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Fusion of Infrared and Visible Images for Remote
Detection of Low-Altitude Slow-Speed Small Targets

Haijiang Sun, Qiaoyuan Liu, Jiacheng Wang, Jinchang Ren , Yanfeng Wu, Huimin Zhao , and Huakang Li

Abstract—Detection of the low-altitude and slow-speed small
(LSS) targets is one of the most popular research topics in re-
mote sensing. Despite of a few existing approaches, there is still
an accuracy gap for satisfying the practical needs. As the LSS
targets are too small to extract useful features, deep learning based
algorithms can hardly be used. To this end, we propose in this
article an effective strategy for determining the region of interest,
using a multiscale layered image fusion method to extract the most
representative information for LSS-target detection. In addition,
an improved self-balanced sensitivity segment model is proposed
to detect the fused LSS target, which can further improve both the
detection accuracy and the computational efficiency. We conduct
extensive ablation studies to validate the efficacy of the proposed
LSS-target detection method on three public datasets and three
self-collected datasets. The superior performance over the state
of the arts has fully demonstrated the efficacy of the proposed
approach.

Index Terms—Background subtraction, image fusion, low-
altitude and slow-speed small (LSS) target detection, saliency
detection.

I. INTRODUCTION

THE “low-altitude and slow-speed small” target (LSS tar-
get), such as unmanned aerial vehicles (UAVs), is a general

term for small aviation device/equipment with a flight altitude
less than 2 km and a flight speed less than 50 km/h. Detection
of the LSS targets is a key technology for precision navigation,
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Fig. 1. LSS targets in different aviation scenarios.

infrared search, tracking and reconnaissance warning system,
which has been widely applied in many practical applications
such as air transportation [1], aerial mapping [2], and many tasks
in military confrontation [3]. As a result, the LSS-target detec-
tion indeed has important research significance in the field of
ground air defense. This approach could directly determine the
operating distance and detection sensitivity of the corresponding
systems. Although great breakthroughs have been made in recent
years [4]–[7], [40], [41], including the background subtraction
algorithm based on the visible light image [6], detecting the
LSS target with the combination of visible light image, infrared
image and even hyperspectral image [8], but there are still great
challenges for putting this approach into practical applications.

As the LSS targets usually appear like a spot (see Fig. 1),
the detection can be easily affected by the background objects.
In this article, we summarize the difficulties of the LSS-target
detection into three aspects. The first is the complex background,
and how to accurately detect the LSS targets while overcoming
the effects of complex scenes is always a challenge in this
context. The second is the weak target, as it is very hard to
determine the specific trajectories for LSS targets under low
speeds. Due to their small sizes in the field of view, it is difficult
to build accurate templates for target detection. The third is the
high false alarm rate: considering that there always exist faked
objects with similar features to the LSS targets, how to accurately
differ the LSS targets from complex scenes to reduce the false
alarms is another major issue.

To tackle the aforementioned challenging problems, various
methods have been proposed for LSS-target detection. Accord-
ing to the image sources used, these approaches can be divided
into two categories, i.e., LSS-target detection in the visible light
image and infrared images, respectively. Lou et al. [9] intro-
duced the saliency and regional stability for feature extraction
in visible-light images. A segmentation threshold was used to
distinguish the target for accurate detection, but it was unsuitable
for complex scenes. Xie et al. [10] proposed the peer group filter
to improve the signal-to-noise ratio of the infrared image in
LSS-target detection. Although small targets could be extracted
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from the background accurately, it was too time-consuming for
real-time tasks. Pan et al. [37] proposed a double-layer local
contrast measure (DLCM) approach for small target detection
in infrared images. A double-layer-diagonal gray difference
contrast was used to enhance the visual saliency of the target
and alleviate the impact of the background clutter and noise.

In general, the images captured by the visible cameras show
clear texture, edge, and high spatial resolution than the infrared
ones, which are useful for target detection. However, the quality
of the image produced can be affected by the weather conditions
and environmental illumination et al., leading to failure of
detection at night or during bad weather conditions. However,
the infrared imaging can supplement the deficiency of visible
images. Although the infrared image suffers from a relatively
lower spatial resolution and weaker textures, it can produce
particularly better images at night or in bad weather.

