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Matijošytė I, Mazur-Marzec H,
Mehiri M, Nielsen SL, Novoveská L,

Overlingė D, Perale G, Ramasamy P,
Rebours C, Reinsch T, Reyes F,

Rinkevich B, Robbens J, Röttinger E,
Rudovica V, Sabotič J, Safarik I,
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Coastal countries have traditionally relied on the existing marine resources (e.g., fishing,
food, transport, recreation, and tourism) as well as tried to support new economic
endeavors (ocean energy, desalination for water supply, and seabed mining). Modern
societies and lifestyle resulted in an increased demand for dietary diversity, better health
and well-being, new biomedicines, natural cosmeceuticals, environmental conservation,
and sustainable energy sources. These societal needs stimulated the interest of
researchers on the diverse and underexplored marine environments as promising and
sustainable sources of biomolecules and biomass, and they are addressed by the
emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities
for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical,
cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article
synthesizes the essence, opportunities, responsibilities, and challenges encountered in
marine biotechnology and outlines the attainment and valorization of directly derived
or bio-inspired products from marine organisms. First, the concept of bioeconomy is
introduced. Then, the diversity of marine bioresources including an overview of the most
prominent marine organisms and their potential for biotechnological uses are described.
This is followed by introducing methodologies for exploration of these resources and
the main use case scenarios in energy, food and feed, agronomy, bioremediation
and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being
sectors. The key aspects in the fields of legislation and funding are provided, with the
emphasis on the importance of communication and stakeholder engagement at all
levels of biotechnology development. Finally, vital overarching concepts, such as the
quadruple helix and Responsible Research and Innovation principle are highlighted as
important to follow within the marine biotechnology field. The authors of this review
are collaborating under the European Commission-funded Cooperation in Science and
Technology (COST) Action Ocean4Biotech – European transdisciplinary networking
platform for marine biotechnology and focus the study on the European state of affairs.

Keywords: bioprospecting, blue growth, marine biodiversity, marine natural products, sustainability, ethics,
responsible research and innovation (RRI), marine bioeconomy

INTRODUCTION

Marine environments provide a plethora of ecosystem services
leading to societal benefits (Townsed et al., 2018). These services
are mostly linked to supporting services (primary production
and nutrient cycling), provisioning services (such as food) and
cultural services, including tourism. The recent advancements
of science and technology have facilitated the implementation
of marine biotechnology, where marine organisms and their

compounds are identified, extracted, isolated, characterized
and used for applications in various sectors to benefit
the society, ranging from food/feed to pharmaceutical and
biomedical industries. Life in marine environments is diverse
with wide environmental gradients in the physical, chemical,
and hydrological parameters such as temperature, light intensity,
salinity, and pressure. Marine organisms have adapted to
these diverse environments by developing a broad spectrum
of forms, functions, and strategies that play a crucial role for
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survival, adaptation and thriving in the multitude of these
competitive ecosystems.

Among the vast array of evolutionary traits present in
extant marine phyla, the production of biomolecules (secondary
metabolites, enzymes, and biopolymers) is one of the most
stimulating for biotechnology. Biomolecules mediate chemical
communication between organisms, act as a protective barrier
against adverse environmental conditions, serve as weapons for
catching prey or for protection against predators, pathogens,
extreme temperature or harmful UV radiation and are primordial
in many other life-sustaining processes. Biomolecules have
evolved to improve the organisms’ survival performance in
their marine habitats and they are usually capable of exerting
biological activity even at low concentrations to counteract
dilution/dispersion effects occurring in the sea. The unique
and complex structures of many marine metabolites enable
the discovery of new and innovative applications with a
commercial interest. Over 50% of the medicines currently in
use originate from natural compounds, and this percentage is
much higher for anticancer and antimicrobial treatment agents
(Newman and Cragg, 2020). Apart from biomolecules, other
properties and functions of marine organisms can also be
beneficial and of interest to various industries, including the
removal and degradation of individual chemical compounds
or organic matter, as well as the development of intricate
biochemical processes. However, marine resources remain largely
underexplored and undervalorized.

Joint explorations of field and experimental biologists as well
as chemists, supported by the recent advancements of techniques
to access the ocean, fueled the increase in knowledge levels from
the mid 20th century on. By the turn of the century, marine
natural products chemistry became a mature and fully established
subfield of chemistry with a focus on isolation and structure
elucidation of secondary metabolites (Baslow, 1969; Faulkner,
2000; Gerwick et al., 2012).

Besides carrageenans or other polysaccharides that were
extracted from seaweeds and widely used as food additives
and cosmetic ingredients since the 1930s, modern marine
biotechnology expanded after the 1970s with the intensification
of research on marine organisms and their secondary metabolites
(Rotter et al., 2020a). The first studies focused on natural
products isolated from representative taxa inhabiting marine
ecosystems like sessile macroorganisms including sponges,
cnidarians, bryozoans, and tunicates, revealing a unique chemical
diversity of bioactive metabolites (de la Calle, 2017). Multicellular
organisms from all types of habitats were also reported to host
complex and specialized microbiota (the holobiont concept,
Margulis, 1991; Souza de Oliveira et al., 2012; Simon et al.,
2019). These symbiotic microbial communities have major
impacts on the fitness and function of their hosts and they
contribute to the production of several secondary metabolites
that play important roles against predators, pathogens or fouling
organisms (Wilkins et al., 2019). This is especially true for
soft-bodied, sessile organisms such as cnidarians and sponges,
which are the best studied invertebrates and the most prolific
source of bioactive molecules (Mehbub et al., 2014; Steinert
et al., 2018). In fact, microorganisms make up approximately

40–60% of the sponge biomass (Yarden, 2014) and many
bioactive molecules have been demonstrated or predicted to
have a microbial origin (Gerwick and Fenner, 2013). Moreover,
microorganisms represent nearly 90% of the living biomass in
the oceans and are fundamental for the function and health of
marine ecosystems by managing biogeochemical balances (de
la Calle, 2017; Alvarez-Yela et al., 2019). They can produce a
plethora of secondary metabolites with less stringent ethical and
environmental requirements for research and product scale-up
processes. Due to the broad range of manipulation possibilities,
microorganisms are gaining importance for sustainable marine
biotechnology and almost 60% of the new marine natural
products nowadays are derived from microorganisms (Carroll
et al., 2019). Nevertheless, macroorganisms still represent an
active source and field of research for novel natural metabolites.

A simplified marine biotechnology workflow (Figure 1)
depicts that product development from marine organisms is
an inherently transdisciplinary and multidimensional task. The
scientific community, industry, policy makers and the general
public have a role to play in this process. Initially, the
scientific community, while adhering to the ethical and legal
guidelines, conducts systematic bioprospecting and screenings of
marine organisms, elucidates the structure of bioactive molecules
and their mechanisms of action, and sets up the protocols
for product development. Often the financing of product
development is dictated by the societal needs and challenges
(such as health, well-being, or environmental protection) and
suitable intellectual property (IP) protection. However, due to
the transdisciplinary character of any biotechnology research,
the co-design of processes and co-creation of knowledge is
a necessary step in advancing the biodiscovery pipeline that
ensures a faster product uptake. This also involves the collection
of information about people’s perceived and actual needs,
which is of paramount importance. Outreach activities are
therefore conducted to engage the public in protecting the
marine environment and promoting its sustainable use. Their
feedback to both the scientific and industrial communities,
either through directed questionnaires (in case of market
research/analyses aiming to provide feedback on novel food,
cosmeceuticals, and other products), workshops or other
means of communication, often represents a key milestone
for increasing consumers’ acceptance of bio-based products.
Subsequent steps in new marine product development, e.g.,
scale-up, delivery format, validation of potency and toxicity,
in vivo testing and implementation of statistically powered pre-
clinical studies are generally performed by the pharmaceutical,
biotechnological, biomedical, and food/nutraceuticals sectors.

The present article reviews some of the important aspects of
marine biotechnology workflow. As marine biotechnology is an
important contributor to bioeconomy, this concept is introduced
in section “Bioeconomy.” In section “Marine biodiscovery
areas,” we elaborate on hotspots of marine biodiscovery, from
water column, the seafloor, microbial biofilms, beach wrack,
to side streams. Section “Marine organisms and their potential
application in biotechnology” introduces the main marine
organisms being targeted for biotechnological research. Section
“Methodology for exploration of marine bioresources” provides
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FIGURE 1 | A simplified representation of the marine biotechnology pipeline that is intrinsically interdisciplinary, combining basic and applied research with industry
and business sectors.

an overview of the general marine biotechnology pipeline
and its key elements: organism isolation, data analysis and
storage, chemical methods for isolation, and characterization of
compounds. Production and scaling-up to guarantee sufficient
supply at the industrial level are presented in section “Production
upscaling.” Section “Use case scenarios” presents interesting use
case scenarios where marine biotechnology can significantly
address the societal challenges such as energy production,
agronomy, bioremediation, food, feed, cosmetics, bio-inspired
materials, and pharmaceuticals. Furthermore, the legislative
and ethical issues arising from the development of marine
biotechnology should not be overlooked and they are presented
in section “Legislation and funding.” Section “Communication
and stakeholder engagement in development finalization”
concludes with a discussion on the importance of science
communication both to raise consumer awareness on new
products and establish new collaborations on one hand and
implement knowledge transfer channels with stakeholders
from the industrial, governmental and public sectors, on the
other hand. The establishment of efficient communication
that enables productive collaboration efforts is essential for
the market entry and successful commercialization of marine
biotechnology products. We conclude with an overview of the
marine biotechnology roadmap in Europe.

BIOECONOMY

Marine biotechnology is recognized as a globally significant
economic growth sector. The field is mostly concentrated in
the European Union (EU), North America and the Asia-
Pacific (Van den Burg et al., 2019). Some of the globally
renowned marine biotechnology centers are in China (e.g.,
the Institutes of Oceanology, the institutes of the Chinese
Academy of Sciences), Japan (e.g., Shimoda Marine Research
Center), United States (e.g., Scripps Institute of Oceanography),
Australia (e.g., Australian Institute of Marine Science). In
other countries, marine biotechnology is an emerging field to
address global economic challenges, such as in South America
(Thompson et al., 2018), Middle East (Al-Belushi et al., 2015)
and Africa (Bolaky, 2020). However, the proper implementation

of the field has its limitations: the lack of investment, need
for appropriate infrastructure and human capital (Thompson
et al., 2017, 2018). To enable the development of the marine
bioeconomy, national or global partnerships with the leading
research labs are established (Vedachalam et al., 2019), including
European participation.

The European Commission defines blue bioeconomy as an
exciting field of innovation, turning aquatic biomass into novel
foods, feed, energy, packaging, and other applications1. This is
also reflected in the revised EU Bioeconomy Strategy2, setting
several priorities that are relevant for marine biotechnology,
such as developing substitutes to plastics and to other fossil-
based materials that are bio-based, recyclable and marine-
biodegradable. In the European Union, blue economy (including
all the sectors) reached €750 billion turnover and employed
close to 5 million people in 2018 (European Commission,
2020). Marine biotechnology is a niche within the ocean-
based industries. As this is a growing field, it is projected
that in 2030 many ocean-based industries will outperform
the growth of the global economy as a whole, providing
approximately 40 million full-time equivalent jobs (Rayner
et al., 2019). Besides creating new jobs, the development of
marine biotechnology can contribute to the existing employment
structures by diversification of additional income for fishermen
or aquaculture specialists. In this aspect, the policy making sector
is aware that future marine research priorities should include
improved techniques for mass production and processing of
marine biomass (European Commission, 2019). This imposes
several challenges: (i) the need for harmonization and later
standardization of processes, protocols and definitions; (ii) the
need to establish ethical guidelines that will be endorsed and
respected by national administrative authorities and concern
the fair share and use of biological resources; (iii) the need to
bridge the collaboration and communication gap between science
and industry on one hand, and policy makers on the other.
This entails some changes in the mode of action. For example,
networking activities such as brokerage events and participatory

1https://ec.europa.eu/maritimeaffairs/press/blue-bioeconomy-forum-shape-
future-blue-bioeconomy-europe_en
2https://ec.europa.eu/research/bioeconomy/index.cfm?pg=policy&lib=strategy
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workshops should be used for the exchange of expertise, opinion
and potential co-creation of strategic documents. (iv) There is a
need to develop strategies for showcasing individual expertise,
such as the creation of open access repositories of experts
and their contacts. (v) Finally, there is a need to sustain the
investment into ocean observations that provide evidence of
regulatory compliance and support the valuation of natural assets
and ecosystem services (Rayner et al., 2019). Open science, also
through full access to research publications (embraced by Plan
S and supported by the EC3) and access to data are of key
importance here, enabling fair access to public knowledge.

MARINE BIODISCOVERY AREAS

The marine environment with its unique physico-
chemical properties harbors an extraordinary source
of yet undiscovered organisms (Figure 2) and their
chemical/biochemical compounds to develop commercially
interesting bio-based products.

Since the early 21st century, the exploration of marine
microbial biodiversity has been driven by the development of
high-throughput molecular methods such as High Throughput
Sequencing (HTS), and their direct application on intact seawater
samples without requiring any prior isolation or cultivation
of individual microorganisms (Shokralla et al., 2012; Seymour,
2019). The HTS approach utilizes specific gene regions (barcodes)
to provide massive amounts of genetic data on the various
microbial communities with continuing improvements in data
quality, read length and bioinformatic analyses methods, leading
to a better representation of the genetic based taxonomic diversity
of the sample. HTS methods detect both the most abundant
community members but also the rare species, which cannot
otherwise be retrieved by traditional culture-dependent methods.
The Global Ocean Sample Expedition (GOS4) led by J. Craig
Venter Institute is exemplary for that. Recently, the most
important step forward in elucidating world-wide eukaryotic
biodiversity were cross-oceanic expeditions such as Malaspina,
Tara Oceans, and Biosope (Grob et al., 2007; Claustre et al., 2008;
Bork et al., 2015; Duarte, 2015; de Vargas et al., 2015). These
studies have also confirmed that much of the eukaryotic plankton
diversity in the euphotic zone is still unknown and has not been
previously sequenced from cultured strains. The Tara Oceans
dataset also provided significant new knowledge to protistan
diversity, identifying many new rDNA sequences, both within
known groups and forming new clades (de Vargas et al., 2015).

The isolation of DNA from environmental samples –
eDNA – is already well established in the field of microbiology
and marine monitoring (Diaz-Ferguson and Moyer, 2014;
Pawlowski et al., 2018). Metabolic engineering is being used
for characterization of bacterial communities in sediments
since the 1980’s (Ogram et al., 1987) and monitoring entire
microbial populations in seawater samples (Venter et al., 2004).
However, this approach has been applied to the analyses

3https://www.coalition-s.org/about/
4https://www.jcvi.org/research/gos

of macroorganisms only in recent years (Thomsen et al.,
2012; Kelly et al., 2017; Jeunen et al., 2019). The study
of eDNA in the water column (Keuter et al., 2015) or in
seafloor sediments (Keuter and Rinkevich, 2016) has received
considerable attention for high-throughput biomonitoring using
metabarcoding of multiple target gene regions, as well as for
integrating eDNA metabarcoding with biological assessment
of aquatic ecosystems (Pawlowski et al., 2018). In addition,
targeted detection of species using quantitative Polymerase Chain
Reaction (qPCR) assays have been implemented for both micro-
and macroorganisms (Gargan et al., 2017; Hernández-López
et al., 2019) in seawater samples. The potential for using eDNA
in aquatic ecosystems has been the topic of several concerted
actions (like DNAqua-Net COST Action5; Leese et al., 2016)
and there have been considerable efforts to standardize DNA
approaches to supplement or replace the existing methods, often
dictated by regulatory frameworks such as the European Union
Water Framework Directive– EU WFD [Directive 2000/60/EC]
and the Marine Strategy Framework Directive – EU MSFD
[Directive 2008/56/EC]. In-depth knowledge on the biodiversity
of marine microorganisms has been substantially improved
with the adaptation of various DNA barcoding protocols and
approaches (Leese et al., 2016; Paz et al., 2018; Weigand
et al., 2019). Although metagenomic data generated from eDNA
samples can provide vast amounts of new information, datasets
from complex microbial communities are difficult to process.
Metagenome assemblies and their functional annotations are
challenging (Dong and Strous, 2019). A large fraction (>50%) of
the detected genes has no assigned function. The use of functional
metagenomics applications and tools (including metagenomics
coupled with bioactivity screening/enzyme screening, meta-
transcriptomics, meta-proteomics, meta-metabolomics), is key
to solve this problem. One of the most used applications
of functional metagenomics is the activity-based screening of
metagenomics libraries. Enzyme discovery is currently the largest
field of its use, including marine enzymes (Hårdeman and Sjöling,
2007; Di Donato et al., 2019).

High throughput sequencing offers a culture-independent
characterization of microbial diversity, but the biotechnological
exploitation of marine microorganisms often requires their
cultivation in pure cultures and the optimization of production
yield for the compounds of interest. It is estimated that over
85% of microorganisms are unculturable under the current
laboratory cultivation techniques (Wade, 2002; Lloyd et al.,
2018). This is the “great plate anomaly,” a consequence
of the difficulties in mimicking the complexity of natural
habitats in the laboratory (i.e., cultivations under finely tuned
conditions for various parameters, such as temperature, salinity,
oxygen, agitation and pressure, and use of species-specific
growth substrates with trace elements). Additionally, cell-to-cell
interactions, occurring both between symbiotic and competing
organisms in the natural environment may be absent when
pure cultures (axenic) are grown in laboratory conditions
(Joint et al., 2010). Other strategies, like mimicking in situ
nutritional composition and physico-chemical conditions as well

5https://dnaqua.net/
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FIGURE 2 | Various formations and taxa with valorization potential for marine biotechnology.

as the addition of signaling molecules are used to increase
the diversity of isolated marine microorganisms (Bruns et al.,
2003). It is however important to realize the limitations
of methods and tools used in culture-based techniques. For
example, the sampling and isolation of bacteria from seawater
relies on filters with specific retention characteristics (e.g., 0.22
micron pore size), that typically fail to capture the smaller
bacteria (Hug et al., 2016; Ghuneim et al., 2018). Hence,
the establishment of pure microbial cultures remains one of
the main hurdles in the discovery of bioactive constituents
in microorganisms. To increase the number of harnessed
microbes, a new generation of culture approaches has been
developed that mimic the proximity of cells in their natural
habitat and exploit interspecific physiological interactions.
Several techniques, such as diffusion chambers (Kaeberlein
et al., 2002), the iChip (Nichols et al., 2010), as well as the
recently developed miniaturized culture chips (Chianese et al.,
2018) have been employed to address microbial cultivation
problems. Another reason preventing the wider valorization
of marine microorganisms is that some strains cannot exist
in nature without their symbionts: often microorganisms that
are associated or in symbiosis with marine macroorganisms
are the true metabolic source of marine natural products
(McCauley et al., 2020). To uncover the potential of these
species, many microbiological studies are focusing on bulk-
community dynamics and how the performance of ecosystems
is supported and influenced by individual species and time-
species interaction (Kouzuma and Watanabe, 2014). Such
advancements in the field of microbial ecology provide robust
background knowledge for biotechnological exploitation. Hence,
as natural communities are complex and difficult to assess,
characterize and cultivate in artificial conditions, researchers
use synthetic microbial communities of reduced complexity
in their laboratory studies. These artificial communities are
prepared by retaining only the microorganisms carrying out a
specific biosynthetic process, as well as those providing culture
stability and performance, to enable their use in biotechnological
applications (Großkopf and Soyer, 2014).

To maximize the biotechnological potential of our oceans
it is essential to exploit microbial communities with their
complex networking systems engaged in cooperation and
competition. Currently, the integrative omics approach provides
comprehensive information describing the community through
sophisticated analyses from genes to proteins and metabolites.
Shotgun metagenome analysis allows the sequencing of
genomes of the dominant organisms to link the enzymes of
interest directly to organisms. Functional metagenomics is an
excellent tool for studying gene function of mixed microbial
communities, with a focus on genomic analysis of unculturable
microbes and correlation with their particular functions in the
environment (Lam et al., 2015). The conventional approach to
construction and screening of metagenomic libraries, which
led to the discovery of many novel bioactive compounds
as well as microbial physiological and metabolic features,
has been improved by sequencing of complete microbial
genomes from selected niches. Metatranscriptomics and
metaproteomics, important for further functional analysis of
microbial community composition, may indicate their role in
many crucial processes such as carbon metabolism and nutrition
acquisition (Shi et al., 2009).

The development of sequencing, computational and storage
capacities reduced the financial and time investment needed for
new discoveries of biotechnological interest. This is now enabled
with genome mining, the process of extracting information from
genome sequences to detect biosynthetic pathways of bioactive
natural products and their possible functional and chemical
interactions (Trivella and de Felicio, 2018; Albarano et al., 2020).
It is used to investigate key enzymes of biosynthetic pathways
and predict the chemical products encoded by biosynthetic
genes. This can reveal the locked bioactive potential of marine
organisms by utilizing the constantly evolving sequencing
technologies and software tools in combination with phenotypic
in vitro assays. This approach can facilitate natural products
discovery by identifying gene clusters encoding different
potential bioactivities within genera (Machado et al., 2015).
These bioactive molecules are usually synthesized by a series of
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proteins encoded by biosynthetic gene clusters (BGCs) which
represent both a biosynthetic and an evolutionary unit. The
complete genome sequence of several marine microorganisms
revealed unidentified BGCs even in highly explored species,
indicating that the potential of microorganisms to produce
natural products is much higher than that originally thought
(Lautru et al., 2005). BGCs are mostly classified based on their
product as: saccharides, terpenoids, polyketide synthases (PKSs),
non-ribosomal peptide synthetases (NRPSs), and ribosomally
synthesized and post-translationally modified peptides (RiPPs).
PKS and NRPS have long been attractive targets in genome
mining for natural products with applications in medicine. For
example, salinilactam A was the first compound spotted by
genome mining from a marine-derived actinomycete (Zerikly
and Challis, 2009) and the angucyclinones, fluostatins M–Q,
produced by Streptomyces sp. PKU-MA00045 were isolated from
a marine sponge (Jin J. et al., 2018). In parallel, a recent increase in
discoveries of novel RiPP classes revealed their bioactive potential
in the biomedical field, e.g., as novel antibiotics (Hudson and
Mitchell, 2018). Thus, different methodologies are currently
available for RiPP genome mining, focused on known and/or
novel classes finding, including those based on identifying RiPP
BGCs, or identifying RiPP precursors using machine-learning
classifiers (de los Santos, 2019; Kloosterman et al., 2021).

