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Abstract—Machine learning (ML) methods are widely pro-
posed for security monitoring of Internet of Things (IoT).
However, these methods can be computationally expensive for re-
source constraint IoT devices. This paper proposes an optimized
resource efficient ML method that can detect various attacks on
IoT devices. It utilizes Light Gradient Boosting Machine (LGBM).
The performance of this approach was evaluated against four
realistic IoT benchmark datasets. Experimental results show that
the proposed method can effectively detect attacks on IoT devices
with limited resources, and outperforms the state of the art
techniques.

Index Terms—Machine Learning, Internet of Things, Resource
Constraint, Light Gradient Boosting Machine.

I. INTRODUCTION

The Internet of Things (IoT) technology is advancing with
the proliferation of physically connected objects. IoT integrated
multiple devices into networks [1] to provide efficient and
intelligent services at a minimum cost. Therefore, IoT is the
driving force behind various advanced automation systems.

Despite their diverse implementation and adoption in differ-
ent sectors, the security and privacy of these interconnected
smart things pose a significant challenge. The need for robust
security techniques in response to their resource limitation
escalates. Based on the available resource, IoT networks have
to provide effective security mechanisms that can monitor and
detect severe cyber threats.

The adoption of Machine Learning (ML) techniques are
gaining popularity as an approach with wider applications
in many areas. In the context of IoT, the deployed anomaly
detection system in [2] improved the detection of malicious
activities on smart phone devices. The deeper approach in [3]
can detect Distributed Denial of Servive (DDoS) botnet attacks
on consumer IoT devices. The appealing nature of ML that
dignifies its practical implementation in various fields is the
capability of developing a model that can learn the statistical
distribution of complex and higher dimensional datasets.

Due to the motivational application of ML methods on IoT
networks, Decision Tree Ensemble Methods (DTEMs) are
employed to mitigate various security threats. An overview
of such implementation is presented in [4]. However, most of
the underlying DTEMs are computationally expensive with
complex and larger dataset [5]. Their practical implementation
required intensive memory and time resources. This limits their
direct deployment for IoT security monitoring.

Based on this observation, we develop an optimized boosting
method for resource constraint IoT devices. It adopted an
ML model and factored out its less computational expensive
parameters. It can accurately discern attack and regular traffic
on IoT networks. It provides a robust implementation in IoT
security monitoring, while the best trade-off depends on the
datasets and selected ML model.

The rest of this paper is organized as follows. Background
and related studies are presented in Section II. The proposed
approach is described in Section III. Section IV reports the
evaluation process and Section V presents results. Section VI
concludes the paper with a future research direction.

II. BACKGROUND AND RELATED WORK

In this section, we present a brief background on DTEMs
and previous studies conducted related to this paper.

Ensemble procedure is a combination based technique that
involves the strengthening of a multiple weaker classification
model to produce a better model. The fine-tune classifier model
is utilized to predict new data instances.

Bagging is an ensemble decision tree algorithm that ma-
nipulates the training data instances to improve classification
model performance [6]. The process of generating another
set of data with replacement from the original data is called
bootstrapp replicate while the technique is referred to as
bootstrap aggregation [7].

Boosting is an ensemble method that ensures the reduction
of the classification error generated from the previous classifier.
This technique is more sensitive to model over-fitting on noisy
data with extensive training iteration [8].

Despite their computational expenses in the accumulation
of multiple learners to make a decision, DTEMs offer an
appealing advantage in various fields. Especially for solving a
plethora of many ML challenges. From the literature, several
comprehensive surveys on ensemble learners are available [9],
[10] and [11]. In IoT networks, ensemble learners manifest
the concept of incorporation to detect attacks captured from
multiple devices. The integrated statistical [12] approach can
identify irregular events from various IoT network traffics.