In order to enhance the generality of LSS-target detection, the
combination of both the visible images and the infrared images
has been widely used. Bavirisetti and Dhuli [11] proposed
image fusion and secondary decomposition of the image-based
LSS-target detection. Qiu et al. [12] applied combined strategies
on the visible and infrared images for accurate target extraction,
in which an inter-frame difference based rough entropy model
was used for locating the moving target in the infrared images,
along with a local binary pattern model for the visible images
and a Gaussian mixture model for background modeling. Al-
though these have improved the accuracy and generality of the
algorithm, the information of visible and infrared images was
not fully utilized.

To tackle the effect of the complex background in LSS-target
detection, various background modeling approaches have been
proposed, either in the visible light images or the infrared
images. Barnich and Van Droogenbroeck [13] proposed an un-
ordered background modeling algorithm, which stored a sample
set for all pixels and randomly selected the neighboring pixels for
updating the samples. This method was robust to noise but could
hardly deal with color changes such as illumination and ghost
effect. The approach was further improved by Hofmann et al. in
[14], where a pixel level nonparametric background-modeling
algorithm was proposed. Although it could adaptively detect
small targets in complex background, the algorithm was quite
complex and time-consuming.

In this article, combining infrared and visible images for
LSS-target detection is also focused. Different from the existing
methods, our proposed approach fuses the features and infor-
mation from visible and infrared images in multilayers. First, a
background model is used from the perspective of inter-frame
difference from three consecutive frames rather than two, which
can help to obtain the accurate motion region while greatly
decreasing the impact of background. Second, the weighted
moving average (WMA) [15] and weighted moving variance
(WMV) [16] are utilized to obtain the target candidate regions
from the infrared and visible images, respectively. Third, based
on the target candidate regions, a self-balanced sensitivity seg-
mentation algorithm (SuBSENSE) [17] is used to construct a
local area background model for refined LSS-target detection.

The Toet A.TNO (Image fusion dataset) dataset [18] and the
visible-infrared database (VID) dataset [19] are used for eval-
uating the performance of image fusion and target detection,
respectively. Experimental results have validated the efficacy of
the proposed model for LSS-target detection in comparison to
the state-of-the-art (SOTA) approaches.

II. PROPOSED ALGORITHM

The diagram of the proposed LSS-target detection approach is
illustrated in Fig. 2, which has two modules for fusion-based fea-
ture extraction. The region of interest (ROI) extraction module is
designed to predict the candidate target region with multidetector
images. Given three frames of the infrared images and visible
images, WMA and WMV can output a candidate target region,
denoted as rec1 and rec2, respectively. The minimum bounding
box of these two regions can be taken as the extracted ROI that
carries target information from both infrared and visible images.
In the multiscale layered image fusion module, a fused image
is generated for LSS-target detection by saliency maps from the
extracted base layers and detail layers. The detected ROIs and
the fused image are then inputted to an improved SubSENSE
module for further refining the locations of the LSS targets.

Specifically, we first apply the background subtraction to the
first three frames of the visible and its corresponding infrared
image sequences to determine the initial candidate regions of
targets. Here, we denote the first three frames of the infrared
image and the visible images as IIR = {IIR_1, IIR_2, IIR_3}
and IVis = {IVis_1, IVis_2, IVis_3}, respectively. By applying
the WMA [15] and WMV [16] methods on IIR and IVis, a
rough foreground and background segmentation can be ob-
tained, which can provide a good guidance for the subsequent
target detection. Specifically, by applying the WMA on IIR ,
several foreground masks can be obtained, where we use rec1
to denote the bounding box of the targets. Similarly, a bounding
box rec2 of detected targets from the visible images can be
determined from by applying WMV on the visible images. The
final ROI of the target candidate region R can be obtained via a
union of two sets rec1 and rec2 as follows, and the details are
presented in Section III:

rec1 = WMA(IIR) (1)

rec2 = WMV(IVis) (2)

R = rec1 ∪ rec2. (3)

The target candidate region generated by the background
subtraction model will be applied to each subsequent fusion
image. In this way, the detection algorithm SubSENSE [17] only
needs to be applied to the determined ROI rather than the whole
image for improved efficiency.