With the development of in situ molecular tools (such as
fluorescence in situ hybridization – FISH), it is possible to
quantify and follow the dynamics of specific bacterial groups
(Pizzetti et al., 2011; Fazi et al., 2020). Such tools may also
help to uncover whether microbial communities with explicit
characteristics can favor biosynthesis processes for specific
compounds of interest.

Water Column, Seafloor, and Sediments
Spatial and temporal distribution patterns, as well as the actual
abundance of phytoplankton, bacterioplankton and viruses are
defined by a variety of physico-chemical parameters (e.g.,
light availability, nutrient supply, temperature, water column
stratification) and biological processes (e.g., microbial activity,
competition, zooplankton grazing pressure, viral lysis) (Field
et al., 1998; Kirchman, 2000; Mousing et al., 2016). Seafloor
provides diverse habitats for organisms. Besides forming
stromatolites in the sediments surface, cyanobacteria can secrete
or excrete extracellular polymeric substances (EPS) (Golubic
et al., 2000) that can further stabilize sediments and protect
them from antimicrobial compounds and other various biotic
and abiotic stressors (Costa et al., 2018). Ocean sediments
cover the greatest portion of the Earth’s surface and host
numerous bacterial phyla and individual species, the biosynthetic
capabilities of which are largely unknown. This is particularly true
for the poorly accessible deep seas. As an example, phylogenetic
studies from the ultra-oligotrophic eastern Mediterranean Sea
have shown that sediments down to almost 4,400 m depth host a
vast diversity of bacteria and archaea (Polymenakou et al., 2015).
More importantly, a large fraction of 16S rDNA sequences
retrieved from the same environment (∼12%) could not be
associated with any known taxonomic division, implying the
presence of novel bacterial species (Polymenakou et al., 2009).

Moreover, the OceanTreasures expedition revealed new and
diverse actinobacteria strains adapted to life in the ocean (i.e.,
marine obligates) with biotechnological potential and other
bacteria that are capable of producing exopolysaccharides,
obtained from sediments collected off the Madeira Archipelago,
Portugal, down to 1,310 m in depth (Prieto-Davó et al., 2016;
Roca et al., 2016).

Given that the world’s ocean average depth is 2,000 m, the
advent of diving and vessel-operated sampling equipment and
techniques, such as dredges, collectors and remotely operated
vehicles (ROVs), allowed exploring previously inaccessible
environments (such as hydrothermal vents and deep sea),
opening new prospects and horizons for marine biotechnology.
The exploration of these extreme environments requires specific
equipment, skills, and resources for long cruises, which include
systematic mapping, especially in the deep ocean and seabed.

Submarine caves were recently recognized as biodiversity
hotspots (Gerovasileiou and Voultsiadou, 2012; Gerovasileiou
et al., 2015), with most of them being largely unexplored. The
organisms hosted in these environments are of particular
biotechnological interest. A range of mesophilic and
thermotolerant microorganisms have been reported from
submarine caves and cavities, characterized by elevated
concentrations of hydrogen sulfide (Canganella et al., 2006),
while methanogenic and sulfate reducing microbial species with
potential applications in biogas production and bioremediation
have been isolated from similar environments (Polymenakou
et al., 2018). Besides biogas production, the biotechnological
interest of bacteria originating from unique submarine caves
could be even greater in terms of their secondary metabolites.

Biofilms
Biofilm formation is an important life strategy for
microorganisms to adapt to the wide range of conditions
encountered within aquatic environments (Figure 2). Biofilms
are complex and dynamic prokaryotic and eukaryotic microbial
communities. Besides being a novel species bank of hidden
microbial diversity and functional potential in the ocean,
biofilms are increasingly being recognized as a source of diverse
secondary metabolites (Battin et al., 2003; Zhang W. et al.,
2019). Scarcity of some microbial species in seawater prevents
their capture in global sequencing efforts and they can only
be detected when their relative abundance increases during
biofilm formation. The biofilm microbiome can be analyzed by
metagenomic approaches such as Illumina and visualized by
microscopic imaging techniques such as CARDFISH (Parrot
et al., 2019). Mass spectrometry imaging (MSI) techniques, such
as DESI-MSI allows the identification and spatial distribution
and localization of marine microbial natural products in the
biofilm (Papazian et al., 2019; Parrot et al., 2019).

The main component of biofilms, accounting for up to 90%
of the dry biomass, are EPS, which comprise polysaccharides,
proteins, extracellular DNA, lipids and other substances,
forming a complex 3-D structure that holds the cells nearby
(Flemming and Wingender, 2010). This matrix of EPS keeps
the biofilm attached to the colonized surface (Battin et al.,
2007; Flemming and Wingender, 2010). Moreover, the dense
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EPS matrix provides a protective envelope against biocides and
antibiotics produced by other (micro)organisms, and physical
stress. Exopolysaccharides can remain bound to the cell surface
or be directly released into the aquatic environment. The
assessment of the distribution of specific microbes within the
biofilm and their exopolysaccharide composition is therefore
of crucial importance for biotechnological applications (Pereira
et al., 2009; Lupini et al., 2011; Fazi et al., 2016). EPS composition
varies greatly depending on the microorganisms present and
environmental conditions (e.g., shear forces, temperature,
nutrient availability, Di Pippo et al., 2013). This compositional
variability suggests the contribution of various biosynthetic
mechanisms, that are, in turn, dependent on environmental and
growth conditions (De Philippis and Vincenzini, 2003; Pereira
et al., 2009). EPS are responsible for adhesion of microorganisms
to surfaces, aggregation of microbial cells, cohesion within the
biofilm, retention of water, protection, and enzymatic activity
(Žutić et al., 1999). Furthermore, they are important for the
absorption of organic and inorganic compounds, exchange of
genetic material, storage of excess carbon and they can serve as a
nutrient source (Flemming and Wingender, 2010). These features
can be exploited in different applications. The biodegradable and
sustainable carbohydrate-based materials in biofilms provide
mechanical stability and can be exploited as packaging materials,
films, prosthetics, food stabilizers and texturizers, industrial
gums, bioflocculants, emulsifiers, viscosity enhancers, medicines,
soil conditioners, and biosorbents (Li et al., 2001; Roca et al.,
2016). Furthermore, the extracellular proteins and enzymes can
find interesting applications in medical biofilm dispersion or
bioconversion processes. In addition, EPS contain biosurfactants
with antimicrobial activity and extracellular lipids with surface-
active properties that can disperse hydrophobic substances,
which can be useful for enhanced oil recovery or bioremediation
of oil spills (Baldi et al., 1999; Flemming and Wingender,
2010). Understanding the molecular mechanisms behind
various secondary metabolites that are used for interspecies
communication within biofilms will also be useful in combating
the biofilm-forming pathogenic bacteria (Barcelos et al., 2020).

Biofilms are involved in marine biofouling and defined as
the accumulation of microorganisms, algae and aquatic animals
on biotic and abiotic surfaces, including human-made structures
that are immersed in seawater (Amara et al., 2018). The
environmental impact of biofouling is significant due to the
reduction of the water flow and the increase of debris deposition
below the aquaculture farms (Fitridge et al., 2012). Biofouling
can seriously affect the environmental integrity and consequently
impact the worldwide economy. Ships’ hulls can increase fuel
consumption by up to 40% due to the increased drag and weight
of the ships (Amara et al., 2018) and can also increase ship
propulsion up to 70% (Trepos et al., 2014), resulting in a rise
in carbon dioxide and sulfur dioxide emissions by 384 and
3.6 million tons per year, respectively (Martins et al., 2018).
The transport delays, the hull repairs and the biocorrosion
cost an additional 150 billion dollars per year (Schultz, 2007;
Hellio et al., 2015). Moreover, ships might transport invasive
fouling species, thus threatening indigenous aquatic life forms
(Martins et al., 2018). The use of antifouling paints incorporating

biocides like heavy metals and tributyltin was the chemical
answer to the fouling issue, but these substances are known
to leach into the water and pose deleterious effects to many
non-target species (Yebra et al., 2004; Amara et al., 2018). Marine
natural products, originating from bacteria as well as higher
organisms, can represent an environmentally friendly alternative
to synthetic biocides (Eguía and Trueba, 2007; Adnan et al., 2018;
Bauermeister et al., 2019) and an economically advantageous
solution to foul-release polymers (Trepos et al., 2014; Chen and
Qian, 2017; Pereira et al., 2020). In particular, the compounds
that inhibit quorum sensing signals that regulate the microbial
colonization and formation of aggregates could mitigate the
impact of biofilms (de Carvalho, 2018; Salehiziri et al., 2020).

Biofilms are useful as a core part of the nitrification
bioreactors, operated in recirculating aquaculture systems and
are called biofilters, as they convert excreted ammonia from
animals to nitrates. This restores healthy conditions for
farmed fish and shrimp. Aquaculture biofilms have a complex
microbiome, the composition of which varies depending on
the farmed species and culture conditions. However, these
biofilms can also harbor pathogens that can be harmful
for farmed fish. Therefore, careful manipulation of microbial
communities associated with fish and their environment can
improve water quality at farms and reduce the abundance of
fish pathogens (Bentzon-Tilia et al., 2016; Bartelme et al., 2017;
Brailo et al., 2019).

Beach Wrack
Beach wrack (Figure 2) consists of organic material (mainly
seagrasses and seaweeds) washed ashore by storms, tides, and
wind. According to the European Commission Regulation (EC)
No 574/2004 and the European Waste Catalog (EWC), waste
from beaches is defined as “municipal wastes not otherwise
specified” (Wilk and Chojnacka, 2015). Therefore, specific
regulations within each country are implemented concerning
the collection of municipal solid waste (Guillén et al., 2014)
which typically results in large amounts of unexploited beach
wrack. Moreover, the removal of wrack eliminates valuable
nutrients that may affect sandy beach and dune ecosystem’s food
chains, and it can cause a reduction in species abundance and
diversity (Defeo et al., 2009). For example, the role of Posidonia
oceanica “banquettes” (dead leaves and broken rhizomes with
leaf bundles) is fundamental in protecting beaches from erosion,
and its removal can have a dramatic negative impact on
P. oceanica ecosystem services, including the conservation of
beaches (Boudouresque et al., 2016). On the other hand, a high
deposition of beach cast can be encountered from the blooms
of opportunistic macroalgae as a result of elevated nutrient
loading. In such cases, a removal of beach cast is seen as a
mitigation action to remove excess nutrients from the marine
environments (Weinberger et al., 2019). The collected beach
wrack and its chemical constituents could find use in interesting
biotechnological applications, but such harvesting interventions
should also take into account the ecological role that algae and
plant debris play in the coastal ecosystems (Guillén et al., 2014).
Collection and handling methods should therefore be tailored
to fit the characteristics of each coastal system, including the
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type of the dominant species and the quantities of biomass.
Solutions should then be verified from economical, technical, and
environmental perspectives.

As beach wrack often includes contaminants, the decay of
this biomass can lead to the reintroduction of toxic pollutants
into the aquatic environment. Before the implementation of
industrial agriculture practices in the 20th century, beach wrack
was used in Europe as a fertilizer (Emadodin et al., 2020). The
high salt content was reduced by leaving the biomass on the
shore for weeks to months so that the salt could be washed out
by the rain. The implementation of adapted recycling methods
should be included for further processing of wrack biomass
before its removal from the coastal ecosystem. Besides high salt
content, sand removal is another obstacle for the immediate
utilization of beach wrack. New technologies, including the
magnetic modification of marine biomass with magnetic iron
oxide nano- and microparticles and its subsequent application for
the removal of important pollutants can be considered (Angelova
et al., 2016; Safarik et al., 2016, 2020).

Coastal biomass displays good biotransformation potential
for biogas, which is comparable to higher plants containing
high amounts of lignin. Besides biogas production, the bioactive
substances of this biomass (mainly exopolysaccharides) can
be used to develop cosmetics, as well as for pharmaceutical
and biomedical products (Barbot et al., 2016). This biomass
may also be used for the removal of various types of
contaminants by biosorption (Mazur et al., 2018). Hence, there
is interest in the adoption of circular economy principles for
the sustainable management of coastal wrack biomass. This can
enable the production of valuable solutions, while at least partially
substituting the use of fossil fuels, the use of electricity at a
biogas plant and the use of chemical fertilizers (using degassed
or gasified/torrefied biomass), thus avoiding “dig and dump”
practices and landfill emissions. The implementation of these
methods can also contribute to local small-scale energy unit
development in coastal regions (Klavins et al., 2019).

Seafood Industry By-Products/Side
Stream Valorization
Fish represent the main commodity among marine resources; of
the 179 million tons of global production over 85% was used
for direct human consumption in 2018 (FAO, 2020). Due to the
lack of adequate infrastructures and services to ensure proper
handling and preservation of the fish products throughout the
whole value chain, 20–80% of marketed fish biomass is discarded
or is wasted between landing and consumption (Gustavsson et al.,
2011; Ghaly et al., 2013). In addition, large quantities of marine
by-products are generated mainly as a result of fish and shellfish
processing by industrial-scale fisheries and aquaculture (Ferraro
et al., 2010; Rustad et al., 2011; Radziemska et al., 2019). Besides
fish, the phycocolloid industry also generates considerable
amounts of seaweed by-products that are good sources of plant
protein, cellulosic material and contain taste-active amino acids.
They can also be used in food flavoring (Laohakunjit et al.,
2014), animal feed (Hong et al., 2015) or as feedstock biomass
for bioenergy (Ge et al., 2011).

The by-products are often treated as waste, despite containing
valuable compounds. Direct composting and combustion should
be avoided in favor of recovery of valuable compounds. The
biorefinery concept integrates biomass conversion processes and
equipment to produce value-added chemicals, fuels, power and
heat from various types of side stream (waste) biomass. In this
context, marine biorefinery employs recycling/reutilization of
marine waste biomaterials to produce higher-value biologically
active ingredients/components, such as minerals, proteins,
peptides, lipids, long-chain ω-3 fatty acids, enzymes, and
polysaccharides (Nisticò, 2017; Kratky and Zamazal, 2020;
Kumar et al., 2020; Prabha et al., 2020). The processed leftovers
from fish and shellfish typically include trimmings, skins and
chitin residues from crustacean species, heads, frames (bone with
attached flesh) and viscera. Only a small portion of these cut-offs
is further processed, mostly into fish meal and fish oil, while a part
is processed to extract value-added compounds that can be used
in the pharmaceutical and nutraceutical products (Senevirathne
and Kim, 2012) for prevention and management of various
disease conditions, such as those associated with metabolic
syndromes (Harnedy and FitzGerald, 2012). Extracted collagen
can be used for wound healing dressings, drug delivery, tissue
engineering, nutritional supplement, as an antibiofilm agent,
or as an ingredient in cosmetics and pharmaceutical products
(Abinaya and Gayathri, 2019; Shalaby et al., 2019). Gelatin
and chondroitin have applications in the food, cosmetic and
biomedical sectors. Chitin and chitosan resulting from shellfish
are other examples of marine by-products with applications
in the food, agriculture and biomedicine sectors (Kim and
Mendis, 2006). Hydroxyapatite derived from fish bone has
demonstrated relevance for dental and medical applications (Kim
and Mendis, 2006) and can also be used as feed or fertilizers in
agriculture or horticultural use. Cephalopod ink sac is considered
a by-product that is discharged by most processing industries
(Hossain et al., 2019). However, the ink from squid and cuttlefish
can be a potential source of bioactive compounds, such as
antioxidant, antimicrobial, or chemopreventive agents (Smiline
Girija et al., 2008; Zhong et al., 2009; Shankar et al., 2019).
Moreover, microbes that live in fishes’ slimy mucus coating
can be explored as drug-leads for the pharmaceutical industry
(Estes et al., 2019). The main challenge for the valorization of all
these by-products is their very short shelf-life, implying that the
processing steps should be fast enough to prevent oxidation and
microbial degradation.

MARINE ORGANISMS AND THEIR
POTENTIAL APPLICATION IN
BIOTECHNOLOGY

All groups of marine organisms have the potential for
biotechnological valorization (Figure 2). Table 1 presents
the different groups of marine organisms and their main
biotechnological applications that are currently being developed,
while a more detailed discussion on this topic follows in
subsequent sections.
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TABLE 1 | A non-exhaustive example list of the most prominent marine taxa, their use and challenges toward production scale-up.

Source Use Representative phyla (exemplary genera/species) Challenges

Metazoans Medicine, cosmetics Tunicates - Chordata (Ecteinascidia turbinata), Mollusca (Conus
magus), sponges - Porifera (Mycale hentscheli), Cnidaria (Sinularia sp.,
Clavularia sp., Pseudopterogorgia sp.)

Sourcing and supply sustainability

Macroalgae and
seagrasses

Food, feed, medicine,
cosmetics, nutraceuticals,
biofertilizers/soils
conditioners, biomaterials,
bioremediation, energy

Rhodophyta (Euchema denticulatum, Porphyra/Pyropia spp., Gelidium
sesquipedale, Pterocladiella capillacea, Furcellaria lumbricalis, Palmaria
spp., Gracilaria spp.), Chlorophyta (Ulva spp.), Ochrophyta (Laminaria
hyperborea, Laminaria digitata, Ascophyllum nodosum, Saccharina
japonica, Saccharina latissima, Sargassum, Undaria pinnatifida, Alaria
spp., Fucus spp.), seagrasses (Zostera, Cymodocea)

Sourcing and supply sustainability
Yield optimization, large-scale
processing and transport
Disease management

Microalgae Sustainable energy,
cosmetics, food, feed,
biofertilizers,
bioremediation, medicine

Chlorophyta (Chlorella, Haematococcus, Tetraselmis), Cryptophyta,
Myzozoa, Ochrophyta (Nannochloropsis), Haptophyta (Isochrysis),
Bacillariophyta (Phaeodactylum)

Bioprospecting and yield optimization
(1 – increase in biomass/volume ratio,
2 – increase yield of compound/extract
production and 3 – Improve
solar-to-biomass energy conversion)

Bacteria and
Archaea

Medicine, cosmetics,
biomaterials,
bioremediation, biofertilizers

Actinobacteria (Salinispora tropica), Firmicutes (Bacillus), Cyanobacteria
(Arthrospira, Spirulina), Proteobacteria (Pseudoalteromonas,
Alteromonas), Euryarchaeota (Pyrococcus, Thermococcus)

Culturing for non-culturable species,
yield optimization

Fungi Bioremediation, medicine,
cosmetics, food/feed,
biofertilizers

Ascomycota (Penicillium, Aspergillus, Fusarium, Cladosporium) Limited in-depth understanding, yield
optimization

Thraustochytrids Food/feed, sustainable
energy production

Bigyra (Aurantiochytrium sp.), Heterokonta (Schizochytrium sp.) Limited in-depth understanding, yield
optimization

Viruses Medicine, biocontrol Mycoviruses, bacteriophages Limited in-depth understanding, yield
optimization

Metazoans
Most initial studies on marine natural products focused on
marine metazoans such as sponges, cnidarians, gastropods and
tunicates, as they were representative organisms of the studied
marine ecosystems and relatively easy to collect by scuba diving
(reviewed in Molinski et al., 2009). These sessile organisms with
limited motility tend to produce a vast assemblage of complex
compounds with defensive (e.g., antipredatory, antifouling)
or other functional properties such as communication or
chemoreception (Bakus et al., 1986). The first described drugs
from the sea that were used in clinical trials decades after
their discoveries were vidarabine (ara-A R©) and cytarabine (ara-
C R©), two chemical derivatives of ribo-pentosyl nucleosides
extracted in the 1950s from a Caribbean marine sponge,
Tectitethya crypta (Bergmann and Feeney, 1951). Other early
drugs originating from the sea were ziconotide, a synthetic form
of ω-conotoxin, extracted from the Pacific cone snail Conus
magus and commercialized under the trade name Prialt R© for the
treatment of chronic pain (Olivera et al., 1985; Jones et al., 2001),
ω-3 acid ethyl esters (Lovaza R©) from fish for hyperlipidemia
conditions, the anticancer drugs Eribulin Masylate (E7389)
macrolide marketed as Halaven R©, and Monomethyl auristatin
E derived from dolastatin peptides isolated from marine shell-
less mollusk Dolabella auricularia commercialized as Adcetris R©

(Jimenez et al., 2020). In 2007, about 40 years after its initial
extraction from the Caribbean ascidian Ecteinascidia turbinata,
ecteinascidin-743 (ET-743), also known as trabectedin or its
trade name Yondelis R©, was the first marine-derived drug to be
approved for anticancer treatments (Rinehart et al., 1990; Corey
et al., 1996; Martinez and Corey, 2000; Aune et al., 2002). Multiple
strategies were tested to produce the drug at the industrial

scale, including mariculture and total synthesis, and eventually a
semisynthetic process starting from cyanosafracin B, an antibiotic
obtained by fermentation of Pseudomonas fluorescens, solved the
problem (Cuevas et al., 2000; Cuevas and Francesch, 2009). Since
then, the discovery of marine-derived compounds extracted from
metazoans is expanding (Molinski et al., 2009; Rocha et al., 2011)
and sponges and cnidarians are the most prominent as far as
novel marine natural products discovery is concerned (Qi and
Ma, 2017; Blunt et al., 2018; Carroll et al., 2020). The annual
number of new compounds reported for each is consistently high
at approximately 200 along the past decade, while the respective
number for other widely investigated marine phyla, such as
mollusks, echinoderms and tunicates (subphylum Chordata), is
limited between 8 and 50 for the same period (Carroll et al.,
2020). Bryozoans are acknowledged as an understudied group
of marine metazoans with regard to metabolites production,
with the newly discovered natural products fluctuating from
zero to slightly over 10 in the last few years (Blunt et al.,
2018; Carroll et al., 2020). Those pronounced differences in
marine product discovery either reflect an innate trend toward
the production of complex secondary metabolites (Leal et al.,
2012) or the study effort toward a phylum or another taxonomic
group, often due to the lack of taxonomic expertise for some
groups. Yet, the differences in discovered marine products do
not appear to reflect the biodiversity included within each group,
since sponges, cnidarians, bryozoans, and echinoderms each
include a comparable number (6,289–11,873) of accepted species
(Costello and Chaudhary, 2017; WoRMS Editorial Board, 2020).
At the same time, mollusks are one of the richest marine
metazoan phyla in terms of biodiversity with 48,803 extant
species (WoRMS Editorial Board, 2020) but a poor source of
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novel marine products (17 new metabolites in 2017, according to
Carroll et al., 2020). While sponges and cnidarians, in particular
corals, can be cultured on a large-scale to support drug discovery
(Duckworth and Battershill, 2003; Leal et al., 2013), the provision
of marine invertebrates in sufficient quantities for implementing
a battery of activity tests on their natural products is challenging
as sustainable supply has always been a bottleneck.