Motivated by its bagging and feature selection properties, the
Random Forest (RF) method has extensive applications. The
authors in [13] utilized it with real-time implementation. Also,
Resende et al. in [14] outline its employment opportunities



in network security monitoring. Hassan et al. [15] adopted
it for network intrusion detection. Empirically validated the
approach using an extended version of the KDD 99 dataset. In
that context, the technique is less computationally expensive
than the Support Vector Machine (SVM) model. The evaluation
results reported in [16], shows its effectiveness. It outperforms
the SVM and Artificial Neural Network model as tested with
smaller datasets. Also, Singh in [17] adopts and implements it
for peer to peer real-time botnet detection. However, there is
no consideration for memory consumption from the described
[17] approach.

In contrast, an optimized DTEMs based on RF was proposed
[18] and tested with a small scale Iris dataset. Such implementa-
tion over insufficient data records restricted the model adoption
capability. This limits the approach applicability in various
fields. Especially in the IoT resources constraint domain.

In terms of efficient performance on sparse data, a scalable
boosted algorithm was proposed in [19]. Also, a lighter gradient
boosting decision tree method based on feature sub sampling
that require larger gradient was proposed in [20]. The central
assumption made is based on the features dimension reduction
to speed up the model classification process. However, this
decision cannot be generalized within various datasets as an
approach to improve model performance.

Series of ML optimization methods have been proposed
for classification tasks with Deep Neural Networks (DNN) in
[21] and [22]. The optimized loss function in [23] outperforms
the popular cross-entropy technique for image classification.
Further, a complex and robust deeper optimization approach
has been successfully implemented in [24].

In particular, no existing work in the boosted decision tree
literature that automatically optimizes learning parameters for
LGBM in the context of IoT. In this paper, we demonstrate such
a useable approach that reduces memory and time resources
consumption. The method ensures the selection of relevant
parameters suitable for IoT resource constraint environment
and multidimensional scalable datasets.

III. RESOURCE EFFICIENT BOOSTING METHOD

The process of finding an optimized decision tree classifica-
tion model can be considered as a challenging task. This is due
to the need for intensive parameters tuning in achieving the
state of the art performance. For example, optimization of the
Gradient Boosting Method (GBM) requires attentive parameter
tuning to build a base learner that maximally correlated with
the negative gradient of a loss function [25].

A. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) is a decision
tree algorithm based on gradient sampling of data instances
with smaller gradient and exclusive feature bundling [20]. This
technique has proven successful with a lesser iteration on the
training data instances. However, practical implementations
of LGBM need various parameter tuning. This is challenging
with multidimensional and scalable datasets. Unfortunately, it
is difficult to find these optimum parameters that are memory

and time resources-efficient with larger training data samples.
An attentive configuration is needed in setting the relevant
boosted learning architectures for the task of regression, binary,
and multiclass classification.

B. LGBM Hyperparameters

LGBM learning model has various hyperparameters to con-
sider for optimization phases and implementation, particularly
for the task of binary classification. These include the number
of leaves, feature fraction, bagging fraction, bagging frequency,
learning rate, and a regularization term. Table I described
the range of values of these hyperparameters. There is a
recommendation in varying each scale, as described in the
LGBM module [26]. Regularization alpha as a constraint can
be greater than 0.0. Feature and bagging fraction must be set
within [0, 1]. Enabling bagging with its frequency set to non
zero value can facilitate efficient model learning.

For the task of efficient resource utilization, the learning
rate, and the regularization term are selected in the range
of [0.0001, 0.1]. The constraint bagging and feature fraction
are utilized within [0, 1]. The constraint number of leaves
may cause model over-fitting with increases in computational
cost, minimum scales of 2 are initialized and incremented
sequentially. Proper configuration of these hyperparameters
can minimize time and memory resources consumption.

Primarily, the grid search technique is employed to select
the best parameters configuration among various learning
models. However, this approach focuses on providing better
prediction performance. Yet, there is a challenge in stabilizing
the threshold between memory usage and accurate prediction.