In our approach, image fusion is the key to make the full
use of infrared and visible images. First, the rolling guide filter
(RGF) is applied to the infrared and visible images, separately,
in order to decompose the images and enhance the details. This
is followed by the visual saliency to fuse the decomposed image
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Fig. 2. Flowchart of the proposed LSS-target detection approach.

layer as the input of SubSENSE [17] detection method

{DIR, BIR} = RGF (IIR_i) , DIR =
{
d1IR, d

2
IR, . . . d

N
IR

}
(4)

{DVis, BVis} = RGF (IVis_i),

DVis =
{
d1Vis, d

2
Vis, . . . d

N
Vis

}
(5)

{SIR_i, SVis_i} = Saliency (IIR_i, IVis_i) (6)

whereDIR andBIR denote, respectively, the extracted N detailed
layers from the infrared image and base layer; DVis and BVis

denote, respectively, the extracted N detailed layers and base
layer from the visible image. As shown in Fig. 2, all the extracted
detail layers DIR and DVis are fused according to the weighted
least square optimization, and all the extracted base layers BIR

and BVis combined with the corresponding saliency map SIR

and SVis are fused. Combining all the fused images as shown in
(25), we can get the final fused image Fi.

Based on the background subtraction model R and the fused
image Fi, the position of the LSS target in the current frame can
be predetected, which is then further refined by an improved
SubSENSE [17] method as detailed in Section V

l = Sub (R,Fi) . (7)

Finally, the refined mask l is mapped to the original image to
produce the segmentation map and the final detection results.

III. EXTRACTION OF CANDIDATE TARGET REGIONS

For accurate detection of the moving targets, we first introduce
a three-frame image difference algorithm to extract the candi-
date regions of the targets, in which the adjacent three frames
are taken as a group for calculating the image difference for

robustness. Considering the low speed of the LSS target, only
the initial three frames are used for background modeling.

A. ROI Extraction in Infrared Images

For the infrared images, the WMA algorithm is employed
for candidate target region extraction, which is more suitable
for processing infrared images due to its fast calculation speed
and sensitivity to illumination changes. WMA uses the weighted
average of the initial three infrared frames to build a background
subtraction model by replaying more weights on the observation
values closer to the predicted time

Imean =

3∑
i=1

wi ∗ Ii (8)

where Imean is the weighted average of the image pixels, wi is
the corresponding weight with

∑3
i=1 wi = 1; in our approach,

we set w1 = 0.5, w2 = 0.3, w3 = 0.2 as an example.
As infrared images conform to the laws of thermodynamics,

the 1-D information entropy is used as a threshold to distinguish
the foreground from the background as follows:

Hb = −
δ∑

i=0

pi
W1 (δ)

× log

(
pi

W1 (δ)

)
(9)

Hf = −
L−1∑

i = δ+1

pi
W2 (δ)

× log

(
pi

W2 (δ)

)
(10)

where δ is the threshold to distinguish the gray values of the
background before and after; W1 and W2 are the gray value
probability of the background and the target, respectively, and
L is the number of gray levels of the infrared image. pi is
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the probability distribution of image gray levels, which can be
computed by pi =

ni

M×N , where M ×N is the total number of
pixels, and ni indicates the number of pixels with gray level i.

The segmentation threshold can then be determined by{
Ht (δ) = Hb +Hf

δ∗ = argmaxHt (δ)
(11)

where Ht(δ) is the total information entropy of the image, and
δ∗ is the determined segmentation threshold by maximizing the
1-D information entropy of the image [38].

For detecting LSS targets, first pixel-based difference between
the current frame Ii and the corresponding weighted average
image Imean is obtained as Isub. By comparing Isub against the
threshold δ∗, the foreground can be determined by

Bt =

{
1, Isub > δ∗

0, Isub ≤ δ∗ , Isub = |Ii − Imean|. (12)

The algorithm can then dynamically update the background
model based on the weighted background model and the current
frame to adapt the model to scene changes as follows:

Bt+1 = (1− α) Bt + αIt (13)

where α is the update learning rate, and It is the tth frame; Bt

and Bt+1 denote the background model at time t and t + 1,
respectively.