Sponges are prominent candidates for bioproduction-oriented
cultivation, due to their simple body plan and regenerative
capacity, and their richness in bioactive substances. While
sponge farming in the open sea has been proposed (and
often accomplished) as an effective strategy to resolve the
supply bottleneck and ensure sustainable production of sponge-
derived compounds (Duckworth, 2009), it is still limited by
the necessity to destructively collect primary material from
wild populations in various phases of the cultivation. Little
progress has been made toward “closed life cycle cultivation,” i.e.,
successfully inducing reproduction and recruitment of larvae to
the aquaculture (Abdul Wahab et al., 2012). Cell culturing can
provide advantages in terms of control of desirable biological
characteristics and fine-tuning of production (Sipkema et al.,
2005), while recent advances have shown potential for the
establishment of sponge cell lines and the development of
sustainable processes to produce sponge metabolites (Pérez-
López et al., 2014; Conkling et al., 2019).

Since many marine invertebrates host massive associations
with microbes, the origin of detected metabolites can be the
organism itself, its symbionts (e.g., bacteria) or the food source
(e.g., algae) of the metazoan (Loureiro et al., 2018). Hence,
metazoans can act as concentrators of natural compounds.
Symbionts can produce molecules of biotechnological interest,
e.g., enzymes or polyhydroxyalkanoates – PHAs (Bollinger et al.,
2018). The antitumor depsipeptide kahalalide F (Shilabin and
Hamann, 2011; Salazar et al., 2013), produced by the alga Bryopsis
spp. at very low concentrations, was originally identified from the
sea slug Elysia rufecens that feed on Bryopsis algae and accumulate
this natural compound at 5,000 fold higher concentrations
(Hamann et al., 1996). The cultivation of particular metazoan-
associated microorganisms is thus becoming a promising
opportunity to discover new metabolites (Esteves et al., 2013).

Macroalgae and Seagrasses
Seaweeds, or marine macroalgae gained wide interest in recent
years due to the opening of new applications and markets
(i.e., biofuel, feed and food supplements, food ingredients,
nutraceuticals, and cosmetics), which contributed to the
development of aquaculture on several species (Stévant
et al., 2017). The term “seaweed” includes macroscopic and
multicellular marine red, green, and brown algae. Seaweeds
are a rich source of proteins, minerals, iodine, vitamins,
non-digestible polysaccharides, and bioactive compounds
with potential health benefits. They are present in almost all
shallow water habitats. Like phytoplankton, the distribution
patterns of seaweed species are controlled by several abiotic
environmental factors and biological interactions. Dense beds
of large brown seaweeds (i.e., Fucus and Sargassum species)
are frequently found together with red and green algae of

smaller size. The competition for space between species is
strong, and the removal of one species can impact the structure
of the whole community. However, invasive species can be
valorized for biotechnological applications and in some areas
this has showed promising results and has been already used for
skincare products (Rotter et al., 2020b). By harvesting invasive
seaweeds, the adverse effects on local biodiversity can also
be mitigated. In addition to their nutritional value, seaweeds
exhibit antimicrobial, immunostimulatory and antioxidant
properties (Gupta and Abu-Ghannam, 2011). Due to the
growing demand for marine proteins and lipids in the fishfeed
industry over the last 20 years, the use of seaweed extracts
as prophylactic and therapeutic agents in shellfish and fish
aquaculture has become increasingly popular (Vatsos and
Rebours, 2015). There are also other macroalgal biomolecules
(mainly polysaccharides and carotenoids) that can be used as
functional food, nutraceuticals and cosmeceuticals. In 2016
alone, over 32.8 million tons of seaweed were produced from
capture and aquaculture worldwide, and the seaweed production
increased around 10% annually in the last 3 years, mainly due
to an increase in the aquaculture sector (European Commission,
2020). Globally, over 95% of seaweeds are produced through
aquaculture (FAO, 2020) with Asian countries being the leaders
in this activity, whereas the European seaweed production is
primarily based on the harvesting of natural resources (Ferdouse
et al., 2018; FAO, 2020), primarily kelp (Laminariales) and
in smaller volumes knotted wrack (Ascophyllum nodosum)
for production of alginates and seaweed meals or extracts,
respectively. Saccharina latissima is presently the species that
is cultivated in Europe on a large scale. The yield of the active
substances extracted from seaweed is ranging from less than
1% up to 40% of the dry algal mass, depending on various
factors, such as target metabolite, species and season (Pereira
and Costa-Lotufo, 2012). To increase the value of commercial
seaweeds it is important to study the remaining biomass after the
extraction of the target substances and find new strategies for its
further valorization, for example with the Gelidium sesquipedale
and Pterocladiella capillacea biomass remaining after agar
extraction (Matos et al., 2020). Understanding the physiological
effects of seaweeds or seaweed extracts is a complicated task;
similarly to other marine organisms their properties differ
depending on the geographical origin and season of harvest.
The extraction method of the bioactive components can affect
the efficacy of the final extracts. The feasibility of using any of
these extracts on a commercial scale needs to be examined to
define the extraction cost and reveal how the extracts can be
delivered under intensive farming conditions. It is finally worth
mentioning that seaweeds can act as habitats for endophytes
(Flewelling et al., 2015; Manomi et al., 2015; Mandelare et al.,
2018). Endophytes are microorganisms (bacteria and fungi)
that live in the plant tissue and in many cases support the plant
immunity and growth under extreme or unfavorable conditions
and against pathogens and pests (Liarzi and Ezra, 2014; Bacon
and White, 2016; Gouda et al., 2016). Endophytes are a rich
source of secondary metabolites with potential use in medical,
agricultural and industrial applications (Liarzi and Ezra, 2014;
Gouda et al., 2016).
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Seagrasses are higher plants (angiosperms) that live in marine
environments, and along with macroalgae, they play a significant
role in coastal ecosystems as they provide food, habitat, and
are nursery areas for numerous vertebrates and invertebrates.
When harvested sustainably, they can be a potential source to
produce bioactive compounds as seagrasses are very resistant
to decomposition (Grignon-Dubois and Rezzonico, 2013).
Seagrasses are rich in secondary metabolites like polyphenols,
flavonoids, and fatty acids, which are the key factors involved
in the adaptation to biotic and abiotic environments and for
the defense mechanism (Custódio et al., 2016). Many different
bioactivities including antioxidant, antiviral and antifungal
activities are frequently found in extracts of marine seagrasses
such as Halodule uninervis or Posidonia oceanica (Bibi et al.,
2018; Benito-González et al., 2019). Seagrasses have potential
cytotoxic, antimicrobial, and antifouling activity (Zidorn, 2016;
Lamb et al., 2017). Luteolin, diosmetin, and chrysoeriol have been
often detected in seagrass tissues (Guan et al., 2017). Zosteric
acid from the genus Zostera is one of the most promising natural
antifoulants due to its low bioaccumulation and no ecotoxicity
effects (Vilas-Boas et al., 2017). Seagrass secondary metabolites
are often produced by their associated microorganisms such as
fungi or bacteria (Panno et al., 2013; Petersen et al., 2019).

A recent study demonstrated that the presence of seagrasses
might contribute to a reduction of 50% in the relative abundance
of bacterial pathogens that can cause disease in humans and
marine organisms (Lamb et al., 2017). Their preservation can
therefore benefit both humans and other organisms in the
environment. Achamlale et al. (2009) analyzed the content of
rosmarinic acid, a phenolic compound with economic interest,
from Zostera noltii and Z. marina beach wrack. Its high amount
obtained from seagrass flotsam represents a high value-added
potential for this raw material and a real economical potential
for industries such as cosmetic and herbal ones. Additionally,
chicoric acid, another phenolic compound with demonstrated
therapeutic applications and high value on the nutraceutical
market, has been found in high amounts in Cymodocea
nodosa detrital leaves (Grignon-Dubois and Rezzonico, 2013).
Considering the rare occurrence of this compound in the plant
kingdom, this makes the abundant beach-cast seagrass biomass
of interest for dietary and pharmaceutical applications. However,
to maintain the ecological stability, novel approaches need to be
designed, such as chemical synthesis of seagrass biomolecules, to
prevent the over-harvesting of these protected species.

Microalgae
Microalgae have high growth rates and short generation times
and can double their biomass more than once per day in
the fastest growing species. Microalgal biomass yields have
been reported to be up to 20 kg/m2/year for microalgal
cultures (Varshney et al., 2015) and they have the potential
of transforming 9–10% of solar energy into biomass with a
theoretical yield of about 77 g of biomass/m2/day, which is
about 280 ton/ha/year (Melis, 2009; Formighieri et al., 2012),
however practical yields in large scale cultivation are much lower
(e.g., 23 g/m2/day, Novoveská et al., 2016). As their specific
growth rate is 5–10 times higher than those of terrestrial plants,

the interest in microalgal biotechnology has increased over
the last decades. Microalgal biomass could be considered as
genuine “cell factories” for the biological synthesis of bioactive
substances used in the production of food, feed, high-value
chemicals, bioenergy, and other biotechnological applications
(Skjånes et al., 2013; de Morais et al., 2015; de Vera et al., 2018).
Large-scale cultivation of marine microalgae is usually performed
on land, although near-shore cultivation facilities have been
tested (Wiley et al., 2013). Saltwater is pumped from the
ocean and introduced into ponds or bioreactors where marine
microalgae are cultivated on a larger scale. While land is
still needed for microalgae cultivation, this does not have
to be the high-quality arable land required for agricultural
activities. Microalgal production may utilize wastewater as a
nutrient source and/or recycled CO2 from industrial facilities or
geothermal power plants (Sayre, 2010; Hawrot-Paw et al., 2020).

Microalgae-based production combines several bioprocesses:
cultivation, harvesting, extraction and isolation of active
components. Parameters to be controlled in cultures include
levels of carbon dioxide, light, oxygen, temperature, pH, and
nutrients as they have a crucial effect on biomass activity
and productivity. The control of predators in industrial scale
microalgae production must also be considered (Rego et al.,
2015). The biochemical composition of microalgae can be
manipulated by optimizing parameters or by applying specific
environmental stress conditions, such as variations in nitrate
concentration, light spectrum and intensity or salinity, to induce
microalgae to produce a high concentration of target bioactive
compounds (Markou and Nerantzis, 2013; Yu X. et al., 2015; Vu
et al., 2016; Chokshi et al., 2017; Smerilli et al., 2017).

Microalgal species can produce valuable compounds
including antioxidants, enzymes, polymers, lipids,
polyunsaturated fatty acids, peptides, vitamins, toxins, and
sterols (Moreno-Garcia et al., 2017; Vignesh and Barik,
2019). Microalgae also contain pigments such as chlorophylls,
carotenoids, keto-carotenoids, and phycobiliproteins (Zullaikah
et al., 2019). Due to their contents, microalgae are considered
as a promising feedstock for renewable and sustainable energy,
cosmetics, food/feed industry both as whole biomass and as
nutritional components, colorants or stabilizing antioxidants
and for the synthesis of antimicrobial, antiviral, antibacterial
and anticancer drugs (Suganya et al., 2016; Moreno-Garcia
et al., 2017). Microalgal biomass can also be used in bio-
surfactants, bio-emulsifiers, and bioplastics. Unused biomass
can be utilized as bio-fertilizer or it can be digested for
biomethane or biohydrogen production (Skjånes et al., 2008,
2013). Among microalgae, marine dinoflagellates are efficient
producers of bioactive substances, including biotoxins, some
of the largest, most complex and powerful molecules known
in nature (Daranas et al., 2001). Biotoxins are of great interest
not only due to their negative impact on seafood safety, but
also for their potential uses in biomedical and pharmaceutical
applications (de Vera et al., 2018). Nonetheless, the supply
of these metabolites remains challenging due to their low
cellular abundance and the tremendous difficulties involved in
large-scale microalgae production (Gallardo-Rodríguez et al.,
2012; Molina-Miras et al., 2018).
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Currently, the most lucrative large-scale production systems
focus on pigments (Novoveská et al., 2019), for example, the
production of β-carotene from genus Dunaliella. Nannochloropsis
species rich in ω-3 fatty acids are used for eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) production. The
cultivation of Haematococcus pluvialis in large quantities for
the commercial production of astaxanthin has also attracted
worldwide interest, as this compound is considered to be a
“super antioxidant” with numerous applications, ranging from
human nutraceuticals and cosmetics to aquaculture feed additives
and beverages (Kim et al., 2016; Shah et al., 2016). Many
other marine microalgae are being investigated as they are
genetically adapted to a variety of environmental conditions.
The basis of these adaptations and/or acclimation mechanisms
are still being uncovered (Mühlroth et al., 2013; Brembu et al.,
2017a,b; Mühlroth et al., 2017; Alipanah et al., 2018; Sharma
et al., 2020). Consequently, several research groups have been
bioprospecting new microalgal strains that accumulate bioactive
compounds of interest (Nelson et al., 2013; Bohutskyi et al., 2015;
Erdoǧan et al., 20166).

Selection and breeding of marine algae lag some 10,000 years
behind similar activities for terrestrial plants. Recent
developments in the fields of molecular biology, genomics
and genetic engineering have enabled the implementation of
detailed functional studies and precise editing of traits/properties
of marine microalgae (Nymark et al., 2016, 2017; Kroth et al.,
2018; Sharma et al., 2018; Serif et al., 2018; Slattery et al., 2018;
Nymark et al., 2019; Sharma et al., 2020). The molecular biology
and genomics tool-box for marine microalgae is growing rapidly
and we will soon be able to optimize growth, stack properties
and transfer complete metabolic pathways from one species to
another or from other types of organisms (Noda et al., 2016;
Slattery et al., 2018; Nymark et al., 2019; Sharma et al., 2020).

Bacteria and Archaea
Marine environments are known to host unique forms of
microbial life (Poli et al., 2017). So far, an increasing number of
thermophilic, halophilic, alkalophilic, psychrophilic, piezophilic,
and polyextremophilic microorganisms (mostly bacteria and
archaea) have been isolated. They are capable of proliferating
even under extreme conditions as a result of their adaptation
strategies involving diverse cellular metabolic mechanisms. As
the survival strategies of extremophiles are often novel and
unique, these microorganisms produce secondary metabolites
or enzymes of biotechnological interest. An example is the
enzymes of thermophilic or psychrophilic bacteria that are
capable of degrading polysaccharides, proteins and lipids
for various applications in the food industry or modifying
exopolysaccharides for tissue engineering (Poli et al., 2017). In a
recent study, bacteria were isolated across the water column of the
CO2-venting Kolumbo submarine volcano (Northeast Santorini,
Greece) and the strains originating from the hydrothermally
active zone in the crater’s floor (500 m depth) were found to
be several-fold more tolerant to acidity, antibiotics and arsenic,

6http://www.egemacc.com/en/

compared to the strains isolated from overlying surface waters
(Mandalakis et al., 2019).

Many archaea are extremophiles. Enzymes derived from
extremophiles (extremozymes) are superior to the traditional
catalysts because they can perform industrial processes even
under harsh conditions, where conventional proteins are
completely denatured (Egorova and Antranikian, 2005).
Hyperthermophiles, whose preferred growth temperatures lie
above 80◦C, consist mostly of archaea. Ideal extremozymes
for application in a sustainable biorefinery with lignocellulosic
waste material as feedstock should exhibit high specific activities
at high temperatures combined with superior thermostability
(Krüger et al., 2018). Over 120 genomes of hyperthermophiles
have been completely sequenced and are publicly available. Of
these, interesting strains belonging to extremophilic archaea that
grow at elevated temperatures have been studied in detail such
as the genera Pyrococcus, Thermococcus, or Thermotoga found
in the marine environment (Krüger et al., 2018). Thermostable
archaeal enzymes were reported to have higher stability toward
high pressure, detergents, organic solvents and proteolytic
degradation (Sana, 2015). However, marine organisms, especially
those in biofilms or adapted to live in extreme environments,
such as hyperthermophiles, may be recalcitrant to typical lysis
methods, hindering protein extraction or modifying the yield
of this important step. The hyperthermophile and radiotolerant
archaeon Thermococcus gammatolerans, which was isolated about
2,000 m deep in the Pacific Ocean, is a typical example of such a
difficult non-model organism (Zivanovic et al., 2009; Hartmann
et al., 2014). Chitin is the second most abundant polysaccharide
after cellulose, but its use as a feedstock is limited by the inability
to hydrolyze it into simple sugars. Several chitinases have been
characterized by extremely thermophilic archaea from marine
biotopes (Straub et al., 2018; Chen et al., 2019). Recently, the
first thermophilic chitinase able to hydrolyze the reducing
end of chitin was reported in Thermococcus chitonophagus,
potentially expanding the opportunities for using this material
(Andronopoulou and Vorgias, 2004; Horiuchi et al., 2016).

Halophilic archaea (haloarchaea) comprise a group of
microorganisms from hypersaline environments, such as solar
salterns, salt lakes and salt deposits. These microorganisms
can synthesize and accumulate both C40 and C50 carotenoids
(Giani et al., 2019). The bioactivity of the carotenoid extracts
of some haloarchaea indicates their antioxidant, antihemolytic,
and anticancer activity (Galasso et al., 2017; Hou and Cui,
2018). The main haloarchaeal carotenoid, bacterioruberin, a C50
carotenoid, presents higher antioxidant capacity when compared
to other commercially available carotenoids, such as ß-carotene
(Yatsunami et al., 2014).

Some groups of bacteria, like actinobacteria (commonly
named actinomycetes) and cyanobacteria, stand out for their
capacity to synthesize secondary metabolites. About 660 new
natural products from marine bacteria were discovered between
1997 and 2008, with 33 and 39% of them originating from
cyanobacteria and actinobacteria (Williams, 2009). Since then,
the new hits from marine bacteria exhibited an accelerated
increase. The number of marine bacterial natural products
identified each year from 2010 to 2012 was approximately 115,
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from 2013 to 2015 was 161, while it increased to 179 in 2016
(Blunt et al., 2018). It is estimated that 10% of all marine bacteria
are actinomycetes (Subramani and Aalbersberg, 2013; Subramani
and Sipkema, 2019). With less than 1% of the actinomycetes
isolated and identified so far, the marine environment represents
a highly promising resource in the field of biodiscovery. Between
2007 and 2017, 177 new actinobacterial species belonging to 29
novel genera and three novel families were described (Subramani
and Sipkema, 2019). The Gram-positive actinobacteria are
a major chemically prolific source of bioactive metabolites
with anticancer, antimicrobial, antiparasitic, anti-inflammatory,
antibiofilm activities, and antifouling properties, among others
(Prieto-Davó et al., 2016; Bauermeister et al., 2018, 2019;
Cartuche et al., 2019, 2020; Girão et al., 2019; Pereira et al., 2020).
There are several marine-derived actinomycete metabolites
described in the literature. Marinone and neomarinone, a
pair of sesquiterpene napthoquinones, generated considerable
interest in the biosynthesis community because terpenes are
extremely rare in bacteria and because the biosynthetic gene
cluster could represent a unique mechanism to produce hybrid
polyketides through combinatorial biology (Pathirana et al.,
1992). Cyclomarin A, a cyclic heptapeptide, also generated
interest due to its uniquely modified amino acids and potent
anti-inflammatory activity (Renner et al., 1999; Lee and Suh,
2016). The importance of these microorganisms (Potts et al.,
2011) is clearly illustrated by the obligate marine actinomycetes
from species Salinispora tropica that produce salinosporamide
A (marizomib), a unique and highly potent β-lactone-γ-lactam
proteasome inhibitor currently in Phase III trials as anticancer
agents (Mincer et al., 2002; Feling et al., 2003; Fenical et al.,
2009). Marinomycins A-D are also chemically unique bioactive
metabolites with potent cytotoxicity toward cancer cell lines,
possessing unprecedented polyol-polyene carbon skeletons with
unique biological activities evaluated in vivo tumor models
(Kwon et al., 2006), and currently being evaluated in clinical
trials. Streptomyces sp. are a source of novel anticancer
compounds as they exhibit significant in vitro cytotoxicity
and pronounced selectivity in a diversity of cancer cell lines
(Hughes et al., 2009a,b) and show potent antibiotic activity
against several human pathogenic strains (Nam et al., 2010; Jang
et al., 2013). However, as non-medical applications require less
strict bioassays for certification, a recent trend for Streptomyces-
derived antimicrobial compounds is their use in antifouling and
antibiofilm products due to their capacity to inhibit the growth of
biofilm-forming species (Cheng et al., 2013; Bauermeister et al.,
2019; Pereira et al., 2020).