Algorithm 1 Proposed method

1: Dataset D = {(x1, y1), (x2, y2),..., (xn, yn)}
2: Normalized Dn = {Dj}, j = 1 . . .m
3: Train data X ⊆ Dn

4: Test data X ′ ⊆ Dn . X ∪X ′ = Dn, X ∩X ′ = ø
5: M = Classifier model
6: Me = efficient classifier model
7: {Z} = Parameters and hyperparameters
8: L = |Z|
9: {Zo} optimized Z

10: for k = 1 to L do
11: EFFICIENT(Z[ ]) . Call to EFFICIENT in Alg. 2
12: Me = M (X , Ze) . Me depend on Ze and X
13: end for
14: Predictive E = Me(X ′) . Prediction using Me and X ′

An optimized method for this purpose have been proposed
and presented in Algorithm 1. During training iteration, the
described algorithm can select the optimum parameters of
the LGBM model. Based on minimal fitted memory and
running times. The selection procedure is in Algorithm 2.
As demonstrated, the function efficient parameter, initialize the
memory and time consumption of the classifier model. Then
iterate sequentially to the remaining parameters to return an



TABLE I: LGBM hyperparameters.

Hyperparameter Minimum Maximum
Bagging Fraction 0.0 1
Feature Fraction 0.0 1

Number of Leaves 1 131072
Learning Rate 0.0 0.1

Regularizer 0.0 0.1

efficient model. This model is employed to predict a testing
dataset with better accuracy.

Algorithm 2 Resource efficient

1: Training samples T = {(xi, yi) }, i = 1 . . . n
2: Testing samples X= {(xi, yi)}, i = 1 . . .m
3: Classifier C
4: C model parameters P = {pj }, j = 1 . . . l
5: mf , tf fitted memory and fitted run times of C
6: apj prediction accuracy of C(pj)
7: function EFFICIENT(P [ ])
8: l ← length(P )
9: tfp1

← tC(p1,T )

10: mfp1
← mC(p1,T )

11: min(t) ← tfp1

12: min(m) ← mfp1

13: ap1
←Cp1(X)

14: pt ← ap1

15: for k ← 2, l do
16: tfpj ← tC(pj ,T )

17: mfpj ← mC(pj ,T )

18: afpj
←Cpj(X)

19: while ((apj
≥ pt) ∨ (apj

≤ pt)) do
20: if ((tfpj

< min(t))∧(mfpj
< min(m))) then

21: min(t) ← tfpj

22: min(m) ← mfpj

23: end if
24: break
25: end while
26: end for
27: return C(pj ,min(tfpj

,mfpj
)

28: end function
29: Validation:
30: F ←C(X)

C. Parameters Optimization Procedure

Optimization of a decision tree classification model is
a requirement to maintain generality on resource-intensive
tasks. Particularly for their deployment to resources constraint
IoT devices. Careful employment of optimum parameters
combination can enhance model performance with minimum
resources consumption.

The visualization in Figure 1, is the process diagram for
the proposed method. It required datasets and a conventional
ML model alongside with the parameters that occur in training.
It can accept data, normalize it, and output a model with

Fig. 1: Resource efficient process diagram

optimized parameters. It employed dataset produce from the
collection of realistic benign and malicious traffics using
simulated IoT devices. For the task of binary classification, the
efficient model can accurately differentiate regular traffic from
attack traffic.

The pseudocode of this implementation procedure is pre-
sented in Algorithm 2. The foremost steps in Algorithm 2, is the
traditional classifier model definition with its parameters com-
position. During training, parameters are iterated sequentially
to find those that efficiently fit a model. The return parameters
are those that are effective in terms of resource utilization.
Testing data samples are validated using the updated model.

D. Implementation

In practice, the employment of the parameter grid [27] is
due to the various series of training sessions that occur for the
discovery of optimum parameters with fewer resources. The
parameter grid [27] can store multiple parameters. Training and
testing was implemented on Spyder [28] version 3.3.3 stable
python IDE. Memory and iteration time has been profiled using
the integrated psutil (process and systtem utilities) and time
python modules. Computation were conducted on a personal
machine that has intel Xeon E5-2695(4 core) CPUs running
at 2.10 GHz with 16.0 GB installed memory. Code for the
approach implementation is open-sourced at: https://github.
com/izakariyya/Resource Constraint Algorithm

IV. EVALUATION

In this section, we present the experimental evaluation of
the proposed method with the description of the benchmark
datasets selected for IoT security monitoring.