Although the foreground can be extracted from the infrared
image above, it is relatively too rough to estimate the final target
location. However, it helps to provide a coarse location of the tar-
get for efficiency. As shown in Fig. 2, the binary image outputted
by WMA, the white area represents the extracted foreground,
and the remaining represents the background. We first determine
the bounding box for all the white areas as rec1, which is the
candidate target region of the infrared image corresponding to
the current background model.

B. ROI Extraction in Visible Images

For the visible images, based on the original WMA back-
ground modeling, the mean Imean and the standard deviation
is calculated. As the visible images always contain rich texture
features, this is namely WMV background modeling

var (Ii, wi) = wi ∗ (Ii − Imean)
2 (14)

std =

√∑
i∈[13] var (Ii, wi) /3 (15)

where var(.) and std are the weighted variance and weighted
standard deviation of the image pixels, respectively. Besides,
other background modeling processes are as same as the infrared
images, and wi follows the same distribution as the WMA does.
Therefore, the candidate target region rec2 can also be generated
from the visible image, where the final target candidate region
could be obtained using (3).

IV. MULTILAYER IMAGE FUSION BASED ON ROLLING

GUIDED FILTERING

Considering that the infrared images and the visible images
contain different but supplementary information, our approach

proposes to fuse them in multilayers to make the full use of
their information. In our approach, the RGF [20] is used for
multiscale decomposition and detail enhancement. Specifically,
the visible and infrared images are first decomposed into the
corresponding base layer and detail layers, which are then fused
separately. Accordingly, this could not only retain and enhance
more useful image details but also enable a favorable detection
of LSS targets.

A. Extraction and Fusion for the Base Layers

The RGF-based decomposition is an iterative process [39],
which can decompose an image into N layers, where the filtered
detail image of the jth layer is given by

μj = RGF
(
μj−1, σj−1

s , σr, T
)

(16)

dj = μj−1 − μj (17)

whereμj is the image after the jth layer filtering, dj is the decom-
posing images of the jth layer, σj−1

s is the scale parameter, σr is
the weight range parameter, and T is the number of iterations.

Nevertheless, a Gaussian filter rather than RGF is applied in
our approach to obtain the base-layer image. The RGF algorithm
utilized in our approach lies in the advantages of its scale-aware
and edge-preserving properties. On the contrary, the base layer
is the coarsest version of the source image, which is used to
control the global contrast and appearance of the fused image.
As a result, it is unnecessary to apply RGF to the base layer as
there is no need to preserve edge or detail information for this
layer. For efficiency, the Gaussian filtering with a larger standard
deviation is chosen in our method to get the base layer in the last
filter layer with j = N as follows:

μN = Gaussian
(
μN−1, σN−1

s , σr, T
)

(18)

dN = μN−1 − μN . (19)

By setting σN
s = 2σN−1

s , the infrared base-layer image BIR

and the visible base-layer imageBVis can be obtained. For fusion
of the base layer, the fusion rules are given as follows:{

BF = Wb BIR + (1−Wb)BVis

Wb =
1
2 (1 + SIR + SVis)

(20)

where SIR and SVis are the normalized saliency images gen-
erated from IIR and IVis, respectively, using the widely used
saliency map extraction method visual saliency map [39]. With
the fusion weight Wb calculated by SIR and SVis, the base layer
fusion image can be finally determined.

B. Extraction and Fusion for the Detail Layers

For the fusion of the detail layers, the fusion rules are as
follows. First, the initial fusion detail layer M j is obtained as

M j = W j djIR +
(
1−W j

)
djVis (21)

where the fusion weight can be obtained using

W j =

{
1
∣∣∣djIR > djVis

∣∣∣
0 otherwise.