Cyanobacteria are found in a wide variety of environments
and are prolific producers of bioactive secondary metabolites.
Cyanometabolites are characterized by antimicrobial,
anti-inflammatory, antioxidant, anticoagulant, anticancer,
antiprotozoal, and antiviral activities. Therefore, cyanobacteria
are suitable sources of bioactive compounds for medical,
food, and cosmetics applications (Silva et al., 2018; Demay
et al., 2019; Kini et al., 2020). To date, 2,031 cyanobacterial
metabolites have been described, among which 65% are peptides
(Jones et al., 2020). Based on the similarities of their structure
and biological activity, they have been organized in 55 unique

bioactive classes, such as cyanopeptolins, anabaenopeptins,
aerucyclamides, aeruginosines, and microginins (Welker and
van Döhren, 2006; Huang and Zimba, 2019; Janssen, 2019).
Frequently a single strain will produce a diverse cocktail
of peptides (Supplementary Figure 1). The peptides are
highly diverse often containing unusual amino acids such
as the heptapeptides, the microcystins which contain an
unusual hydrophobic amino acid, Adda (2S,3S,8S,9S)-3-
amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic
acid. Related pentapeptides, nodularins are the only other
compounds to contain this amino acid. A high number of
cyanopeptides was isolated from cyanobacteria previously
classified to the polyphyletic genus Lyngbya. After taxonomic
revision, the new genus – Moorea – being the source of
more than 40% of all reported marine cyanobacterial natural
products, was described. These include curacin, apratoxins,
cryptophycins, and dolastatins. A total synthesis of several
bioactive cyanopeptides has been successfully elaborated, which
opened new opportunities for structure-activity studies and
better evaluation of their potential (White et al., 1997; Chen et al.,
2014; Yokosaka et al., 2018).

Cyanobacteria synthesize low molecular weight toxins
(cyanotoxins), such as microcystins, anatoxins, saxitoxins,
β-methylamino-L-alanine (BMAA), and cylindrospermopsin
(Janssen, 2019). Amongst cyanotoxins, microcystins are the most
geographically widespread and are not restricted to any climatic
zone or other geographic range (Welker and van Döhren, 2006;
Overlingė et al., 2020). To date, over 279 microcystin variants
have been identified and structurally characterized (Spoof and
Catherine, 2017). Microcystins are potent inhibitors of type
1 and type 2A protein phosphatases (Bouaïcha et al., 2019).
Modified nodularin and microcystins compounds comprise
the cytotoxic agents and can be used for the therapy of various
diseases (Enke et al., 2020).

Marine firmicutes and proteobacteria have been also shown
to produce diverse bioactive compounds, like indole derivatives,
alkaloids, polyenes, macrolides, peptides, and terpenoids (Soliev
et al., 2011). Firmicutes represent 7% of the bioactive secondary
metabolites produced by microorganisms. The genus Bacillus
is a relevant representative of the Firmicutes phylum and is
a common dweller of the marine environment. It shows high
thermal tolerance and rapid growth in liquid media (Stincone
and Brandelli, 2020). Species of the genus Bacillus are a prolific
source of structurally diverse classes of secondary metabolites and
among them, macrolactins, cyclic macrolactones consisting of 24-
membered ring lactones, stand out due to their antimicrobial,
anticancer, antialgal and antiviral activities (Gustafson et al.,
1989; Li et al., 2007; Azumi et al., 2008; Berrue et al., 2009;
Mondol et al., 2013).

Although Proteobacteria is the most abundant phylum in
the ocean, representing 55% of ocean bacteria (Sunagawa et al.,
2015), these bacteria are scarcely explored in terms of their
biotechnological potential while holding many biosynthetic
gene clusters in their genomes, potentially linked with the
production of bioactive compounds (Buijs et al., 2019). More
than 15% of their genome is dedicated to natural products
biosynthesis with structural features that include halogenation,
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sulfur-containing heterocycles, non-ribosomal peptides and
polyketides with unusual biosynthetic pathways (Timmermans
et al., 2017). Thus, proteobacteria are promising cell factories
and remain an attractive source of new drug leads (Buijs et al.,
2019). For example, more than 20 biosynthetic gene clusters
are found in a single genome of pigmented Pseudoalteromonas
strains (Paulsen et al., 2019), comparable to the prolific phylum
Actinobacteria. Apart from their important ecological role
in marine ecosystems, marine members of Pseudoalteromonas
have proven to be important producers of various antibiotics
(Bowman, 2007; Fehér et al., 2010; Chen et al., 2012).
A Pseudoalteromonas strain isolated from Huon Estuary in
southern Tasmania, Australia also shows potent algicidal activity
on harmful algae species implicated in bloom events (Lovejoy
et al., 1998). Additionally, these microorganisms have also been
found to produce several pigmented compounds with antifouling
activity (Egan et al., 2001, 2002; Holmström et al., 2002).

The establishment of (pure) cultures of all bacterial divisions
still remains the main challenge and this is an essential
prerequisite for the development of marine biodiscovery. While
genomics allows access to the genetic information of uncultured
microorganisms, the availability of the organisms is essential to
develop their full potential (Joint et al., 2010).

Fungi
Marine fungi are widespread in the oceans and colonize different
ecological niches; they are found associated with organisms
of all trophic levels and can act as saprobes, symbionts and
parasites (Wang et al., 2012; Raghukumar, 2017; Poli et al.,
2018). Despite the increasing effort of marine mycologists to
contribute to the discovery of new species (Abdel-Wahab et al.,
2017; Bovio et al., 2018; Devadatha et al., 2018; Poli et al., 2017,
2020), marine fungi are still an understudied group compared to
other marine microorganisms (Tisthammer et al., 2016). Jones
et al. (2015) estimated that about 10,000 species of marine fungi
are still waiting to be described. Marine fungal strains can be
isolated from different substrates, such as invertebrates, decaying
wood, seawater, sediment, seaweeds, and mangrove detritus.
Many factors influence the occurrence and distribution of marine
fungi including hydrogen ion activity, hydrostatic pressure,
ionic composition and concentration, osmotic response, oxygen
availability, salinity, tidal exposure, temperature, availability of
substrates for growth (Pang et al., 2016). Since fungi are major
marine decomposers, their distribution and seasonal variability
typically follow the abundance of the organic matter and its
seasonal variability. The highest levels of fungal biomass are
encountered in coastal environments and the upper 30 m of
the sea surface, rather than in deep seawaters (Wang et al.,
2012). On the contrary, deep-sea sediments represent the sink for
organic matter creating a habitat where fungi are the dominant
eukaryotic microbes (Nicoletti and Andolfi, 2018; Amend et al.,
2019). Around 120 fungal species have been retrieved from
sediments of deep-sea hydrothermal vents (Xu et al., 2018).
Several other substrates have been investigated for the isolation
of marine fungi, however, due to the increasing interest in
natural products, the most studied fungal communities are those
associated with invertebrates, algae, and plants (Garzoli et al.,

2015; Bovio et al., 2017; Gnavi et al., 2017; Raghukumar, 2017;
Garzoli et al., 2018; Marchese et al., 2020). Nevertheless, the
uncultivable fungi, described by using HTS techniques, still
represent the major component of the marine fungal community
(Comeau et al., 2016; Rämä et al., 2017; Xu et al., 2018). Marine
fungi can produce hydrolytic and/or oxidative enzymes including
alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase,
keratinase, ligninase, lipase, nuclease, phytase, protease, and
xylanase (Bonugli-Santos et al., 2015). These enzymes can have
their optimum activity at temperatures ranging from 35 to
70 ◦C, and at pH values spanning from 3 to 11. The ability of
marine fungi to adapt to high saline conditions and extreme pH
represents a major biological advantage over terrestrial fungi, and
it gives them a higher versatility in biotechnological applications.

Marine fungi produce diverse bioactive molecules (Silber
et al., 2016). Besides, their biotechnological potential is still
incontestable: among the 1,277 new natural products described
in 2016, marine fungi account for 36% of these newly
described molecules (Blunt et al., 2018). In comparison, the
respective percentage of molecules originating from marine
bacteria was only 14%. In 5 years (2010–2015), 285 antibacterial
and antifungal compounds were isolated from marine fungi
(Nicoletti and Andolfi, 2018). The first reported group of
bioactive compounds from marine fungi were cephalosporins,
a class of β-lactam antibiotics originally isolated from the
Acremonium chrysogenum (which was previously known as
Cephalosporium) by Giussepe Brotzu in 1945. Most of the
published work on secondary metabolites of marine fungi
has focused on a few genera, mainly Penicillium, Aspergillus,
Fusarium, and Cladosporium (Imhoff, 2016; Marchese et al.,
2020). Marine fungi are found to be a promising source
of pharmacologically active metabolites (Imhoff, 2016) with
novel anticancer, antibacterial, antiviral, anti-plasmodial, anti-
inflammatory, but rarely antifouling, activities (Rajasekar et al.,
2012; Bovio et al., 2019a). They are also useful in the production
of biosurfactants (Cicatiello et al., 2016; Pitocchi et al., 2020),
enzymes (Nicoletti and Andolfi, 2018), and bioremediation
(Bovio et al., 2017). Interestingly, endophytic fungi that are
associated with macroalgae produce biologically active secondary
metabolites with antibacterial, antifungal anticancer and other
beneficial properties (Mathan et al., 2013; de Felício et al.,
2015; Teixeira et al., 2019). Furthermore, marine fungal enzymes
can be used for cleaning, textile, leather, biofuel, pulp, and
paper industries; for food and beverages; for animal feed;
for environmental, pharmaceutical and cosmetic applications
(Bonugli-Santos et al., 2015).

Thraustochytrids
The thraustochytrids represent a unique protist group of
eukaryotic microorganisms that provides bioactive compounds
including antimicrobial agents. In contrast to their common
referral as microalgae, these marine heterotrophic protists (a
fungus-like clade of Stramenopiles, class Labyrinthula of the
Chromista kingdom) are not microalgae because they are
not photosynthetic and lack plastids (Leyland et al., 2017).
Under culture conditions that are different for various species,
each one of the thraustochytrid taxa develops ectoplasmic
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networks generated by a unique organelle termed the sagenogen
(or sagenogenetosome). Some growing cells exhibit gliding
mobility associated with the ectoplasmic networks. Their
reproduction activities involve the formation of heterokont,
biflagellate zoospores (Porter, 1990). Yet, the level of
diversity of thraustochytrids remains to be uncovered since
an increasing number of strains and species are being discovered.
Thraustochytrid species are usually characterized either by their
developmental modes, sorus form or their spore type (Porter,
1990). However, these traditional systematic approaches are
insufficient, as only a limited list of morphological characters is
available. This facilitated the development of molecular markers,
of which the most common are the 18S rDNA sequences (Mo
et al., 2002). Yet, due to the limitation of 18S rRNA clone
library construction and the emerged cultivation-dependent
approaches, the diversity of thraustochytrid species is far from
elucidated (Liu et al., 2017).

The thraustochytrids have been isolated from a wide range of
coastal, open sea (where they were collected by “pollen traps”)
and deep-sea habitats that are often rich in organic materials
(Raghukumar, 2002). They are major colonizers of mangrove
environments, feeding on decaying materials (Morabito et al.,
2019), while playing an important ecological role as active
degraders of organic materials and primary consumers (Mo and
Rinkevich, 2001). In fact, thraustochytrids, as other heterotrophic
marine protists, can consume dissolved organic matter and
particulate organic matter as energy sources, and as a result,
they are considered to share a distinct ecological niche in marine
ecosystems with specific roles in marine biogeochemical cycles
(Liu et al., 2017).

Thraustochytrids, considered as oleaginous microorganisms,
are developing into an increasingly important marine source
of polyunsaturated fatty acids (PUFAs) for a wide range
of biotechnological applications (primarily for the industrial
production of the ω-3 fatty acid DHA). Some thraustochytrids
including species of Schizochytrium and Aurantiochytrium
produce long chain polyunsaturated lipids like DHA (C22:5
n3) and docosapentaenoic acid (DPA, C22:5 n6) (Heggeset
et al., 2019). To produce their DHA, thraustochytrids use a
sophisticated system that differs from the classical fatty acid
synthase system (synthesized by a polyketide synthase, instead
by the standard fatty acid synthesis), yet, very little has been
developed regarding process optimization and their optimal use
(Aasen et al., 2016). They are also known to be pathogens of edible
invertebrates and common contaminants of marine invertebrate
cell cultures (Rinkevich and Rabinowitz, 1993; Ilan et al., 1996;
Bowels et al., 1999; Rinkevich, 1999; Rabinowitz et al., 2006) as
they are found on surfaces and within the bodies of most marine
organisms. Based on these characteristics, the thraustochytrids
are considered as an alternative to fish oil and an eco-friendly
solution to overfishing. In addition, they are further known to
produce saturated fatty acids which are renewable sources of
biofuels, for biodiesel, and as a potential source of squalene and
carotenoids, two other commercially important compounds that
show an increasing market potential (Aasen et al., 2016).

Thraustochytrids also have novel extracellular lipases, for
which sequences have not yet been elucidated (Ishibashi et al.,

2019). Thraustochytrid strains produce enzymes with multiple
hydrolytic activities and a wide range of them is being
secreted constitutively, including agarases, amylases, pectinases,
chitinases, and carrageenases. They thus have potential in diverse
industrial applications (Shirodkar et al., 2017). They are probably
the only eukaryotic group that may digest tarballs. Further, the
oil from one strain of thraustochytrids (Schizochytrium sp.) has
been designated safe for human and for animal consumption by
the United States Food and Drug Administration (US FDA7).
Thus, it is not surprising that 731 patents on thraustochytrids
were published between 1999 and 2018 (US and Eurasia are top
in the list), with most patents targeting the use of their chemicals
for human well-being purposes, especially the use of ω-3 oils
(Colonia et al., 2020).

The development of the research on thraustochytrids has
largely facilitated the exploration of novel thraustochytrid strains
and species from various marine habitats. Since the beginning of
this century, research efforts are involved in fermentative trials,
to select appropriate thraustochytrid strains for the industry and
for the optimization of culture conditions to obtain high yields
(Rabinowitz et al., 2006; Xie et al., 2017).

Viruses
While viruses are identified as pathogens in many marine
organisms, little research effort has been put toward their
presumed role as associated organisms. There are an estimated
1030 virioplankton in the world’s oceans, the majority of
which are bacteriophages (Parsons et al., 2012). Viruses can
live as virioplankton, which is a dynamic component of
the marine environment, with a turnover time of 2–4 days,
or associated to macro- or microorganisms encompassing
enormous genetic diversity and serving as a reservoir of genes
for prokaryotic communities (Angly et al., 2006; Dinsdale et al.,
2008). They contribute to the global carbon cycling as well
as influence pathways of their host’s metabolism (Hernandes
Coutinho et al., 2017, 2018, 2019). The presence of viruses
and virus-like particles (VLPs) in association with corals
(Blackall et al., 2015), sea cucumbers (Nerva et al., 2019a) and
sponges (Webster and Taylor, 2011) has been reported using
morphological and molecular approaches. In the sponge phylum,
elaborate microscopical studies have demonstrated a variety of
morphological entities that can be hosted in different body
compartments of the host, such as within the cells of the sponge
or the associated microbes, or the extracellular matrix and the
epithelium (Pascelli et al., 2018). While functional, mutualistic
roles have been envisaged for viruses and VLPs associated with
corals (van Oppen et al., 2009), relevant studies have been lacking
in sponges. Specifically, most marine viruses are cyanophages and
are important players in biogeochemical cycles and drivers of the
evolution of their hosts (Brussaard et al., 2008) by influencing
microbial population size through their lytic capacity, altering
their metabolic output and providing an immensely diverse
pool of genetic material available for horizontal gene transfer.
Only recently, viruses infecting and replicating in marine fungi
were reported and many new mycoviruses were identified in a

7https://www.fda.gov/
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handful of studies (Nerva et al., 2016, 2017, 2019b). Contrary
to most bacterial viruses, mycoviruses do not cause lysis of the
fungal host cell and accumulate to high levels without specific
cytotoxic effects as persistent and often cryptic infections creating
multi-level interactions with their hosts: they can modulate host
behavior to successfully spread and survive in the environment
and provide adaptive advantages (Mehle et al., 2012; Selman et al.,
2012; Son et al., 2015). Very recently it has also been highlighted
how mycoviruses can modulate the production of secondary
metabolites for example mycotoxins (Nerva et al., 2019a). Based
on this evidence, the search for mycoviruses within each fungal
isolate and the investigation of their contribution to biosynthetic
processes is of high biotechnological interest, and it may open a
new avenue in the discovery of unique natural products.

By some estimations, bacteriophages are the most abundant
entities on this planet (Harada et al., 2018). Their valorization
in early anti-infection trials was hampered by the discovery
of antibiotics but it is being reintroduced due to the global
emergence of antibiotic resistance (Coffey et al., 2010; Fernández-
Ruiz et al., 2018). Bacteriophages can be used as an alternative
to antibiotics, either against resistant pathogens (Mattey and
Spencer, 2008) or for steering aquaculture processes that rely
on massive use of antibiotics (Culot et al., 2019). Additionally,
bacteriophage biotechnology is directed to control bacterial
pathogens in important crops and to limit the risk of pathogens
reaching food chains by decontamination of livestock (Harada
et al., 2018). Bacteriophages can also be used as cost-efficient,
highly stable and specific biosensors to effective detection of
pathogenic bacteria (Singh S. et al., 2020).

METHODOLOGY FOR EXPLORATION OF
MARINE BIORESOURCES

Data Analysis, Storage, and Sharing
Classical taxonomy, based on morphological traits, is still
the basis of the (macro)species description. However, omics
approaches have become increasingly popular in recent decades
due to decreasing costs of DNA sequencing, the availability of
mass spectrometry (metabolomics, lipidomics, and proteomics)
and the development of bioinformatics. The major limitations
that prevent taking the full advantage of the rapidly growing
volumes of biological data from omics technologies, are the lack
of standardization and/or description of experimental/sampling
conditions, as well as lack of big data analytics experts.
Other limitations are the lack of user friendly bioinformatic
annotation pipeline tools and well curated and populated
sequence and data repositories (Glöckner and Joint, 2010). Being
coupled with subsequent network analyses, bioinformatics and
biostatistics, these tools would enable faster detection of new
marine species and their biomolecules and faster adoption of
molecular protocols. Typically, biodiversity data is generated
from long-term monitoring campaigns or novel exploratory
expeditions and are presented as lists of species presence and
(relative) abundance. As these lists can be lengthy, their manual
inspection is time-consuming and limits access to important
pieces of information. Visualizing these data using network

analysis tools can uncover important associations and relations
between species in a specific location (Orlando-Bonaca and
Rotter, 2018; Mozetič et al., 2019). Importantly, other traits can
be included in the biodiversity datasets (i.e., chemodiversity,
physical parameters), which can uncover complex network
associations of marine organisms and their compounds and
can help to determine the target organisms for biotechnological
exploitation. Bioinformatics approaches are typically developed
and used for assembly, alignment, gene/genome annotation,
function prediction, and data integration. After determining the
species and compounds of interest, the next step is to compare the
organism growth/metabolic engineering conditions, productivity
and yields of the compound(s) of interest. Novel approaches
such as the use of Solid-Phase Microextraction (SPME) have
been recently demonstrated as a successful means of non-
invasive untargeted metabolome screening of marine organisms
(Bojko et al., 2019). This method comprises the use of specially
coated probes that combine metabolite sampling and extraction
in a single step, thus allowing in vivo metabolomic screening
in the marine environment, while allowing both polar and
non-polar metabolites to be extracted efficiently (Reyes-Garcés
et al., 2018), thus emerging as a useful field tool to discover
novel compounds of interest from complex marine holobionts.
Statistical models are then often used for the determination of
differential expression of genes or metabolites of interest and
determination of optimization protocols. These are necessary
steps for the development of scale-up production protocols.

Bioprospecting of marine microorganisms using state-of-
the-art molecular methods generates vast amounts of data. By
digitalizing these data, scientists have now access to biodiversity
data that can be integrated, thus providing an organic link
between species distribution and genome diversity (La Salle
et al., 2016). However, not all data are open access, as data
providers may have their own policies concerning privacy and
confidentiality, which limits scientists to share their experience
and collaboration. Importantly, any data provider should develop
internal metadata guidelines that provide minimal information
about the data stored that will enable their use in the future.
In 2011, the European Commission (EC) launched a new Open
Data Strategy for Europe after realizing that data generated by
the public sectors are vast and although financed by the public
funds, data are not always available and accessible. Hence, the
EC highlighted the unused potential of public sector data to spur
innovation, economic growth, and answer to societal challenges
such as food security and healthcare8. As a result, Europe now
hosts at least two infrastructure initiatives, publicly hosting many
marine microbial strains: MIRRI (Microbial resource research
infrastructure9) and EMBRC (the European marine biological
resource center10). MIRRI is an infrastructure initiative for
preserving microbes that can be cultured for future exploitation
and providing coordinated actions to facilitate access to genetic
resources – data, microbial strains, and expertise. EMBRC and

8https://ec.europa.eu/digital-single-market/en/open-data
9https://www.mirri.org/home.html
10http://www.embrc.eu/
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LIFEWATCH (European Infrastructure Consortium11) connect
marine stations that provide direct access to the sea, marine
resources, and different services. A review of the past and current
European initiatives is provided in the Supplementary Table 1
within Rotter et al. (2020a). Also useful for marine biotechnology
development are databases of chemical structure: ChemSpider,
databases of carbohydrate structures and other glycobiology-
related fields (e.g., Glycosmos, Glycomics at Expasy, GlyGen,
and CarboMet), MarinLit, a database of marine natural products
literature that has been active since the 1970s, CyanoMetDB, a
comprehensive database dedicated to cyanobacterial secondary
metabolites (Jones et al., 2020), and the newly developed Natural
Products Atlas, an open access database for microbial natural
products discovery (van Santen et al., 2019). These databases
(Table 2) play an important role in facilitating track and trace of
the specimen and the chemical compounds they synthesize, thus
enabling a rapid dereplication (Blunt et al., 2012; Collins, 2019).
Importantly, the policy making and scientific community are
supporting the public availability of all information and materials
from these databases to avoid the fragmentation of expertise,
unbalanced database access, and the estimated $10 billion annual
losses due to incorrect reference material (Collins, 2019).

The Chemical Inventory
There is a wide range of marine natural products, from relatively
small primary and secondary metabolites, with molecular weight
usually lower than 1,500 Da, which comprise around 34,000
compounds according to the latest version of the marine natural
products database MarinLit (Table 2) with a wide range of
biological activities, to macromolecules such as enzymes and
polysaccharides. Proteins, carbohydrates, and lipids from marine
organisms are crucial in our diet but can also be involved in
the development of novel processes for the production of higher
value-added products. A wide range of applications has been
described for marine enzymes in the food industry and human
health, and marine polysaccharides have also found multiple
biomedical and tissue engineering uses (Fernandes, 2014; Eswara
Rao et al., 2017; Joshi et al., 2019). However, only a fraction of
the enzymes derived from marine organisms has been isolated
and characterized. Hence, enzymes as biocatalysts from marine
organisms are a relatively untapped resource for discoveries.

