E+02 5.55E+02 
 min 0.00E+00 5.09E+03 3.64E+02 2.33E-03 1.66E+02 4.25E+02 
 max 5.88E-14 5.09E+03 6.30E+02 3.68E-03 3.79E+02 6.92E+02 



 std 1.07E-14 2.36E-12 6.93E+01 3.17E-04 4.65E+01 7.68E+01 
Rothyp mean 2.07E-16 2.34E+07 2.05E+06 9.32E-01 1.25E+06 2.22E+06 
 min 0.00E+00 2.34E+07 1.50E+06 7.67E-01 8.26E+05 1.51E+06 
 max 6.20E-15 2.34E+07 2.79E+06 1.16E+00 1.79E+06 2.79E+06 
 std 1.13E-15 1.20E-09 2.81E+05 1.21E-01 2.79E+05 3.39E+05 
Rosenb mean 0.00E+00 2.51E+07 5.66E+05 1.99E+02 2.43E+05 7.76E+05 
 min 0.00E+00 2.51E+07 3.22E+05 1.99E+02 1.51E+05 4.22E+05 
 max 0.00E+00 2.51E+07 1.19E+06 1.99E+02 3.91E+05 1.31E+06 
 std 0.00E+00 1.28E-08 1.80E+05 5.11E-02 6.03E+04 2.08E+05 
Sphere mean 0.00E+00 1.48E+03 1.37E+02 6.26E-05 8.98E+01 1.64E+02 
 min 0.00E+00 1.48E+03 9.65E+01 4.73E-05 5.92E+01 1.25E+02 
 max 0.00E+00 1.48E+03 1.59E+02 7.91E-05 1.16E+02 2.50E+02 
 std 0.00E+00 3.43E-13 1.53E+01 8.45E-06 1.66E+01 2.60E+01 
Sumpow mean 7.37E-25 1.02E+00 2.83E-06 8.38E-13 1.01E-05 1.08E-04 
 min 0.00E+00 1.02E+00 3.09E-07 2.72E-14 7.80E-07 2.87E-06 
 max 2.21E-23 1.02E+00 9.88E-06 4.23E-12 4.80E-05 5.14E-04 
 std 4.04E-24 9.68E-16 2.30E-06 9.79E-13 1.18E-05 1.16E-04 
Sumsqu mean 0.00E+00 1.48E+05 1.21E+04 6.43E-03 8.03E+03 1.39E+04 
 min 0.00E+00 1.48E+05 8.62E+03 5.36E-03 5.99E+03 1.07E+04 
 max 0.00E+00 1.48E+05 1.63E+04 8.16E-03 1.00E+04 1.79E+04 
 std 0.00E+00 5.82E-11 2.24E+03 6.89E-04 9.98E+02 1.56E+03 
Powell mean 8.55E-12 2.21E+05 5.44E+03 1.11E-03 3.66E+03 5.52E+03 
 min 0.00E+00 2.21E+05 3.35E+03 8.25E-04 1.86E+03 2.94E+03 
 max 2.57E-10 2.21E+05 7.36E+03 1.40E-03 5.20E+03 9.62E+03 
 std 4.68E-11 2.81E-11 1.21E+03 1.44E-04 7.75E+02 1.61E+03 

 

Table 18 The Wilcoxon rank sum test results of all benchmark functions with dimension=200 

 
 PSOVA BBPSOV GPSO AGPSO DNLPSO ELPSO GMPSO COSPSO MPSO RaFA MFA NaFA RFA PSO FA 

Ackley 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.69E-14 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

Dixon 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.69E-12 3.02E-11 1.86E-01 3.02E-11 3.02E-11 

Griewank 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 2.37E-12 2.37E-12 1.72E-12 6.84E-13 1.72E-12 1.72E-12 1.72E-12 1.72E-12 

rothyp 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.72E-12 1.21E-12 1.21E-12 1.72E-12 9.45E-14 1.72E-12 1.72E-12 1.72E-12 1.72E-12 

Rosenbrock 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 2.54E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

Sphere 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.17E-13 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

sumpow 1.44E-11 1.44E-11 1.44E-11 1.44E-11 1.44E-11 1.44E-11 1.44E-11 4.11E-12 4.11E-12 1.44E-11 1.36E-11 1.44E-11 1.44E-11 1.44E-11 1.44E-11 

sumsqu 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.70E-14 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

powell 5.22E-12 5.22E-12 5.22E-12 5.22E-12 5.22E-12 5.22E-12 5.22E-12 7.88E-12 7.88E-12 5.22E-12 3.71E-13 5.22E-12 5.22E-12 5.22E-12 5.22E-12 

 

 

6. CONCLUSIONS 
In this research, we have proposed an ensemble model of evolving CNN-BLSTM networks with optimal hyper-

parameter identification using a new SI algorithm for human action classification based on video clips. The 

proposed SI algorithm incorporates diverse elite signals yielded by sine, cosine and tanh oriented crossover 

operators, as well as search coefficients following a parametric hyper-plane surface. It employs a versatile search 

process guided by multiple promising global signals to overcome the limitations of single-leader guided classical 

search methods. The proposed algorithm shows superior capabilities in identifying the optimal network settings 

for temporal sequential pattern extraction in BLSTM networks over a set of 10 classical and advanced search 

methods. Owing to the employment of diverse base CNN-BLSTM networks with distinctive optimized network 

settings, the resulting ensemble model illustrates significant diversity to further enhance performance. Evaluated 

using three publicly available human action data sets, the proposed ensemble model of evolving CNN-BLSTM 

networks produces statistically significant superiority over those with default and optimal settings identified by 

other classical and advanced search methods in human action recognition. The proposed SI algorithm also 

outperforms a number of PSO and FA variants with statistical significance in handling diverse high-dimensional 

unimodal and multimodal artificial landscapes. In short, the proposed search strategies of dynamic crossover 

operators and super-ellipse search coefficients account for the superior capabilities of the proposed SI algorithm 

in achieving global optimality with fast convergence rates for solving optimal hyper-parameter identification and 

numerical benchmark functions. 

 

In future work, we will evaluate the proposed ensemble model in real-time human action recognition 

applications, e.g. for real-world surveillance and health monitoring. The proposed network architectures will 

also be evaluated using other image and video understanding tasks, e.g. visual question answering [46] and 

video summary [85]. Moreover, we aim to evaluate the proposed SI algorithm for hyper-parameter tuning and 

deep architecture generation with residual and dense connectivity in other computer vision tasks, such as large-

scale object detection and classification [11, 12, 24] as well as image description generation [47, 48, 99]. 
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