A. Datasets and Preprocessing

The evaluation experiments used four accessible IoT datasets,
N-BaIoT [29], Bot-IoT [30], Bot-10 [30], and Unsw [31]. Each
dataset consists of various attacks along with normal traffics
activities. Particularly, Bot-IoT with multiple categorizations
of different botnet attacks. The dataset composed of 72 million
records with 16.7 GB of CSV format file, while 10% of the
data is made publicly available [30] for model evaluation.

The choice of these datasets allowed frequent model training
with thorough experimentation. Each tested dataset are catego-
rized into 70% training and 30% testing records. The datasets
are described briefly in Table II. All data records are normalized
using the employed min-max standard normalization formula
described in Equation 1. The notation X in Equation1,
represents the value of vector X , while Xmax and Xmin



TABLE II: Datasets.

Dataset Training Tests Feature dimensions
N-BaIoT 509865 218514 115

Unsw 115264 49400 43
Bot-IoT 467965 200557 34
Bot-10 1247596 534684 10

TABLE III: Initial and optimum hyperparameters.

Hyperparameter Initial Optimum
Feature Fraction 0.1 0.4
Bagging Fraction 0.1 0.4

Bagging Frequency 2 2
Number of Leaves 31 2

Learning Rate 0.1 0.0001
Regularizer 0.0 0.0001

represents the maximum and minimum values of the vector X .
These normalized datasets are within the range of [0,1].

Normalized(X) =
X −Xmin

Xmax −Xmin
(1)

B. Optimized LGBM Hyperparameters

The most relevant hyperparameters discovered using the
proposed method are described in Table III. These include the
initial values for the unoptimized LGBM model and optimum
values returned by the efficient boosted algorithm.

V. RESULTS

This section presents the analysis and discussion of the
experimental results from the implementation of the proposed
boosting method. Memory and time usage of the optimization
phase are compared with the tested techniques.

A. Testing Speed

The visualization in Figure 2(a) is the testing times needed
to evaluate the proposed method against each datasets record. It
is efficiently faster than the unoptimized model. It demonstrates
reduced classification time in processing each sample of the
tested data.

The proposed method is capable of saving processing time
resources across datasets. As compared with the conventional
model in Figure 2(a), it saved 53.79%, 57.89%, 61.11% and,
47.76% of times for validating a sample of Bot-10, Bot-IoT,
Unsw and, N-BaIoT, respectively.

B. Testing Memory

The memory unit consumption comparison in testing each
data record with the proposed approach is presented in Figure
2(b). It requires lesser memory. It saved 52.69%, 39.17%,
71.43% and, 41.78% of test memory for each record of Bot-10,
Bot-IoT, Unsw, and, N-BaIoT, datasets, respectively. These re-
sults indicate its robustness and lightweight security monitoring
advantages for IoT devices with overall improvement across
benchmarks datasets. It suggests that real-time IoT security
monitoring with the proposed approach can be beneficial.

(a) (b)

Fig. 2: Sample testing resource consumption (a) time and (b)
memory.

(a) (b)

Fig. 3: Optimized testing accuracy comparison with (a) unop-
timized LGBM and (b) grid search.

C. Testing Accuracy

The description in Figure 3(a) represents the testing accuracy
that the proposed method provides for each dataset. Despite
its resource reduction advantages, it also outperformed the
unoptimized LGBM method in predicting the Bot-10 and
Bot-IoT datasets accurately. The loss of accuracy by the
unoptimized approach was due to the utilization of the default
configuration parameters. These results indicate the capability
of the optimized technique in detecting IoT attack traffic
effectively.

The description in Figure 3(b) represents the testing accuracy
comparison of the proposed method and the grid search
technique. Despite its less computationally expensive, the
prediction accuracy across each dataset is closer to that of
the grid method.