Dereplication is a crucial step in any natural product
discovery used to identify known metabolites in complex and
heterogeneous matrices with a broad concentration of bioactive
molecules, preventing the re-isolation and re-characterization
of known bioactive compounds (Gaudêncio and Pereira, 2015;
Kildgaard et al., 2017). The last two decades have seen a
revolution in the development of new dereplication strategies.
These usually consist of the combination of analytical techniques:
chromatography (usually high pressure liquid chromatography,
HPLC or UHPLC) with a detection method, mass spectrometry
(MS) in the high resolution (HRMS) mode and/or with ion
fragmentation (MS/MS), or nuclear magnetic resonance (NMR).
The remarkable advances in analytical instrumentation along
with the development of suitable databases have enabled the

11https://www.lifewatch.eu/

TABLE 2 | Overview of databases, useful for the marine biotechnology pipelines.

Database Source Content

ChemSpider http://www.chemspider.com/ Chemical structure

Glycosmos https://glycosmos.org/ Carbohydrate structures
and other
glycobiology-related fields

Glycomics at
Expasy

https:
//www.expasy.org/glycomics

GlyGen https://glygen.org/

CarboMet https://carbomet.eu/

MarinLit http://pubs.rsc.org/marinlit/ Marine natural products
literature

CyanoMetDB Jones et al., 2020 cyanobacterial secondary
metabolites

Natural
Products Atlas

https:
//www.npatlas.org/joomla/
van Santen et al., 2019

Microbial natural products
discovery

GNPS http://gnps.ucsd.edu Spectrometry database

ZINC http://zinc.docking.org/ Ligand based virtual
screening

Reaxys https://www.reaxys.com Chemical information and
bioactivity

ChEMBL https://www.ebi.ac.uk/chembl/ Bioactive molecules with
drug-like properties

PubChem https:
//pubchem.ncbi.nlm.nih.gov/

General chemical
information

Streptome DB
3.0

http:
//132.230.56.4/streptomedb/
Moumbock et al., 2021

Streptomycetes natural
products

development of the fast dereplication processes required in
current drug discovery programs based on natural products
(Pérez-Victoria et al., 2016). The use of LC-MS/MS based
molecular network workflows enable the unearthing of the
real chemical inventory of chemical extracts and downstream
fractions, and significantly increase the annotation rate of
metabolites (Oppong-Danquah et al., 2018), allowing the targeted
isolation of new metabolites (Li et al., 2018). Furthermore,
biological activities can be mapped into such networks,
facilitating the rapid discovery of (new) compounds that are
responsible for bioactivity (Fan et al., 2019).

Open-access knowledge bases containing tandem mass
(MS/MS) spectrometry data such as the Global Natural Products
Social Molecular Networking (GNPS, Table 2) or structures of
microbial natural products (The Natural Products Atlas, Table 2)
have been greatly enhancing the efficiency of dereplication
processes leading to the identification of new molecules and
natural product scaffolds (Wang et al., 2016). Small Molecule
Accurate Recognition Technology (SMART), using NMR data,
constitutes a step forward in the automatic identification
or classification of new natural products, especially when
combined with GNPS. Metabolite identification based on high
resolution – HR-MS/MS and NMR along with freely accessible
and commercial databases was reviewed by Wolfender et al.
(2019). The next steps are: (i) the use of ZINC, Reaxys, ChEMBL,
PubChem or StreptomeDB 3.0 databases, and/or NMR databases
for virtual bioactivity screening (Table 2). These use either
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structure-based or ligand-based computational approaches to
predict quantitative structure-activity relationship (QSAR), based
on active and inactive known molecule, or to predict binding sites
based on the chemical similarity to known ligands to identify
protein targets of bioactive molecules (Pereira et al., 2014, 2015;
Sterling and Irwin, 2015; Cockroft et al., 2019; Cruz et al.,
2019; Dias et al., 2019). Additionally, (ii) the use genomic data
in combination with molecular networks enables dereplication
also at the frontier between chemistry and biology (van der
Hooft et al., 2020), (iii) the creation of a globally available NMR
raw data bank (Gaudêncio and Pereira, 2015; McAlpine et al.,
2019), and (iv) the creation of computer based tools to compare
and integrate such global NMR data bank can all be used for
advancing the automated identification of chemical structures
(Zhang et al., 2020a).

Biotechnological Production of
Secondary Metabolites
The efficiency and rate of secondary metabolite production by
microorganisms are heavily dependent on their culture/growth
conditions and potential for up-scaling. Indeed, one of the
driving forces for the production of specific metabolites,
compared to the constitutive ones that are usually produced
in any conditions, is the simulation of the marine microbes-
native environment, including the interactions with other
microorganisms as usually occurs in nature (Takahashi et al.,
2013; Vallet et al., 2017). Consequently, standard conditions
do not always support fungal or bacterial production of
interesting secondary metabolites (Reich and Labes, 2017). To
increase the availability of microbial biomass and minimize the
environmental damage impacts of organismal collections, new
strategies are needed to develop sustainable in vitro approaches
for the cultivation of whole organisms or of individual cell
types from targeted marine species (Rinkevich, 1999, 2005, 2011;
Barnay-Verdier et al., 2013; Ventura et al., 2018; Maristem
COST Action12). This is also of importance for sponges and
corals, which host endosymbiotic intracellular microorganisms.
The appropriate cultivation settings should provide the optimal
conditions for the holobionts (Rinkevich, 1999).

When cultured, microorganisms do not always continue to
produce the same metabolites (Wijffels, 2008). To mimic the
naturally occurring interactions, the co-culture (solid media) or
mixed fermentation (liquid media) with other organisms have
been demonstrated to stimulate the production of secondary
metabolites (Romano et al., 2018), some modulating the quorum
sensing, with application both in antibiotics and anticancer
pharma sectors (Bertrand et al., 2014). The interactions can
be modulated to mimic the natural environment for chemical-
ecological study, including symbiosis studies. For example,
specific antagonistic organisms can be introduced to promote the
synthesis of antibiotics (Bertrand et al., 2014; Romano et al., 2018;
Bovio et al., 2019b). Enhanced lipid production in microalgae has
been documented in co-cultivation of microalgae and bacteria,
including cyanobacteria (Ferro et al., 2019; Gautam et al., 2019;
Toyama et al., 2019), as well as in co-cultivation of microalgae and

12http://maristem.eu/

fungi (Arora et al., 2019). Growth-enhancement in microalgae
has been documented in co-cultivation of microalgae with other
microalgae (Ishika et al., 2019), as well as with fungi (Li H. et al.,
2019; Wang et al., 2019) and protozoa (Peng et al., 2016).

Some studies have shown that bacterial genomic data
reveal an inconsistency between the number of gene clusters
identified using bioinformatic approaches as potentially
producing secondary metabolites and the number of chemically
characterized secondary metabolites produced under standard
fermentation conditions (Reen et al., 2015; Romano et al.,
2018). Therefore, cultivation-based techniques have been
developed aimed at stimulating expression of these “silent”
genes. In 2002, Bode and collaborators highlighted that the
modification of cultivation parameters such as temperature or
salinity can activate silent genes that determine the synthesis
of new secondary metabolites; this method is called OSMAC
approach (One Strain – Many Compounds, Bode et al., 2002).
The OSMAC strategy is a powerful tool that can activate many
silent biogenetic gene clusters in microorganisms to produce
more natural products or to induce the expression of poorly
expressed bioactive metabolites (Abdelmohsen et al., 2015; Pan
et al., 2019). This activation can be achieved in several ways.
(i) By co-cultivation of different species, antibiotics can be
produced as a response to a bacterial challenge (Cueto et al.,
2001). (ii) Elicitation with microbial lysates or with microbial
cell components can be applied. (iii) Chemical elicitation by the
addition of compounds of non-biological origin. This results
in changes in the metabolomic profiles, e.g., the increase in
the production of the antibiotic jadomycin B, in Streptomyces
venezuelae after the addition of ethanol or the alteration of
the antibiotic production of Bacillus circulans and Bacillus
polymyxa after the addition of DMSO to the fermentation
media (Dull et al., 1994; Chen et al., 2000; Pettit, 2011; Zhu
et al., 2014; Abdelmohsen et al., 2015). Also, other epigenetic
modifiers such as 5-azacytidine and suberoyl bis-hydroxamic
acid, are widely recognized as effective tools to stimulate the
production of secondary metabolites and to find new bioactive
molecules in microorganisms (Adpressa and Loesgen, 2016;
González-Menéndez et al., 2018; Romano et al., 2018). Therefore,
once the marine bacteria strains exhibit promising activities, it is
important to focus on different cultivation media and conditions
to enhance the production of the desired metabolites.

Extraction, Fractionation, Isolation,
Structure Elucidation, and Bioactivity
Screening
There is a great need for exploring new extraction protocols
to identify bioactive ingredients. Extraction is the first step
needed to obtain natural products from organisms. Several
extractions methods can be applied, depending on the organisms
and the compounds of interest. At lab scale, maceration, or
percolation with solvents (organic or water) at room temperature
are the most commonly used methods for macroorganisms.
The selection of the solvent depends on the solubility of the
metabolites of interest, but there are other aspects such as cost
and safety that are considered. To increase efficiency, avoid
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the use of large amounts of solvents and reduce extraction
time, some greener and automated extraction methods have
been developed such as super-critical fluid extraction – SFC
(Essien et al., 2020), subcritical water extraction – SWE
(Zhang et al., 2020b), a moderate electric field – MEF (Gavahian
et al., 2018), ultrasound (Kumari et al., 2018), pressurized liquid
extraction – PLE, microwave assisted extraction – MAE and
enzyme-assisted extraction – EAE (Grosso et al., 2015). They
all share the advantages of time reduction, optimized solvent
consumption, reproducibility and selectivity, rendering these
procedures suitable for both analytical and industrial processes.

Microorganisms that grow in liquid media require several
steps to obtain biomass for biochemical extraction. Biorefinery
is costly and requires a long biomass processing that involves
multiple unit operations, including cultivation, harvesting,
product extraction and stabilization. All of these contribute
to the commercial competitiveness of bioproducts. One major
bottleneck is the initial amount of the biomass of organisms
available. Another issue is the differences in bioactive molecules
produced by the same organisms but grown under different
environmental conditions or different seasons. Homogenization
can take place only if they can be cultivated under the
same conditions, which is not always possible. Extraction,
which directly impacts the product properties, is one of the
main commercial constraints in the production of fuels, food
and feed, and high-value products like polysaccharides and
pigments. Extraction is a highly specific process which has to
be adopted to obtain the desired products (Rizwan et al., 2018).
Recently, it has been suggested that “milking” of secondary
metabolites from marine organisms can significantly reduce
the time and cost of this process (Hejazi and Wijffels, 2004;
Kim et al., 2016). “Milking” is a term used to describe a non-
destructive regenerative extraction of target metabolites from
marine organisms while keeping the cells metabolically active just
like producing milk from cows. Unlike conventional biorefinery,
which requires a time-consuming cultivation step and intensively
energy-consuming harvesting and cell disruption steps, the
milking process does not require the reculturing of cells from
the exponential stage of the cultivation process nor harvesting
and cell disruption (Hejazi and Wijffels, 2004). Milking has
been demonstrated in two microalgal species; Dunaliella salina
for β-carotene and Botryococcus brauni for hydrocarbon (Hejazi
et al., 2004; Moheimani et al., 2014). These microalgae have
a weak or no cell wall and release storage compounds to the
cultivation medium under stress (exocytosis), which remain the
prerequisite for the success of milking.

Generally, crude extracts consist of a complex mixture
of natural products that require several fractionation and
purification steps to obtain pure compounds. The separation
method used depends on the physical or chemical properties
of the individual natural product and the amount needed.
Chromatography, especially column chromatography, is the
main method used to obtain pure natural products from
a complex mixture. Several chromatographic options can be
used depending on the polarity, size or ionic strength of the
compounds of interest. Ideally, the process would involve a one-
step purification and a scale-up system that allows working with

the amounts of crude extract that are at the same time relevant
for the industrial level (Ebada et al., 2008; Zhang et al., 2018).

Suitable and standardized scalable extraction and purification
methods are not yet established. New separation techniques
are necessary, capable of treating dilute solutions or solutions
containing only minute amounts of target molecules in the
presence of vast amounts of accompanying compounds in
both small and large-scale processes, even in the presence of
particulate matter. In addition to standard separation procedures,
applications of magnetic (nano)particles in batch systems,
magnetically stabilized fluidized beds or magnetically modified
two-phase systems can be used successfully for the separation of
natural products (Safarik and Safarikova, 2004). In most cases,
magnetic carriers bearing an immobilized affinity or hydrophobic
ligand or ion-exchange groups, or magnetic biopolymer particles
having affinity to the isolated molecule are mixed with a sample
containing target compound(s). Following an incubation period
when the target compound(s) bind to the magnetic particles,
the whole magnetic complex is easily and rapidly removed
from the sample using an appropriate magnetic separator. After
washing out the contaminants, the isolated target compound(s)
can be eluted and used for further work. All the steps of the
purification procedure can take place in one single vessel. The
separation process can be performed directly in crude samples
containing suspended solid material (Safarik and Safarikova,
2004). Magnetic techniques based on the application of magnetic
nano- and microparticles have been successfully used for the
preconcentration, detection and determination of different types
of xenobiotics, viruses, microbial pathogens and protozoan
parasites in water samples (Safarik et al., 2012). Currently,
magnetic solid-phase extraction (Safarikova and Safarik, 1999) is
one of the most often used preconcentration procedure used in
(bio)analytical chemistry.

The structure elucidation of secondary metabolites is of
critical importance, especially when developing products for the
pharmaceutical sector. Marine natural products have unique
complex chemical scaffolds, and their structures are classically
elucidated by the combination of HR-MS, 1D and 2D NMR
data analysis. Computer techniques are being developed to
aid structure elucidation such as Computer-Assisted Structure
Elucidation (Burns et al., 2019) but are still in their infancy.
To determine the absolute configuration of metabolites, single-
crystal X-ray diffraction, NMR advanced Mosher’s methods
(for alcohols), Marfey’s method (for aminoacids) are often
used (Bhushan and Brückner, 2011; Cimmino et al., 2017).
Computational approaches such as density functional theory
(DFT) coupled with (i) NMR, (ii) chiroptical methods e.g.,
electronical circular dichroism (ECD), vibrational circular
dichroism (VCD) spectroscopy and (iii) optical rotation are
being successfully employed in identification of relative and
absolute configuration of marine natural products (Merten
et al., 2015; Batista et al., 2018; Menna et al., 2019; Wang
and Hamann, 2019; Fan et al., 2020; Marcarino et al.,
2020; Zhu and Sun, 2020). The elucidation of biosynthetic
pathways from genomic sequence data is also used to
support the absolute configuration assignment (Hu et al., 2018;
Kim et al., 2020).
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Screening for biological activity of marine extracts or
purified compounds is an important next step in determining
their applicability for a specific purpose. It is typically done
using in vitro, ex vivo or in vivo approaches. The bioassay-
guided identification and purification of novel compounds is
a common practice (Strömstedt et al., 2014; White et al.,
2019). First, the selection of the extraction protocol may
affect the possibility of testing for biological activity, as not
all solvents that are used for extractions are biocompatible.
Second, an array of selected bioassays can be performed
to discover novel bioactive compounds, encompassing for
example antimicrobial, anticancer, antiviral, antiparasitic, anti-
inflammatory, nematotoxic or entomotoxic activities. These
bioassays are usually very specific, fast and often in a high-
throughput format. They test for individual bioactivity, such as
inhibition of a specific enzyme, or inhibition of bacterial growth
using only one bacterial species. Since the amount of the extracted
material is usually limited, a limited array of bioassays can be
performed on a given extract/compound. Therefore, the choice
of bioassays and their quality determine the potential of the
extract/compound for future applicability. In contrast to the use
of dereplication to avoid the rediscovery of compounds from
different extracts/bioresources, the use of different bioassays for
the same extract is encouraged to avoid missed opportunities for
alternative bioactivities. Namely, there is a myriad of bioactive
compounds in any extract and it is becoming accepted that
any compound can execute multiple bioactivities. Repurposing
of compounds with known bioactivity for a different one
is increasingly becoming an attractive proposition because it
involves the use of de-risked compounds, with potentially lower
overall development costs and shorter development timelines
(Pushpakom et al., 2019). Importantly, as in any application,
the compounds in original or transformed form inevitably end
up in the environment, an important bioassay to include in the
screening process is the (eco)toxicity assessment (Walker, 2008;
Yan et al., 2019). No product safety risks can be taken, especially
considering the tragic case with the sedative drug thalidomide
(Thalidomid R©) prescribed to relieve pregnancy nausea, in which
one of the stereoisomers had the desired bioactivity and the
other caused birth defects in thousands of children. This tragedy
marked a turning point in product testing, resulting in the
development of systematic toxicity testing (Kim and Scialli,
2011). Hence, in the last decade in silico methods have been
developing to assess both bioactivity and toxicity of known
bioactive compounds and their synthetic analogs or novel
compounds with known chemical structures (Yang et al., 2018;
Liu et al., 2019; Brzuzan et al., 2020). In addition, the virtual
screening technique called target fishing (Singh N. et al., 2020)
can help recognizing the molecular target of the discovered
marine natural products.

Screening and preclinical validation have been essentially
performed in rodents, mostly because, among the model
organisms used in pharmaceutical and biomedical research,
they have a large repository of genetic/molecular tools available
and are genetically similar to humans. However, ethical and
economic concerns associated with low throughput (Giacomotto
and Ségalat, 2010), have potentiated the search for alternative

models that may be used as the first line of screening. This
decreases the burden on mammalian models, that still need to
be used as a final step of validation prior to clinical trials. In vitro
and ex vivo screenings using cell lines and tissues representative
of both healthy and pathological human conditions, are currently
used to identify biological activities of marine-derived extracts
(Laizé et al., 2014; Kolanti et al., 2016; Yuan et al., 2017;
Carson et al., 2018b; Martínez Andrade et al., 2018; Sun et al.,
2018). Nevertheless, the results obtained, even if promising, still
need to be validated in vivo. Zebrafish has become a model
of increasing interest for human disorders and it allows both
low-throughput screening using adults, and high-throughput
screening using larvae, thus fitting the requirements to develop
vertebrate whole-animal assays (Lee et al., 2017). The increasing
number of molecular tools and the development of mutants and
transgenic fish (Hwang et al., 2013; Cornet et al., 2018), capable of
highlighting almost any given tissue (Chen et al., 2017), allowing
in vivo follow-up of treatments through fluorescence microscopy
is also an asset, associated to their easy maintenance, short life
cycle, large progeny and translucent larvae.

PRODUCTION UPSCALING

The long-term socio-economic sustainability of production is
an important aspect of marine biotechnology. It relies on the
stakeholders’ capabilities to manage the resource sustainably and
to provide the social, economic, and regulatory conditions to
ensure a living income. Therefore, wild harvesting is not desirable
as it could endanger the species itself or its associated species and
impact the whole marine ecosystem. The quality and quantity of
the product should not be dependent on the seasonal fluctuations
and abundance of biomass or its target compound. From an
economic and social perspective, commercial/industrial activities
preferably maintain regular volumes of production throughout
the year. The translation of research laboratory discoveries into
commercial items that entail obtaining and maintaining the
supply levels and safety requirements are nowadays recognized
as the major hurdles in bringing marine natural-product-based
molecules to market (Taylor, 2015; Newman and Cragg, 2020).
With regards to sustainability and zero-waste principle, an
important consideration when growing marine biomass and
isolating bioactive compounds is cascading, circular economy
and zero waste/waste utilization. The biorefinery should be
designed typically in a cascading approach to exploit all bioactive
and not just the dominant or more economic compounds. The
biological leftovers from a cascading process could ultimately
be valorized as a feed or low end as biomass for production of
bioenergy (Tedesco and Stokes, 2017; Álvarez-Viñas et al., 2019).

After the target product is known, the best production
pathway is identified (Chubokov et al., 2016). There are two
general production upscaling methods (Figure 3). One is the
culture of organisms in tanks, ponds or bioreactors or to
a certain extent at sea infrastructures for seaweed, sponges
and corals. Alternatively, the naturally harvested biomass is
directly used or molecules of interest are synthesized. When
the organisms that naturally produce the compounds of interest
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FIGURE 3 | Production scale-up possibilities.

are used (Figure 3, left), the desired properties for scaled-
up products are a short production cycle and a high yield
per unit (Li S. et al., 2019). One of the possible approaches
for product harvesting is to trap the secondary metabolites
secreted by the invertebrate or associated microorganisms to
the surrounding water. This strategy has the advantage of
preserving the producer organism with no stress or injury.
The proof of concept was described recently for a device that
traps the secreted metabolites with Amberlite XAD-16 (Vlachou
et al., 2018). Based on this concept, the group patented and
built Somartex R© (self operating marine trapping extractor) for
testing in different marine locations13. Alternatively, compounds
of interest can be produced with plasmid-based expression
systems in well-established prokaryotic and eukaryotic hosts,
such as Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae
(Kroll et al., 2010; Mao et al., 2017; Miao et al., 2020), the
yeast genus Pichia as well as cell systems. These recombinant
expression systems have dramatically increased the opportunities
for biotechnology and commercialization of products. The
selection of the expression plasmids to be used depends on
the combination of important factors, such as the selection of
replicons, promoters (either homologous or heterologous ones),
selection markers and cloning sites (Rosano and Ceccarelli,
2014). Systems biology and CRISPR/Cas systems are used
to improve bioprocess performance (Tripathi and Shrivastava,
2019). Appropriate growth media and growth conditions (e.g.,
batch, fed-batch, and continuous or perfusion modes and
optimization of physico-chemical parameters in bioreactors)
have to be adapted next, followed by the establishment of effective
purification strategies (Tripathi and Shrivastava, 2019; Duzenli
and Okay, 2020). Finally, product yield optimization is achieved
by fine-tuning the metabolic pathways. This promising process
is not yet fully implemented in practice due to the combinatorial
complexity of optimizing metabolic pathways and the potential
cellular toxicity resulting in the overexpression of key pathways
(Chubokov et al., 2016).

Instead of culturing the whole organisms, another possible
focus is to establish cell lines using marine invertebrates
(Figure 3, right). So far, this has not been successfully
implemented. Nevertheless, some research groups are working
on the improvement of invertebrate cell culture and recently a

13http://pilotunit.com/technologies/innovative-technology/somartex

substantial increase in both the rate and number of cell divisions
in sponge cells has been reported by optimization of the nutrient
medium (Conkling et al., 2019). A final approach for addressing
the supply issue, especially for macroorganism-derived marine
natural products is de novo chemical synthesis or laboratory
polymerization of natural monomers (Kristufek et al., 2017;
John et al., 2019). This method can be very costly with many steps
and low yields due to the chemical complexity of the compounds
that often have many functional groups and chiral centers.
An example is halichondrin B, a potent cytotoxic macrolide
isolated from the sponge Halichondria okadai with a staggering
32 stereocentres (Hirata and Uemura, 1986; Ledford, 2010).
Its structurally truncated analog, eribulin, has 19 stereocentres
and is an FDA-approved drug for the treatment of metastatic
breast cancer. However, its supply still consists of a 62-step
chemical synthesis (Ledford, 2010). When an entirely chemical
production is required, strategies will very much depend on
the kind of structure to be synthesized, but in some particular
cases, as the synthesis of peptides or their derivatives, solid-
phase approaches have proved to be the method of choice for
their efficient production (Martín et al., 2014). In addition,
biosynthetic steps merged with chemical synthesis steps offer a
simplified option for the total synthesis of some natural products
(Kirschning and Hahn, 2012). Enzymatic synthesis mimicking
natural biosynthesis is also used to produce natural products
(Greunke et al., 2017).

USE CASE SCENARIOS

Marine biotechnology is considered to be one of the main
pillars of bioeconomy. The main use case scenarios are
discussed below, following the order of the marine biotechnology
products pyramid value, presenting industrial sectors and
products with substitution potential (Figure 4). A short, non-
exhaustive overview presenting some of the European companies

FIGURE 4 | Marine biotechnology products pyramid values. Adapted from
Day et al. (2016). The price/quantity ratio is depicted by the areas of the
triangles.
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TABLE 3 | A non-exhaustive overview of the European companies offering marine biotechnology products.

Company Website Country Product

EstAgar AS http://estagar.ee/ Estonia A texturant and gelling agent – furcellaran from the red seaweed Furcellaria
lumbricalis

ALGAIA https://www.algaia.com/ France Carrageenans, alginates, plant biostimulants, specialty seaweed extracts

Greensea http://greensea.fr/en/ France Culture of marine and freshwater microalgae (phytoplankton) and development
of marine vegetation extracts (algae and marine plant life) with high value-added
for food, cosmetics, and health markets.

Mycrophit http://microphyt.eu/ France Unique microalgae-based bioactives using breakthrough technologies and
processes

Ocean Basis https://www.oceanbasis.de/en Germany Naturally occuring substances from the marine environment used for well-being
(food, nutraceuticals, cosmetics)

Teregroup srl https://en.teregroup.net/ Italy Products from microalgae – biodiesel, bioplastics, new pharmaceutical products

Arctic Nutrition AS https://arcticnutrition.no/ Norway Nutraceuticals and pharmaceuticals based on herring roe

ArcticZymes Technologies https://arcticzymes.com/ Norway Cold-adapted enzymes for gene therapy and vaccine production

Aqua Bio Technology https://aquabiotechnology.com/ Norway Skincare products

Calanus https://calanus.no/ Norway Lipids and other products from Calanus

Dupont, Norwegian branche https://www.dupont.com/ Norway Alginate of high quality

Epax https://www.epax.com/ Norway Omega-3 concentrates in a wide range of concentrations and EPA:DHA ratios,
and in both ethyl ester and triglyceride form

Marealis https://marealis.com/ Norway Shrimp peptides reducing blood pressure

Nutrimar http://nutrimar.no/ Norway High quality oil, protein consentrate and meal from uniquely fresh raw material
(e.g., fish, seaweed).

Fitoplancton Marino http://www.fitoplanctonmarino.
com/en/index.html

Spain Production and commercialization of products with high value-added derived
from microalgae.

KitoSano S.L. http://www.kitosano.com/ Spain Chitosan

MONZON BIOTECH https://mznbiotech.com/ Spain Produces two different microalgae species, Nannochloropsis for aquaculture
larval feed and Dunaliella salina for cosmetic applications

NEOALGAE https://neoalgae.es/?lang=en Spain Food, cosmetics, agro products from microalgae

PharmaMar https://pharmamar.com/?lang=en Spain Molecules with anticancer activity

Allmicroalgae https://www.allmicroalgae.com/ Portugal Feed, food, cosmetic products from microalgae

Jellagen https://www.jellagen.co.uk/ United Kingdom Jellyfish collagen, hydrogels and collagen 3D scaffolds for in vitro cell culture
and tissue engineering

that specialize in delivering marine biotechnology products is
included in Table 3.

The development of marine natural products is typically
connected with enormous financial investments to sustain
experimentation costs (Giugni and Giugni, 2010), especially in
the medical sector. Intellectual property, primarily in the form
of patents, facilitates the commercialization potential (Starling-
Windhof et al., 2020). The growing number of marine-based
drugs that are entering clinical trials is paired by a cumulative
increase in the number of published patents (Mandhare et al.,
2019). When successfully passing all the clinical trials phases of
the drug discovery pharmaceutical pipeline, a natural product
takes up to 15–20 years before entering the market (Taylor, 2015).

Energy
In terms of bioenergy, microalgae have been widely evaluated
for the production of biodiesel, especially due to their chemical
composition and global abundance (Chisti, 2007; Schenk et al.,
2008; Singh and Dhar, 2011). Marine microalgae can contain
high levels of lipids and their doubling rates exceed most
terrestrial plants, making them suitable to produce biofuel.
Together with a large liquid fuel market and the need to break
the dependence on fossil fuels, renewable fuel generated from

algae was a celebrated prospect. One of the approaches was
to apply electro-extraction of valuable biofuel compounds from
microalgae, avoiding the use of solvents and other chemicals
(Brennan and Owende, 2010; Goettel et al., 2013). However,
while the technology is well-known and technically feasible,
producing biodiesel from microalgae is not economically feasible
with the current technology (Williams and Laurens, 2010; Quinn
and Davis, 2015; Abdo et al., 2016; Novoveska et al., 2018).
The main reason for this is that microalgae cannot be grown
at sufficiently dense cultures due to their inherent demand
for light. As the culture grows denser, the microalgae become
photon deprived due to self-shading, which limits the maximum
achievable density of the culture. In addition, harvesting costs
are high as the biomass must be separated from large volumes of
water. Currently, the research on genetic modification of marine
microalga Nannochloropsis and Phaeodactylum tricornutum for
biofuel production is still ongoing to overcome these obstacles
(Du et al., 2018; Nymark et al., 2019).

Seaweed aquaculture can contribute to a sustainable supply
of biomass for profitable biofuel production especially in the
form of biogas and bioethanol, with the advantage of not
competing with food crops for land or freshwater resources
(Borines et al., 2011; Fernand et al., 2017). However, biogas
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and bioethanol production should focus on the use of residual
and overabundant marine biomass to avoid competition with
the biomass requirements of the seaweed biopolymers industry.
The simultaneous production of combustible biomethane and
disposal of undesirable marine biomass in a synergistic waste
management system is a concept with environmental and
resource-conserving advantages (Barbot et al., 2016). In addition
to the direct use of biomass for biofuel, seaweed can be used in
renewable energy systems as an alternative to solid electrolytes
used in dye-sensitized photovoltaic cells. Research conducted
by Bella et al. (2015) on derived products from algae using
green chemistry and multivariate-based preparation methods
and smart activation via spontaneous sublimation, provides a
concrete starting point for third generation solar cells. These
findings are also supported by Anand and Suresh (2015) who
suggested that the exploration of vast marine pigment resources
for their potential use as sensitizers in solar cells could provide
low-cost and environmentally friendly alternatives to expensive
ruthenium metal complex.

Food, Feed and Nutraceuticals
A large portion of human food and animal feed may need to be
sourced from sustainable marine origins to address future food
supply challenges, i.e., an increasing human population and a
decline in terrestrial food resources (Olsen, 2011).

Whole marine organisms can be a source for innovative
or new foods, especially those that are adapted from diets,
incorporating seaweed or jellyfish, that are common in specific
geographical areas. Seaweeds have traditionally been used in
Asia and Northern Europe as food ingredients, and are recently
becoming more popular throughout European cuisine, although
they are still considered an unusual foodstuff (Barbier et al.,
2020). There is a current trend of consumers adopting organic,
local and “natural” foods from clean environments, which should
increase acceptance and popularity of marine sourced foods/food
ingredients. Jellyfish have been an important food source in
Chinese cuisine for over 1,000 years (Hsieh et al., 2001). By
adapting the harvesting (using local species), preprocessing
(omitting the use of alum salts) and preparation techniques,
jellyfish are more recently being introduced as a food source in
western-style cuisine (also as part of scientific projects, supported
by the European Commission; two of which are PULMO14 and
GoJelly15). Therefore, opportunities exist to develop food-friendly
processing protocols. However, strict regulatory mechanisms
[e.g., Novel Food Regulation (EU) No 2015/2283] are another
important bottleneck in the delivery of novel food (ingredients)
from marine organisms. A novel food is defined as food
that was not consumed to a significant degree within the
EU countries before 15 May 1997, when the first Regulation
on novel foods came into force [Regulation (EC) No 258/97;
2015/2283]. Furthermore, there are some safety considerations
due to the bioaccumulation of toxic substances, which may
present a risk of chronic poisoning, thus favoring culturing
rather than harvesting, where possible. Seaweeds can accumulate

14https://cordis.europa.eu/project/id/708698
15https://gojelly.eu

heavy metals (arsenic, cadmium, mercury, and lead) when
present in their surrounding environment. Therefore, in the EU,
the identification and registration of potential toxic substances
are covered by the REACH Regulation [Regulation (EC) No
1907/2006] and the allowed threshold values for some heavy
metals in seaweed which are used as dietary supplements are
covered within the Commission Regulation 1881/2006.

In addition to whole organisms, compounds from fish,
shellfish, micro- and macroalgae, bacteria and fungi are
used in the food and feed industries as natural preservatives,
pigments, stabilizers, gelling agents, functional food ingredients,
nutraceuticals, dietary supplements and prebiotics (Boziaris,
2014). Nutrition products with bioactive ingredients are
envisioned to have medical benefits such as anticancer,
antiinflammatory, antioxidant, antiosteoporotic, antimicrobial,
antidiabetic, hypocholesterolemic, and adipogenesis inhibition.
Marine-derived polymers are also used as gelling, stabilizing,
thickening, flocculent, and binding agents. Examples include
polyunsaturated and ω-3 fatty acids, astaxanthin, chitin, chitosan,
chitooligosaccharides, chondroitin sulfate and glucosamine from
shark cartilage and crustacean by-products, and spirulin from
cyanobacteria (Boziaris, 2014; Harnedy and FitzGerald, 2015;
Suleria et al., 2016). Moreover, the food and beverage industries
use cold-active enzymes derived from marine organisms in the
processing of heat-sensitive ingredients/products. The use of
such enzymes avoids heat-induced changes to the nutritional
and organoleptic properties of foods (Nikolaivits et al., 2017).
The efficient release of the bioactive compounds for application
in the food and feed industries can be aided by marine-derived
enzymes having unique catalytic specificity and the ability
to operate under extreme conditions. If any compounds are
considered novel foods, there may be additional requirements,
e.g., the supply of a scientific dossier concerning their quality and
safety, which may require human intervention studies to validate
their efficacy and safety.

A scheme of the process of using marine organisms as a
source of food or feed is shown in Figure 5. To efficiently use
marine organisms as a source of food and feed, the process of
identification, isolation and nutritional value analysis is used
to select species that could be used to produce food and feed.
The next step represents the establishment of cultivation systems
and feeding experiments that generate sufficient quantities of
food/feed, using a comparative analysis with a control group that
uses classic food/feed sources to compare the overall quality and
palatability with the existing products.

Fish meal is characterized by high protein contents, digestible
energy and balanced composition of essential amino acids,
minerals, and vitamins (Kaushik et al., 2004), while fish oil
contains long-chain PUFAs and are mostly used in animal
feed formulations to raise aquaculture and terrestrial livestock.
Although vast improvements have been made both in feed
conversion efficiency and in utilizing waste streams (discards,
offal), this situation is not sustainable (Guttormsen, 2002).
The fish feed industry is therefore looking for sources of
oils to replace fish oils and microalgae are a promising
source, not only for essential lipids, but also for essential
amino acids (Dineshbabu et al., 2019; Tibbetts et al., 2020).
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FIGURE 5 | The potential for using marine organisms in food and feed industries and for bioremediation processes.

In addition, live feeds (in contrast to formulated feeds) are
indispensable for the rearing of larvae of most marine fish
species (Nielsen et al., 2017). Live feeds are usually based on
Artemia or rotifers, while copepods are also becoming more
common as live feeds, having a superior lipid composition,
compared to other live feed organisms (Nielsen et al., 2017).
To produce live feed organisms, the production of their
prey organisms, typically microalgae, is necessary, and the
microalgae have to be optimized for their content of essential
lipids and amino acids for feeding zooplankton organisms
(Vu et al., 2016).

Agronomy
Marine phytobiomass is currently being explored for different
purposes in the agricultural sector (i.e., fertilizers, heat
production in biogas plants, feeds) with large quantities available
along the coastlines (Mossbauer et al., 2012). Biofertilizers are
products containing living microorganisms or natural substances
that can improve chemical and biological soil properties,
stimulating plant growth, and restoring soil fertility (Ronga
et al., 2019). Historically, seagrasses and seaweeds were used
as organic soil amendments in coastal areas to increase soil
fertility and harvest yields (Acksel et al., 2017; Michalak and
Chojnacka, 2018; Franzén et al., 2019). Marine biomass can
also be used for crop protection. As an example, Posidonia
oceanica was found to reduce weed pressure after application
(Grassi et al., 2015) and the extraction of venom from jellyfish,
namely Rhopilema esculentum and Nemopilema nomurai, can
be used as a natural insecticide (Yu et al., 2005; Yu H. et al.,
2015). The chemical properties of marine biomass applied to
land might also affect the microbial decomposition leading to
improved soil structures and increased carbon sequestration
rates with positive feedbacks to land restoration and the climate.
The long-term application of marine biomass to soil formed
humus-rich top-soils. The tannins in the biomass influenced
the residence time of organic matter (Kagiya et al., 2019).
Accordingly, the exploration of marine biomass and their
extracts have the potential to push the agriculture sector toward
new market chains and more sustainable production. But the
short-term availability of nutrients is slower in comparison with

other conventional fertilizers. In response to this, controlled
composting processes were developed to increase nutrient use
efficiency. They can however cause environmental trade-offs
due to increased risk of N2O and NH3 releases during the
compost production (Han et al., 2014). In addition, marine
biomass can exceed the legal thresholds of undesired substances
due to their ability to accumulate anthropogenic chemicals
(Malea et al., 2018; Franzén et al., 2019). Thus, the use of marine
biomass directly as organic fertilizer in crop production requires
additional research and innovation, particularly to provide
biomass with a homogenous structural and chemical quality.
In any case, the establishment of either resilient production
chains for processing beach wrack biomass (Emadodin et al.,
2020) or a predictable yield of farmed seagrass and seaweed are
necessary to ensure that the direct biomass use for agriculture
will become economically resilient in the future (Chiaiese et al.,
2018; Philis et al., 2018).

Plant biostimulants are nowadays used to enhance the
nutrition efficiency, abiotic stress tolerance, crop yield and quality
traits (du Jardin, 2015; Popko et al., 2018). Biostimulants are
extracts derived from organic material that can stimulate the
growth and development of several crops under both optimal and
stress conditions. Biostimulants are heterogenic, representing
a composite of polysaccharides, minerals, vitamins, oils, fats,
acids, pigments, and hormones (El Boukhari et al., 2020).
Protein hydrolyzates have been reported to exert stimulatory
effects on plants (Colla et al., 2017). Extracts made by
seaweeds, microalgae and cyanobacteria have been identified
to contain phytohormones (as auxins, cytokinins, gibberellins)
and plant growth regulators (as abscisic acid, jasmonic acid,
polyamines, ethylene) which are known to play key roles in
plant growth, development and defense (Sharma et al., 2014).
Moreover, high protein content in some cyanobacteria with
specific amino acid profiles are sought to provide amino acids
for key phytohormones (Sharma et al., 2014; García-Gonzalez
and Sommerfeld, 2016; Chiaiese et al., 2018; Mógor et al.,
2018). Microalgal extracts are therefore increasingly used as
biostimulants and biofertilizers in agriculture. Finally, chitosan
can be used as a coating for fertilizers, pesticides, herbicides,
nematocides, and insecticides for their controlled release to soil
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and chitosan films are used to coat seeds and leaves to prevent
microbial infection (Sudha et al., 2014).

Bioremediation, Ecosystem Restoration,
Climate Change Mitigation
Marine biotechnology offers a broad range of bioremediation
applications (either using whole cells or their metabolites,
Figure 5). Marine invertebrates have been used in antifouling
management and control, particularly sponges (Stowe et al., 2011;
Ganapiriya et al., 2012). Bacteria from the phyla Proteobacteria,
Actinobacteria, Cyanobacteria, Bacteroidetes, and Firmicutes
can be used as an alternative process for the degradation of
aromatic pollutants, such as polycyclic aromatic hydrocarbons
(Nikolaivits et al., 2017). These bacterial communities have a
great biodegradation potential for various types of hydrocarbons,
aromatics and carbohydrates in oil-polluted sediments and
petroleum spills (Atlas and Hazen, 2011; Acosta-González and
Marqués, 2016). Hydrocarbon-degrading bacterial taxa have been
uncovered on plastic marine debris using HTS, which supports
the theory of potential plastic degradation in the ocean by
consortia of microbial taxa (Zettler et al., 2013). Microorganisms
synthesize enzymes that can degrade plastics, e.g., lipases, alkane
hydroxylases, laccases, and others. However, the interactions
between plastic and microbial consortia need to be further
investigated to provide realistic mitigation measures (Urbanek
et al., 2018). Marine fungi represent potential bioremediation
agents: fungi that produce lignin-degrading enzymes are used
in decolorization of highly colored effluents from paper, pulp
mills, textile and dye-making industries (D’Souza et al., 2006),
they also have strong oil degradative capabilities (Simister et al.,
2015; Bovio et al., 2016) or are used in the bioremoval of copper
and zinc from sediments (Cecchi et al., 2019). Both micro- and
macroalgae have been shown to remove nutrients, heavy metals,
some pharmaceutical compounds and even capture free floating
microplastics from surrounding waters (Sundbæk et al., 2018;
Mondal et al., 2019; Bulgariu and Bulgariu, 2020). Additionally,
seaweed farms provide habitat and shelter for a variety of
marine organisms. Due to their high detoxification efficiency, low
cost and demand for nutrients, seaweeds and seagrasses could
be used as biosorbents to remove pollutants from wastewater
(Pennesi et al., 2015).

Microalgae can also bioaccumulate heavy metals. Therefore,
they are used in bioremediation of effluents from industries
with toxic heavy metals (Dwivedi, 2012; Rath, 2012; Kumar
et al., 2015; Zeraatkar et al., 2016). Among them, Chlorella,
Scenedesmus, Tetraselmis, and Arthrospira are reported to bio-
sequester toxic heavy metals with high uptake capacity (Pérez-
Rama et al., 2002; Aksu and Dönmez, 2006; Gokhale et al., 2008;
Şeker et al., 2008; Mirghaffari et al., 2015). Microalgae remove
heavy metals through adsorption or absorption mechanisms
(Brembu et al., 2011). Roy et al. (1993) reported that the
sorption of heavy metals is a two-step process. The first step
is rapid surface adsorption by cell wall polysaccharides and
other functional groups such as carboxyl, hydroxyl, sulfate, and
other charged groups, which differ in affinity and specificity
for various organic and inorganic compounds (Crist et al.,

1981; Volesky, 1990; Bulgariu and Gavrilescu, 2015). The second
step is a slow process that requires energy for the uptake of
heavy metals into the cell interior (Wang et al., 2010). Like
other organisms, microalgae synthesize metal-binding peptides,
namely the cysteine rich metallothionein, which neutralize the
toxic effects caused by heavy metals (Cobbett and Goldsbrough,
2002; Perales-Vela et al., 2006).

In addition to heavy metal biosorption, microalgae have
bioremediation potential of emerging contaminants, primarily
synthetic organic chemicals (Sutherland and Ralph, 2019).
Emerging contaminants typically fall into several broad
categories, including pharmaceuticals, personal care products,
illicit drugs, artificial sweeteners, pesticides, plasticizers, and
flame retardants (Petrie et al., 2015; Norvill et al., 2016; Tran
and Gin, 2017). Reported rates for adsorption of emerging
contaminants have been variable, with adsorption rates reported
to be from 0 to 100% (Peng et al., 2014; de Wilt et al., 2016; Guo
et al., 2016; Ali et al., 2018; Gojkovic et al., 2019).