D. Computational Performance Analysis

The reports in Table IV is the performance comparison for
the tested datasets of the grid search and the proposed method.
Regarding the resource consumption of each data record, the
proposed approach is better. It required minimal memory and



TABLE IV: Grid and optimized method performance evalua-
tion.

Dataset Algorithm Test memory Test time
(Byte) (Nanosecond)

N-BaIoT Grid 15.88 2059.36
Optmize 11.75 1601.73

Unsw Grid 5.72 1619.43
Optmize 3.482 1417.00

Bot-IoT Grid 11.19 1495.83
Optmize 8.66 1196.67

Bot-10 Grid 1.52 1458.81
Optmize 1.08 1140.86

TABLE V: Performance evaluation comparison on N-BaIoT
Dataset.

Algorithm Accuracy Test time Test memory
(%) (Nanosecond) (Byte)

Random Forest 89.35 12813.82 3873.01
LogitBoost 89.14 13042.64 3874.00

SGB 89.53 13454.52 3875.00
AdaBoost 89.31 11440.91 3866.00
Optmize 99.90 1601.73 11.75

(a) (b)

Fig. 4: Effect of (a) number of tree leaves and (b) bagging
frequency on memory.

maintained reduced classification time. These results indicate
its effectiveness and efficiency advantage.

The description in Table V is the computational performance
of the employed algorithms against the N-BaIoT dataset sample.
The proposed method indicate reductions in memory and time
resources. It demonstrates a robust classification of attacks and
regular traffic with an accuracy of 99.90%.

The demonstration in Figure 4 is the relationship between
hyperparameters tuning against memory consumption. Figure
4a, indicates the effects of varying the constraint number of
leaves on memory usage. The graph suggests smaller tree
leaves values for lesser memory consumption. Also, Figure
4(b) indicates the memory consumed while altering the bagging
frequency parameter.

The description in 5(a) is the sample memory consumption
against the constraint bagging fraction. It suggests the selection
of accurate value where resources are limited. Also, Figure 4(b),

(a) (b)

Fig. 5: Effect of (a) bagging fraction and (b) feature fraction
on memory.

(a) (b)

Fig. 6: Effect of (a) regularizer and (b) learning rate on memory.

demonstrates how feature fraction facilitates memory resource
consumption.

The illustration in Figure 6(a)is the sample memory con-
sumption against the regualization term. Also, Figure 6(b)
shows the impacts of learning rate on memory. It demonstrated
that smaller values of these hyperparameters facilitate memory
saving. This is useful in controlling the deployment of resource-
hungry boosting algorithms.

VI. CONCLUSION AND FUTURE WORK

The increasing number and complexity of IoT devices
motivate the development of a robust, efficient, and feasible
security protection system. We present such an approach
that utilized LGBM with optimized hyperparameters to lower
computational cost for resource constraint IoT devices. Mainly
due to the assumption that most traditional ML methods are
computationally expensive for IoT security monitoring. The
proposed technique is efficient and useable for IoT resources
consumption reduction. It outperforms the conventional LGBM
model tested with the initialized hyperparameters and the grid
search technique. It is better than the five employed boosting
algorithms for effective attack detection and lesser resource
consumption. Regarding the SGB algorithm, it reduced the
processing time and memory consumed during testing by
88.09% and 99.70% for each sample. These results motivate



follow-up research to enhance the method for real-time IoT
security monitoring.

An essential step to validate the method externally would
be to replicate this study results with regular and attack
traffic captured from different real IoT devices. These include
extensive network traffics captures during various IoT attacks
generation.

Consideration of various datasets would allow the feasibility
measurement of the proposed technique based on the amount
and diversity of IoT traffic. We are more concerned about
the behavior and variation of different IoT devices. At large,
we want to investigate whether specific devices are more
vulnerable than others. Further, we would like to explore more
challenging ML techniques with other complex parameters and
hyperparameters available in the literature.
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