Macroalgae are dominant primary producers in coastal areas
and open seas, but a substantial part of this biomass is transported
to deep sea and sediment, where the macroalgal carbon is
sequestered from the atmosphere (Krause-Jensen and Duarte,
2016; Ortega et al., 2019). Micro- and macroalgae have recently
been getting attention due to their potential for C-capture which
is important to mitigate climate change (Matsunaga et al., 2005;
Vaz-Pinto et al., 2014; Singh and Dhar, 2019), and can be further
used for value-added products using the biorefinery approach.
Further, they are of strategic importance to provide bio-based
fertilizers from marine organisms as the compost may increase
the carbon storage within the soil, thus reducing carbon dioxide
emissions (Radziemska et al., 2019). Moreover, when seaweeds
are used as a feed additive, the methane emission from cattle
is reduced. Ruminants and mainly cattle are considered as a
major culprit in the emission of greenhouse gas, mainly in the
form of enteric methane (Herrero and Thornton, 2013) with a
high impact on climate change. This causes high pressure on the
livestock sector forced to take mitigating actions to reduce the
production of greenhouse gasses, but on the other hand, it needs
to increase production efficiency because of the ever-increasing
population and the globally changing consumption patterns.
Ruminant production is currently the largest anthropogenic
contributor to the global methane budget (Dangal et al., 2017). To
address this environmental challenge, the potential of the marine
red seaweed Asparagopsis taxiformis added as a feed amendment
to reduce enteric methane emission was evaluated. This resulted
in methane reduction of 98% without inhibiting the fermentation
process or live-weight-gain on beef cattle (Kinley et al., 2020;
Roque et al., 2019). At this stage, a few – mainly tropical –
seaweed species have been evaluated via in vitro studies for their
methane reducing capacity (Machado et al., 2014).

Among metazoans, sponges have been investigated as a
natural bioremediation solution (Fu et al., 2007; Stabili et al.,
2008), due to their capacity, as active filter-feeders, to primarily
feed on the ultraplankton fraction (less than five microns
particle size) of the particulate matter (Pile, 1999), along
with dissolved organic matter (de Goeij et al., 2008a,b) in
the surrounding seawater. Additionally, sponges – or their
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microsymbionts – show the capacity to accumulate metallic trace
elements, as well as various organic pollutants (Bauvais et al.,
2015; Gentric et al., 2015), rendering them prominent candidate
bioindicators or bioremediators.

Cosmetics and Cosmeceuticals
Marine compounds can be incorporated into skincare and make-
up products. Their drug-like benefits produce pharmaceutical
hybrids in which the bioactive ingredients are added to the
topical or oral cosmetics to produce a cosmeceutical with
enhanced properties. There are examples of products that are
already on the market derived mostly from microorganisms
(bacteria, microalgae, fungi), but also from macroalgae, fish
and corals (Martins et al., 2014; Corinaldesi et al., 2017; Brunt
and Burgess, 2018). Examples of substances of interest for
cosmetic applications are (i) mycosporine-like amino acids
(MAAs), produced by marine organisms under high UV stress
(cyanobacteria, micro- and macroalgae). These compounds
absorb UV radiation between 310 and 360 nm and are considered
as photoprotective and antiageing agents (de la Coba et al., 2009);
(ii) exopolysaccharides, produced by several microorganisms
that increase the moisture content of the skin (Satpute et al.,
2010); (iii) carotenoid and polyphenolic compounds that can
act as antioxidants and also have anti-inflammatory properties
(Sachindra et al., 2007; Lopes et al., 2016; Mourelle et al.,
2017); and (iv) enzymes and peptides that may act as anti-
aging agents by protecting collagen stores (Chen et al., 2011).
Potassium alginate and fucoidan from brown algae, aluminum
silicate from sea mud, chitin from crustaceans, shell “powder”
from oysters, and carrageenan from red algae are some examples
of less differentiated but widely used marine active ingredients.
Marine jellyfish and fish-derived collagen (developed also within
the GoJelly project14) and gelatin are also excellent functional
ingredients for the cosmetic industry. Importantly, many of the
marine skincare products that are already in the market are
not pure compounds but treated extract or enriched mixtures
(Martins et al., 2014).

Examples of cosmeceuticals used for hydrating, moisturizing,
anti-wrinkle and anti-aging that use algal extracts are, among
others: Biotherm R© by Blue Therapy, La Mer R©, Elemis R©,
OceanBasis R©, Guam algae R© by Lacote, and La Prairie R©.
Microalgae extracts are used in Dermochlorella DG R© by CODIF
Research & Nature, XCELL-30 R© by Greensea, Alguronic Acid R© by
Algenist and Alguard R© by Frutarom. Fungal extracts are used in
Eyedeline and Brighlette by Lipotec. Resilience R© by Estée Lauder
uses pseudopterosin typetricyclic diterpene glycosides isolated
from soft corals. They show wound-healing, anti-inflammatory
and analgesic properties to prevent irritation caused by exposure
to the sun or chemicals. Other interesting and potent marine-
derived cosmetic ingredients are Hyadisine R©, Antarticine R©, and
Hyafini R©, derived from extremophilic marine microorganisms
(Martins et al., 2014). Marine polymers are increasingly used
in cosmetic products, e.g., SeaCode R© by Lipotec with a mixture
of extracellular glycoproteins and other glucidic exopolymers
produced by fermentation of a Pseudoalteromonas sp. from
Antarctic waters for soothing and reducing irritation of sensitive
skin against chemicals, and with hydrating, anti-wrinkle and

expression lines attenuator properties. Despite these marketed
examples, the marine environment remains an undervalorized
resource for cosmetic discovery.

Bio-Inspired Materials
Biomolecules and biomaterials from marine sources have useful
characteristics such as increased salt tolerance, pressure tolerance,
cold adaptivity, and heat tolerance. They may have novel
physical, chemical/stereochemical as well as original biochemical
properties (Trincone, 2011). Although there are wide possibilities
for use of marine based products for the development of bio-
inspired materials in medicine (such as replacement heart valves,
bone implants or hips and joints, Khrunyk et al., 2020), there
are still several challenges that must be solved. For instance, the
isolation and purification of the biopolymers play an important
role in targeted drug delivery and control of the sustained drug
release concentrations. Moreover, the reproducibility of materials
composition maintaining the same properties from the same
species, regions and even seasons, is another challenge that
needs to be solved. Algae, jellyfish, sponges, ascidians, mussels,
crustaceans, have been reported as commercially important,
new, and potential biomaterial resources. Their polysaccharides,
enzymes, peptides, lipids, pigments, bioceramics, biominerals,
and toxins can be used in the biomedical field. Applications
of these materials include hard and soft tissue engineering,
bio-adhesives, dental biomaterials, and drug and cell delivery
systems. Bioactive ceramic materials are developed from corals,
shells and sea urchins, using them as sources for hydroxyapatite
synthesis, which is the main inorganic material in bone structure
(Palaveniene et al., 2018; Pawelec and Planell, 2019; Haugen
et al., 2019). The structural organization of marine organisms,
particularly sponges, has inspired many technical solutions
in fabrications of biomaterials, architecture and aerodynamics
(Macha et al., 2019). Several sponge taxa are known to produce
inorganic skeletal elements (spicules) composed of amorphous
hydrated silica, through an enzymatic process (Voigt et al., 2017).
This process, along with properties of the sponge-produced
siliceous structures has led to several mimicking attempts
targeting biomaterials for mainly biomedical (Müller et al., 2006,
2007; Schröder et al., 2007; Barros et al., 2016) or optical
applications (Müller et al., 2009). Silica-based materials are
used in many high-tech products including microelectronics and
optoelectronics. Further, the silica-forming enzymes, silicateins,
from both demosponges (marine and freshwater sponges)
and hexactinellid sponges can be used for the production
of highly ordered inorganic–organic composite materials with
defined optical, electrical, and mechanical properties (Schröder
et al., 2009). Diatoms are valuable in terms of their waste as
they produce nanostructured and mesoporous biosilica shells
(frustules) with a highly ordered hierarchical architecture. These
unique, morphological, chemical, and mechanical properties
make the biosilicate of diatoms a very attractive nanomaterial
for a wide range of applications (Pletikapić et al., 2012).
Diatom frustules have good mechanical properties, low density
and a high surface area, hence they can be used as fillers
to improve the mechanical properties of polymers (Lamastra
et al., 2017). Some studies have shown that solid frustules
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increase the modulus and yield strength of the epoxy matrix
(Taşdemirci et al., 2008; Gültürk et al., 2013). The application
of various wastes as additives for composite production has
attracted great interest to the scientific community due to its
beneficial environmental effects: (i) waste material management,
(ii) production of biodegradable products, and (iii) cost.

Recent developments of electronic devices that possess
functionalities of biological synapses are used to advance in
mapping the functions of the human brain. In this perspective,
biocompatible artificial synapses based on seaweed matrix
biopolymer (ι-carrageenan) with silver dynamics added, has
the potential for constructing neuromorphic systems, using an
environmentally benign material (Kim and Lee, 2018). Oyster
shells, chitin from the exoskeleton of crustaceans and collagen
extracted from cartilaginous or bony fish skin byproducts can
be used to produce biomedical scaffolds (Gheysari et al., 2020).
Biopolymers, such as sodium alginate, carrageenan and fucoidan
derived from marine algae, chitosan obtained by deacetylation
of the chitin extracted from the exoskeleton of crabs and
shrimps, and porous silica shell of marine diatoms are used for
the development of drug and cell delivery systems, hydrogels
and bioactive coatings and also scaffolds for next generation
of tissue engineering products (Figure 6, Kim, 2013; Posocco
et al., 2015; Cardoso et al., 2016; Perale and Hilborn, 2016;
Roman et al., 2019), and nanotoxicity studies (Ciglenečki-Jušić
and Svetličić, 2015). The potential of the isolated algal plasma
membrane is also underexplored. The plasma membrane is
highly permeable for anionic fluorescent dyes, thus a method
for sealing reconstructed plasma membranes would increase the
attractiveness of these transport vehicles toward the development
of a new generation of drug delivery systems (Ivošević DeNardis
et al., 2020). Collagen can also be extracted from jellyfish to
produce medical devices and biomaterials (such as scaffolds and
hydrogels) useful for wound healing and regenerative medicine.
This is the so-called next generation collagen by Jellagen PTY
Ltd16, already on the market as biomaterial for 2- and 3-D
cell cultures and as a universal collagen scaffold. Fish-derived
gelatin is another alternative to commonly used gelatin in medical
devices, usually sourced from bovines or porcine hides and skins
(Gelatin Manufacturers Institute of America [GMIA], 2019).
Indeed, marine-animal sourcing of gelatin can ensure a higher
standard of safety as it does not carry the intrinsic risks of disease
transmissions typical of farming animals (e.g., the Creutzfeldt
Jakob disease risk, ISO 22442). These novel applications that
represent a realistic alternative to currently used and sourced
materials are foreseen in the new European regulatory framework
for the medical devices industry, the Medical Devices Regulation
[Regulation (EU) 2017/745].

The global study by Geyer et al. (2017) showed that in
2015 only 9% of world-wide plastics were recycled, while
12% was incinerated and 79% was disposed to landfills and
natural environment. This can represent an opportunity to
use macroalgae and microalgae as a potential feedstock to
produce sustainable, recyclable/and or compostable plastic while
offsetting our carbon footprint. Algal biomass can be used for

16www.jellagen.com

packaging in a variety of ways: firstly, raw seaweed fronds
are pre-treated and used as single-use disposable plates (e.g.,
serving fish on a pre-treated, dried and shaped blade of seaweed).
Secondly, several compounds can be extracted from algae to serve
as precursors to produce films, lining for packaging or packaging
material itself (bioplastics). Currently, the most common algae-
based precursors for bioplastics are poly-lactic acid (PLA),
polyhydroxyalkanoates (PHAs), starch, cellulose, proteins, lipids
and other polysaccharides such as alginates and carrageenans
(Zhang C. et al., 2019). PLA is currently the compound with
the most commercial interest. The monomer of PLA is a lactic
acid which is derived from carbohydrates during fermentation
and then polymerized into PLA. Many macroalgal and microalgal
species are carbohydrate rich and therefore suitable as a feedstock
for PLA production. However, due to the slow degradation of
PLA, there is an active ongoing search for other polymers (Jem
and Tan, 2020). In addition, macroalgae can serve as a substrate
to cultivate marine bacteria capable of synthesizing PHAs, which
are a biodegradable plastic alternative (Ghosh et al., 2019). Several
species of cyanobacteria and microalgae have also been recorded
to produce PHAs (Costa et al., 2019).

Healthcare and Well-Being
Approved Drugs From Marine Origin
The increasing standard of life inherently represents a growing
demand for pharmaceuticals, nutraceuticals and cosmeceuticals.
Marine organisms, such as algae, sponges, mollusks (including
cone snails), cyanobacteria, actinobacteria, fungi, tunicates
and fish biosynthesize metabolites with significant biological
activities for therapeutic and industrial applications, with
anticancer, anti-inflammatory, anti- and pro-osteogenic, anti-
obesity, antimicrobial, antiviral, and anticoagulant activities
(Majik et al., 2014; Surget et al., 2017; Carson et al., 2018a,b;
Jin Q. et al., 2018; Kumar, 2019; Mayer et al., 2020). To date,
seventeen clinically approved drugs of marine origin include:
cytarabine (Cytosar-U R©), nelarabine (Arranon R©), fludarabine
phosphate (Fludara R©), trabectedin (Yondelis R©), eribulin mesylate
(Halaven R©), brentuximab vedotin (Adcetris R©), plitidepsin
(Aplidin R©), polatuzumab vedotin (PolivyTM), enfortumab
vedotin-ejfv (PADCEVTM), and more recently, lurbinectedin
(Zepzelca R©) and belantamab mafodotin (BLENREP R©) for cancer
treatment, ziconotide (Prialt R©) for severe chronic pain, ω-3-
acid ethyl esters (Lovaza R©), eicosapentaenoic acid ethyl ester
(Vascepa R©), and ω-3-carboxylic esters (Epanova R©) for hyper-
triglyceridemia treatment, and ι-carrageenan (carragelose) and
vidarabine (Vira-A R©; US discontinued17) for antiviral treatment
(Martins et al., 2014; Jimenez et al., 2020). These lists have
prospects of increasing soon as dozens of marine natural
products are currently under clinical trials.

Potential Future Prospects in Healthcare and
Well-Being
Compounds originating from marine organisms are also used
in nutraceuticals, healthcare and well-being. Carotenoids are

17https://www.midwestern.edu/departments/marinepharmacology/clinical-
pipeline.xml, accessed on October 30th, 2020
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FIGURE 6 | The potential for using marine organisms to produce biomaterials for medical use.

pigments that serve as antioxidants with many health benefits
including prevention or slowdown of some chronic diseases,
cellular damage and aging. Specifically, carotenoids have the
potential to reduce the risk of inflammation, heart disease,
cancer (Griffiths et al., 2016), type 2 diabetes (Sluijs et al.,
2015), obesity (Gammone and D’Orazio, 2015) and even some
neurodegenerative diseases (Cho et al., 2018). Phlorotannins
are bioactive compounds from brown seaweeds with potential
use in food, pharmaceutical and cosmeceutical industries
(Li et al., 2011). The cyanobacteria from the Baltic Sea, both
the bloom-forming species such as Nodularia spumigena (Fewer
et al., 2013; Niedermeyer et al., 2014) and the cyanobacterial
species that are rarely reported in the sea (Mazur-Marzec
et al., 2015), produce metabolites of pharmaceutical potential.
Dolastatin 10, produced by the cyanobacterium Symploca sp.
was of great interest as an anticancer drug due to its potent
in vitro anticancer activity. However, it was dropped from
Phase II clinical trials due to its toxic side-effects and the
lack of significant clinical activity (Perez et al., 2005; Tidgewell
et al., 2010). Many analogs of dolastatin were synthesized
and tested through the years and their use as payload in
antibody-drug conjugates (ADC) allowed their successful use
in the clinics, as seen with brentuximab vedotin (Adcetris R©),
now used as a treatment for different types of lymphomas
(Tan, 2013; Jager and Hutchings, 2015). Nostoc sphaeroides
and other cyanobacteria have been used for the treatment of
diarrhea, hepatitis and hypertension. N. sphaeroides is also used
as an important ingredient of medicines (Barsanti and Gualtieri,
2014). N. ellipsosporum produces a bioactive compound called
cyanovirin, a low-molecular-weight protein with potent activity
against various human immunodeficiency viruses type 1 (HIV-1),
HIV-2 and simian immunodeficiency viruses (Boyd et al., 1997;
Dey et al., 2000; Lotfi et al., 2018). The extracts of the growth
media and cell extracts of unicellular microalgae Chlamydomonas
pyrenoidosa and Chlorella vulgaris possess antibacterial activity
against both Gram-negative and Gram-positive bacteria (Hussein
et al., 2018). Similarly, extracts of diatoms, green algae and

dinoflagellates have antifungal activities (Dewi et al., 2018).
Genomes of higher eukaryotes encode hundreds of kinases, many
of which having important roles in controlling the molecular
machinery of cell proliferation, survival and motility. Recent
studies of the arctic marine hydrozoan Thuiaria breitfussi
revealed a family of bioactive breitfussins, molecules that act
as cell specific kinase inhibitors (Hansen et al., 2019). Two of
the breitfussins were shown to selectively inhibit the survival of
several cancer cell lines. The highest inhibition was verified for
the triple negative breast cancer cell line MDA-MB-468. These
results open a very promising avenue for the development of
selective kinase inhibitors for use in cancer therapy. It is also
worth noticing that the compounds were isolated from a sessile
marine organism, which may hint on where to find potential
cell active compounds (i.e., defense related molecules). Recently,
fermented Pacific oyster extracts (Ihn et al., 2019) have proven to
be efficient in inhibiting osteoclastogenesis in rodents, thus being
proposed as a possible treatment for another highly prevalent
human pathology, osteoporosis, which has greatly increased in
the human population with the increase in life expectancy.

Among marine organisms, sponges have been considered
as a “drug treasure” during the past 70 years, due to the huge
diversity of their secondary metabolites with an equal variety of
biotechnological properties (Schröder et al., 2003; Müller et al.,
2004; Perdicaris et al., 2013). In the early 1950s, pharmaceutical
interest for marine sponges started by the investigation of
the Caribbean sponge Tectitethya crypta (=Cryptotethya
crypta de Laubenfels, 1949) and extraction of the nucleosides:
spongouridine (3-β-D-arabofuranosyluracil), spongothymidine
(3-β-D-arabofuranosylthymine) and spongosine (9-β-D-
ribofuranosyl-2-methoxyadenine) (Bergmann and Feeney, 1950,
1951; Bergmann and Burke, 1956). These unique nucleosides
were the basis for the synthesis of the antiviral drug ara-A, as well
as the first marine-derived anticancer agent, ara-C, currently used
in the routine treatment of patients with leukemia and lymphoma
(Proksch et al., 2002). Besides the above-mentioned bioactivities,
sponges produce many immunosuppressive, neurosuppressive
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and muscle relaxant compounds (Anjum et al., 2016). Numerous
bioactive substances, important in public health disease
treatment and control, have been isolated from marine sponges.
The most promising drugs are those for treatment of malaria,
manzamines, with antiplasmodial (Yousaf et al., 2002) and even
immunomodulating activity (Ang et al., 2001), as well as activities
against atherosclerosis (Stead et al., 2000), cardiovascular diseases
(Barrese and Taglialatela, 2013) and against the novel corona
virus 2019-nCoV (Vijayaraj et al., 2020). A group of particular
interest is the microtubule-stabilizing drugs, potent macrolide
secondary metabolites isolated from New Zealand marine
sponge Mycale hentscheli: peloruside A, mycalamide A and
pateamine as well as zampanolide from the Tongan sponge
Cacospongia mycofijiensis (Miller et al., 2010). Peloruside
A stabilizes microtubules and thus possesses promising
activities against cancer, neurodegenerative and autoimmune
diseases (Kanakkanthara et al., 2016). A recently identified
microbiome of sponge host Mycale hentscheli shows remarkable
chemical diversity and biosynthetic potential of multiple
symbionts, including microtubule-inhibiting and eukaryotic
translation-inhibiting bioactive compounds (Rust et al., 2020).

Jellyfish extracted molecules (proteins, peptides, mucins)
have antioxidant, wound healing and antimicrobial properties
(Merquiol et al., 2019; Nudelman et al., 2019). The most famous
jellyfish-derived compound is the green fluorescent protein
(GFP), one of the most important tools in molecular biology
research, serving as a molecular marker alongside other that
found important applications in wider scientific research, and
was awarded the Nobel Prize in Chemistry in 2008 to Osamu
Shimomura, Martin Chalfie, and Roger Tsien.

LEGISLATION AND FUNDING

The potential of marine biotechnology may significantly
contribute to achieving 14 out of 17 United Nations (UN)
Sustainable Development Goals (SDGs)18. First and foremost,
the discovery of biodiversity and the sustainable use of
marine bioresources contributes to SDG14 (Life below water).
The new solutions and processes developed, such as new
bioremediation methods or alternative fertilizers contribute to
SDGs 6 (Clean water and sanitation), 13 (Climate action)
and 15 (Life on land). Importantly, alternative food, feed
and fertilizer sources contribute to SDG2 (Zero hunger). The
use of marine algal biomass as an alternative energy source
contributes to SDG 7 (Affordable and clean energy). The
valorization of waste, also food by-products can contribute
to the decrease of urban pollution (SDG11, Sustainable cities
and communities). The development of new products in
nutraceutical, cosmeceutical and medical industries contributes
to SDG3 (Good health and well-being). Promotion of resource
efficiency and technological development contribute to SDG12
(Responsible consumption and production) and 9 (Industry,
innovation and infrastructure); the establishment of partnerships
between governments, industry, civil society and the scientific

18https://sdgs.un.org/

sector contributes to SDG17 (Partnerships for the goals).
Indirectly, successful biotechnological development can lead to
new products, new industries and new job openings. With a
proactive interregional collaboration, good practice examples
can be taken by regions that are lagging in terms of regional
development and job security, which contributes to SDGs 1 (No
poverty), 10 (Reduced inequalities), and 8 (Decent work and
economic growth).

Table 4 briefly outlines the strategies and funding mechanisms
in the EU that directly or indirectly tackle marine biotechnology.
They can also serve as a tool for streamlining current efforts
and consolidating future directions. Depending on the funding
scheme these tools can act at European-, regional-, national-,
and bilateral-scale. The European Technology Platform for
Sustainable Chemistry (SusChem) has issued a new Strategic
Innovation and Research Agenda in 2019 with a vision where
sustainable chemistry and biotechnology provide solutions
for future generations. The SusChem priorities align well
with the field of marine biotechnology as the priorities are (i)
advanced materials and advanced processes for circular economy
and resource efficiency, and (ii) low carbon economy toward
mitigating climate change and protecting environmental and
human health. The European Green Deal [COM(2019), 640] is
an EU growth strategy to transition into a prosperous society
with a resource-efficient and competitive economy. National
funding mechanisms can sometimes provide partial financing
through research programs and national projects. At the
European scale, Horizon2020 and its successor, Horizon Europe
framework programs are the ones directly funded by the EU
budget. The marine biotechnology sector significantly benefits
from the Horizon funding mechanism, intending to directly
address societal challenges and promote the development
of innovative societies through international cooperation
and collaboration of academic and industrial partners. Some
financing opportunities have limited country participation
depending on the governmental organizations (national
ministries) that typically endorse the respective national
participation. Therefore, the establishment of collaborations
between scientific institutions and the policy making sector
is of extreme strategic importance. An example is the Action
ERA-NET COFUND on Blue Bioeconomy – unlocking the
potential of aquatic bioresources, which is currently running
with limited participation from 16 European countries. Another
source of funding at the European level stems from the European
Regional Development Fund. Marine biotechnology is not
uniformly represented as a strategic priority at the regional and
transregional levels. The Interreg Baltic Sea Region, for example,
has marine biotechnology at the core of blue growth. Marine
biotechnology is also encompassed in the Interreg Mediterranean
and Atlantic transnational collaborations. Another funding
source is the European Maritime and Fisheries Fund. This
is implemented at the national scale, through co-financing
operational programs. Moreover, marine biotechnology is a part
of the maritime economy, a high-potential economic sector. The
co-funding programs come along with the national ones that
are financed by the Public Investments Programs. Among the
Joint Programming Initiatives (JPIs), JPI-Oceans has a priority
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TABLE 4 | A list of European strategies and funding mechanisms that directly or
indirectly include marine biotechnology.

Type Name Location Link

Strategy European Green
Deal

EU https://ec.europa.eu/
info/sites/info/files/
european-green-deal-
communication_en.pdf

Strategy European
Technology
Platform for
Sustainable
Chemistry

EU http:
//www.suschem.org/

Strategy European
Bioeconomy
Strategy (2012,
revised 2018)

EU https://ec.europa.eu/
research/bioeconomy/
pdf/ec_bioeconomy_
strategy_2018.pdf

Strategy Strategic Innovation
& Research Agenda
(SIRA) developed
by EC and BIC

EU https://www.bbi-europe.
eu/sites/default/files/
sira-2017.pdf

Strategy Nordic Council of
Ministers has
“Ocean –Blue
Growth in the
North”

Regional Nordic Council of
Ministers, 2018

Funding Framework
Programme
(Horizon H2020,
Horizon Europe)

EU https://ec.europa.eu/
info/horizon-europe-
next-research-and-
innovation-framework-
programme_en

Funding Bio-based
Industries Joint
Undertaking
(BBI-JU)

EU https:
//www.bbi-europe.eu/

Funding LIFE (L’Instrument
Financier pour
l’Environnement)

EU https://ec.europa.eu/
easme/en/life

Funding ERA-Net Cofound Limited country
participation

https://ec.europa.eu/
programmes/
horizon2020/en/h2020-
section/era-net

Funding Interreg, Interreg
Med, Interreg
Baltic, Interreg
Atlantic, Interreg
Mac

Regional https://interreg.eu/;
https://interreg-med.eu/;
https://www.interreg-
baltic.eu/home.html;
https:
//www.atlanticarea.eu/;
https:
//www.mac-interreg.org/

Funding Joint Programming
Initiative Healthy
and Productive
Seas and Oceans
(JPI Oceans)

Limited country
participation

https:
//www.jpi-oceans.eu/

Funding National, Bilateral Limited to single
country or
bordering countries

in marine biotechnology, with limited country participation.
To a lesser extent LIFE programs, funded by Environment
Directorate-General, could also indirectly be used to better
manage marine biodiversity.

During the whole development process, the policy framework
imposes guidelines throughout the whole technology readiness
level scale. The scientific and technological breakthroughs must
also be addressed to local, national and international policies
that protect and promote the ocean health and functioning
aspects of ecosystems. In the field of marine biotechnology,
the Convention on Biological Diversity (CBD) and the Nagoya
Protocol on Access to Genetic Resources and the Fair and
Equitable Sharing of Benefits Arising from their Utilization as
well as the United Nations Convention on the Law of the Sea
(UNCLOS) are of particular relevance (Lallier et al., 2014).
Nagoya protocol has clear implications for scientists working
on genetic resources, including those doing biotechnology
research on marine organisms, as well as any user of genetic
resources along the biodiscovery pipeline (Broggiato et al., 2018).
Bioprospecting, a term that defines screening for new organisms
and their compounds with biotechnological value, is controlled
at different levels. In Exclusive economic zones, these resources
are under the sovereignty of the coastal country, which requires
special permits to sample habitats of interest. In many cases,
bioprospecting in the waters of a third country is allowed only if
the country provides its access and use of the genetic resources
either for commercial interest or for academic research, even
if the material taken is of negligible intrinsic value. The “gold
mine” syndrome (according to which each crude sample contains
a hidden treasure) hampers the ability of partners to agree on an
a priori chain value (Querellou, 2010). The exclusive access to
these potential economic benefits can only be obtained through
patents associated with the use of “marine genetic resources”
for an inventive purpose or process. Another challenge is the
access and benefit sharing of resources collected in areas beyond
national jurisdiction (Collins et al., 2019). The ocean is a common
good and negotiations are necessary to find the solution for the
fair and equitable benefit sharing from the utilization of marine
genetic resources (Rabone et al., 2019).

Overall, there are currently many legal and practical challenges
along the pathway for the commercialization of products derived
from marine organisms as legislation is not progressing at the
same rate as technology. Serious burdens that delay the market
entry of products are the safety assessments and compliances for
marine biotechnology products. Another clear practical challenge
involves the potential spatial conflicts, in other words, the impacts
of different existing marine uses such as tourism or maritime
commerce, with the exploration and use of marine biota. The
recent increase in interest in marine spatial planning over the
past two decades has opened opportunities to overcome conflicts
and to proactively determine simultaneous and integrated uses.
The above mentioned Maritime Spatial Planning Directive
(2014/89/EU) addresses this facet of marine uses. However, of
note is the progress made by many non-EU countries who
are also taking initiative to develop plans for their coastal and
exclusive economic zones (Collie et al., 2013; Portman, 2016;
Smythe and McCann, 2018).

Marine exploitation needs increased governance practices as
well as ethical practices. Hence, policy involvement is necessary
while developing products and processes from marine sources
and this may be ensured through the Responsible Research
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and Innovation concept (see more in section “Communication
and stakeholder engagement in development finalization”).
This new perspective of conducting science which has to be
transdisciplinary, tackling the complex interactions between
nature, society and governance is nowadays called the social-
ecological systems (Folke et al., 2005; Rozzi et al., 2015;
Nakicenovic et al., 2016). This mode of governance takes into
consideration different dimensions: economic (cost-efficiency),
political, social, legal (European and national legislation)
and scientific (e.g., environmental issues) ones. The marine
biotechnology sector is thus complex, multi-dimensional and
is facing uncertainties. Therefore, the adoption of governance
adapted to social-ecological systems considering different aspects
of this sector is challenging but necessary.

COMMUNICATION AND STAKEHOLDER
ENGAGEMENT IN DEVELOPMENT
FINALIZATION

Transdisciplinary collaborations, such as marine biotechnology,
seek to produce knowledge through integration and collaboration
to address societal challenges (Misra and Lotrecchiano, 2018).
These complex collaborations are high-risk, high-impact and
are needed to establish modern, innovative societies (Rotter
et al., 2020b). On one hand, this demands the creation of
teams with varying expertise, including scientific organizations,
industrial actors, policy makers and the civil society, i.e., the
quadruple helix (Rotter et al., 2020b and Figure 4 therein).
On the other hand, these collaborations need to establish
efficient communication channels to share infrastructure,
experts, expertise and data, which is endorsed by the open
access policy of scientific information. These collaborations
are endorsed by the Responsible Research and Innovation
framework (RRI). RRI aims at an interactive process where
societal actors, researchers and innovators actively cooperate to
co-define, co-design and co-construct solutions, services and
products that are socially acceptable, sustainable and resolve
important societal issues (Theodotou Schneider, 2019). This
ensures the uptake of the results in science, industry, policy
and society. This is an increasingly popular narrative in the
European policy making sector, oriented toward publicly funded
research that should be inclusive, sustainable and involve policy
makers and the general public (von Schomberg, 2013; Jakobsen
et al., 2019). If the public perception of a certain product
is not positive, the rest of the development may be put on
hold. In fact, low public product awareness and acceptance
is an important barrier for product commercialization. This
is especially the case for commodity products, for which
consumer appreciation is decisive, in contract to high end
products like medical drugs and industrially valorizable
compounds. One solution is the financing of transdisciplinary
collaborative networks (such as the European COST Action
Ocean4Biotech, Rotter et al., 2020a), where representatives
from transdisciplinary communities can co-create knowledge to
develop solutions that are efficient, safe, of general public interest
and legally feasible.

There are three features within the RRI framework (Owen
et al., 2012): (i) science is made for society defining societal
challenges, setting targets and impact; (ii) science is made
with society and innovations should be constantly iterated by
monitoring the economic, social, environmental impact and
including the general public and the policy making sector; and
(iii) science is responsible and should include the principle of
openness, ethics, and financial responsibility toward financers,
technology or product users. As marine ecosystems become
important in the quest for sustainable development, it is
important to ensure that citizens will understand the cause-
effect of societal actions and inactions and how human and
ocean health are tightly connected. At the same time, citizens,
scientists, policy makers and industry are responsible for the
ocean’s health to ensure sustainable and long-lasting marine
resources. Thus, the RRI roadmap (Theodotou Schneider, 2019)
facilitates building trust among these diverse stakeholders, which
is the prerequisite for systemic innovation. True and active
involvement will increase our understanding of marine bio-
based information, knowledge and upcoming marine bio-based
products, and catalyze the increase of ocean literacy toward
ocean health and sustainable marine biotechnology. Applying
the RRI Roadmap will enable a faster industry uptake, where
currently there is a lack of coordination and cooperation along
the value chain as well as lack of knowledge and insufficient
information exchange (Marine Board, 2010). Moreover, these
barriers, together with the lack of effective training in the
art of science communication, demand a structural change in
the academic curricula, especially when training future marine
biotechnologists. International marine biotechnology education
programs (such as “A Blue Biotechnology Master for a Blue
Career”19) are a way to transferring knowledge from the scientific
community to the industrial sector for blue biotechnology
business development by employing high skilled graduates.

MARINE BIOTECHNOLOGY ROADMAP
IN EUROPE

Oceans harbor a vast variety of organisms that offer biological
and chemical diversity with metabolic abilities unrivaled in
terrestrial systems. Still, many of the known organisms and
bioactive compounds have not been exploited to their full
commercial and possibly also functional potential. Despite this,
it is clear that marine contribution can address the societal
challenges, especially health and wellbeing, demographic
change (the increase of the global population and the need for
sustainable food sources), climate change and resource efficiency
(Hurst et al., 2016). Hence, in 2016, a marine biotechnology
strategic research and innovation roadmap was presented,
uncovering five thematic areas: enabling infrastructure,
exploration of the environment, biomass production and
processing, product innovation and policy support (Hurst et al.,
2016). The year 2021 marks the start of the 10-year period
that should enable the achievement of long-term goals and
focus especially on the collaborative and financial efforts to

19https://www.bbmbc.eu/
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advance in the development of all value chains as presented in
Figure 4. Marine biotechnology is also embedded in various
European territories through smart specialization strategies.
These are policy approaches that are tailored based on the
specific requirements in various European territories with the
aim a smart, sustainable and inclusive Europe that will shift
toward and resource-efficient blooming economy (Doussineau
et al., 2020). Marine biotechnology in Europe is still in its
early stages, evidenced by a high number of publications
(globally, around a third of marine biotechnology publications
are European), a low number of patents (globally, 13% patents
filed in connection with new marine molecules are European)
and a high knowledge fragmentation (most of the 12,500 blue
biotechnology entreprises employ 10 people or less) (Doussineau
et al., 2020). National initiatives have been supported in Europe,
for instance in Norway and Ireland with the construction
of a National Marine Biodiscovery Laboratory in Ireland20

(Gabrielsen, 2012; Bekkby et al., 2013). Regional initiatives in
marine biotechnology, such as in the Germany’s northernmost
state Schleswig Holstein has led to the establishment of the
GEOMAR Centre for Marine Biotechnology, formerly KiWiZ in
Kiel. Moreover, the continuous financial support is important
for the regional development of the field, evidenced by past
and current network initiatives (e.g., Submariner network21 in
the Baltic sea basin, BLUEMED initiative22 and B-Blue23 in the
Mediterranean Sea basin and Ocean4Biotech24 that centralizes
all European expertise and beyond). Overall, we propose that
regional national and transnational initiatives should be fostered
to set up long-term inventories of marine biomaterial open to
the public with a strong emphasis on taxonomy and geographic
information (Leal et al., 2016). These initiatives stimulate the
representatives from research, industry and policy sectors to
jointly collaborate with the aim of transforming the results of
scientific research work and technological breakthroughs into
industrial, economic and commercial successes.
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Supplementary Figure 1 | Identification of key compounds in Microcystis
aeruginosa PCC 7806extracts. 1 – Aeruginosin 684; 2 – M + 2H 392 &
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of cyanopeptolins, 895, B & C are also present.
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M., et al. (2019). Phytoplankton diversity in adriatic ports: lessons from the port
baseline survey for the management of harmful algal species. Mar. Pol. Bull. 147,
117–132. doi: 10.1016/j.marpolbul.2017.12.029

Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. F.,
et al. (2013). Pathways of lipid metabolism in marine algae, co-expression
network, bottlenecks and candidate genes for enhanced production of DHA
and EPA in species of Chromista. Mar. Drugs 11, 4662–4697. doi: 10.3390/
md11114662

Mühlroth, A., Winge, P., El Assimi, A., Jouhet, J., Maréchal, E., Hohmann-Marriott,
M. F. et al. (2017). Mechanisms of phosphorus acquisition and lipid class
remodeling under P limitation in a marine microalga. Plant Physiol. 175,
1543–1559. doi: 10.1104/pp.17.00621

Müller, W. E. G., Boreiko, A., Wang, X., Krasko, A., Geurtsen, W., Custódio, M. R.,
et al. (2007). Morphogenetic activity of silica and bio-silica on the expression
of genes controlling biomineralization using SaOS-2 cells. Calcif. Tissue Int. 81,
382–393. doi: 10.1007/s00223-007-9075-4

Müller, W. E. G., Geurtsen, W. K., and Schröder, H. C. (2006). Biosilica-Adhesive
Protein Nanocomposite Materials: Synthesis and Application in Dentistry. US
Patent Application No. US60/839,601. Washington, DC: U.S. Patent and
Trademark Office.

Müller, W. E. G., Grebenjuk, V. A., Le Pennec, G., Schröder, H. C., Brümmer, F.,
Hentschel, U., et al. (2004). Sustainable production of bioactive compounds by
sponges - cell culture and gene cluster approach: a review. Mar. Biotechnol. 6,
105–117.

Müller, W. E. G., Wang, X., Cui, F. Z., Jochum, K. P., Tremel, W., Bill, J., et al.
(2009). Sponge spicules as blueprints for the biofabrication of inorganic-organic
composites and biomaterials. Appl. Microbiol. Biotechnol. 83, 397–413. doi:
10.1007/s00253-009-2014-8

Nakicenovic, N., Rockström, J., Gaffney, O., and Zimm, C. (2016). “Global
commons in the anthropocene: world development on a stable and resilient
planet,” in Proceedings of the IIASA Working Paper, (Laxenburg: IIASA).

Frontiers in Marine Science | www.frontiersin.org 45 March 2021 | Volume 8 | Article 629629

https://doi.org/10.3390/md18010005
https://doi.org/10.3390/md18010005
https://doi.org/10.1016/j.jenvman.2018.05.086
https://doi.org/10.1080/09670262.2015.1062563
https://doi.org/10.1080/09670262.2015.1062563
https://doi.org/10.1038/s41429-020-0330-5
https://doi.org/10.3390/md12084539
https://doi.org/10.1128/jvi.06203-11
https://doi.org/10.1016/j.plantsci.2009.06.005
https://doi.org/10.1039/c8np00053k
https://doi.org/10.3390/md17110604
https://doi.org/10.1039/c5cc05659d
https://doi.org/10.3390/microorganisms8071030
https://doi.org/10.3390/md8041059
https://doi.org/10.1128/aem.68.10.5005-5011.2002
https://doi.org/10.1128/aem.68.10.5005-5011.2002
https://doi.org/10.1007/s10811-014-0345-z
https://doi.org/10.1007/s00227-002-0778-9
https://doi.org/10.1007/s101260000069
https://doi.org/10.1007/s101260000069
https://doi.org/10.1007/s10811-017-1242-z
https://doi.org/10.1007/s10811-013-0179-0
https://doi.org/10.1016/j.algal.2018.01.010
https://doi.org/10.1038/nrd2487
https://doi.org/10.1016/b978-0-444-63504-4.00017-7
https://doi.org/10.1016/b978-0-444-63504-4.00017-7
https://doi.org/10.3390/md11082846
https://doi.org/10.1016/j.plipres.2019.101007
https://doi.org/10.1016/j.rser.2017.03.024
https://doi.org/10.1016/j.rser.2017.03.024
https://doi.org/10.1016/j.ocecoaman.2011.10.012
https://doi.org/10.1093/nar/gkaa868
https://doi.org/10.1093/nar/gkaa868
https://doi.org/10.3390/cosmetics4040046
https://doi.org/10.1111/1365-2745.12634
https://doi.org/10.1111/1365-2745.12634
https://doi.org/10.1016/j.marpolbul.2017.12.029
https://doi.org/10.3390/md11114662
https://doi.org/10.3390/md11114662
https://doi.org/10.1104/pp.17.00621
https://doi.org/10.1007/s00223-007-9075-4
https://doi.org/10.1007/s00253-009-2014-8
https://doi.org/10.1007/s00253-009-2014-8
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-629629 March 10, 2021 Time: 14:8 # 46

Rotter et al. The Essentials of Marine Biotechnology

Nam, S. J., Gaudêncio, S. P., Kauffman, C. A., Jensen, P. R., Kondratyuk, T. P.,
Marler, L. E., et al. (2010). Fijiolides A and B, inhibitors of TNF-α-induced
NFκB activation, from a marine-derived sediment bacterium of the genus
Nocardiopsis. J. Nat. Prod. 73, 1080–1086. doi: 10.1021/np100087c

Nelson, D. R., Mengistu, S., Ranum, P., Celio, G., Mashek, M., Mashek, D., et al.
(2013). New lipid-producing, cold-tolerant yellow-green alga isolated from the
rocky mountains of Colorado. Biotechnol. Prog. 29, 853–861. doi: 10.1002/btpr.
1755

Nerva, L., Ciuffo, M., Vallino, M., Margaria, P., Varese, G. C., Gnavi, G., et al.
(2016). Multiple approaches for the detection and characterization of viral and
plasmid symbionts from a collection of marine fungi. Virus Res. 219, 22–38.
doi: 10.1016/j.virusres.2015.10.028

Nerva, L., Chitarra, W., Siciliano, I., Gaiotti, F., Ciuffo, M., Forgia, M., et al. (2019a).
Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environ.
Microbiol. 21, 1957–1968. doi: 10.1111/1462-2920.14436

Nerva, L., Forgia, M., Ciuffo, M., Chitarra, W., Chiapello, M., Vallino, M.,
et al. (2019b). The mycovirome of a fungal collection from the sea
cucumber Holothuria polii. Virus Res. 273:197737. doi: 10.1016/j.virusres.2019.
197737

Nerva, L., Silvestri, A., Ciuffo, M., Palmano, S., Varese, G. C., and Turina, M.
(2017). Transmission of Penicillium aurantiogriseum partiti-like virus 1 to a
new fungal host (Cryphonectria parasitica) confers higher resistance to salinity
and reveals adaptive genomic changes. Environ. Microbiol. 19, 4480–4492. doi:
10.1111/1462-2920.13894

Newman, D. J., and Cragg, G. M. (2020). Natural products as sources of new drugs
over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803.
doi: 10.1021/acs.jnatprod.9b01285

Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta, A., and Belanger,
A. (2010). Use of ichip for high-throughput in situ cultivation of "uncultivable"
microbial species. Appl. Environ. Microbiol. 76, 2445–2450. doi: 10.1128/aem.
01754-09

Nicoletti, R., and Andolfi, A. (2018). “The marine-derived filamentous fungi
in biotechnology,” in Grand Challenges in Marine Biotechnology, eds P. H.
Rampelotto and A. Trincone (New York, NY: Springer), 157–189. doi: 10.1007/
978-3-319-69075-9_4

Niedermeyer, T. H. J., Daily, A., Swiatecka-Hagenbruch, M., and Moscow, J. A.
(2014). Selectivity and potency of microcystin congeners against OATP1B1 and
OATP1B3 expressing cancer cells. PLoS One 9:e91476. doi: 10.1371/journal.
pone.0091476

Nielsen, R., Nielsen, M., Abate, T. G., Hansen, B. W., Jepsen, P. M., Nielsen, S. L.,
et al. (2017). The importance of live-feed traps - farming marine fish species.
Aquac. Res. 48, 2623–2641. doi: 10.1111/are.13281

Nikolaivits, E., Dimarogona, M., Fokialakis, N., and Topakas, E. (2017). Marine-
derived biocatalysts: importance, accessing, and application in aromatic
pollutant bioremediation. Front. Microbiol. 8:265. doi: 10.3389/fmicb.2017.
00265

Nisticò, R. (2017). Aquatic-derived biomaterials for a sustainable future: a
European opportunity. Resources 6:65. doi: 10.3390/resources6040065
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