(22)
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The weighted least square method is used to obtain the final
detail fusion layer Dj

i as follows:

min
∑
n

[(
Dj

n −M j
n

)2
+ λ · Λ ·

(
Dj

n −
(
djVis

)
n

)2
]

(23)

where (Dj
n −M j

n)
2 is the Euclidean distance between the fusion

detail layer Dj
n and the initial fusion detail layer M j

n, n denotes
the spatial location of a pixel, λ is a balance control parameter,
Λ = (|∑ωn

(djIR)n|+ 0.0001)−1 is the spatial-varying weight
parameter, andωn represents the square sliding window centered
at pixel n.

A larger window would not only blur the fused image but also
generate a higher dimensional spatial-varying weight, resulting
in increased computational cost. On the other hand, a smaller
window cannot effectively remove the noise and irrelevant IR
details. After testing, the size of 7 × 7 is used, as it produces
satisfactory results, and (23) can be rewritten as(

1 + λAj
)
Dj = M j Ajdj (24)

where Aj is a diagonal matrix containing the weights of all
pixels. Finally, the fused image F is obtained by

F = BF +D1 +D2 + · · ·+DN . (25)

V. LSS-TARGET DETECTION WITH LOCAL SUBSENSE

To extract LSS targets from the candidate target regions of the
fused image, we integrate an improved SuBSENSE algorithm
[17] with a proposed background modeling in local regions.
The input of the background model is the fused image, and the
modeling area is the comprehensive target candidate areas as
determined in Section III. The entire detection process consists
of five steps, i.e., background model initialization, recursive
moving average distance calculation, noise suppression, local
distance threshold control, and background model update. Be-
sides, a false alarm eliminating algorithm is also introduced for
further improving the detection accuracy.

A. Improved SubSENSE Detection Algorithm

Step 1: Based on the spatio–temporal binary similarity and the
Color-LBSP descriptor [22], SuBSENSE could characterize the
pixel representation with a nonparameter model. We initialize
the background model by

St (x) =

{
1, if {dist (Ft (x) , B (x)) < Rmax} < m
0, otherwise

(26)

where Ft(x) is the fused image at time t, B(x) is the historical
sample, the element in the background model St(x) actually
is the segmentation result, and Rmax is the maximum distance
threshold; m is the requested minimum number of matches for
background classification; dist(Ft(x), B(x)) is the distance
between the current observation and the given background. By
reasonably selecting the maximum distance threshold, we can
better resist unrelated changes of the model.

Step 2: Once the background model is determined, the recur-
sive moving average distance between the current pixel and the

pixel in the sample set can be calculated as follows:

Dmin (x) = Dmin (x) · (1− α2) + dt (x) · α2 (27)

where α2 is the learning rate and dt(x) is the minimum nor-
malized Color-LBSP between all samples in Ft(x) and B(x).
Since Dmin(x) is bound to [0, 1], an entirely static background
region would haveDmin(x) ≈ 0, and a dynamic region to which
the model cannot adapt to would have Dmin(x) ≈ 1. Areas
with foreground objects show higher Dmin values, because
foreground detection is defined by the difference between the
pixel model and local observations.

Step 3: Before applying local distance threshold control, we
define a 2-D map of pixel-level accumulators v to improve the
detection accuracy. For every new segmented frame, we can
obtain the binary map of all blinking pixels at time t from the
background model St. Finally, we update v as follows:

v (x) =

{
v (x) + 1, if St (x) = 1
v (x)− 0.1, otherwise.

(28)

For regions with little labeling noise, we will typically have
v(x) ≈ 0, whereas for regions with unstable labeling, we have
large positive v(x) values. This method can guide the dynamic
motion background to trigger the feedback mechanism, whereas
conventional models cannot provide such feedback.

Step 4: In order to dynamically select the suitable thresholds,
the local distance in the SuBSENSE [17] background model is
used. The local distance thresholdsR can be recursively adjusted
for each new frame as shown in the following equation:

R (x) =

{
R (x) + v (x) , if R (x) < (1 + 2 ·Dmin (x))

2

R (x)− 1
v(x) , otherwise

(29)
where R(x) are a set of continuous values; the exponential
relation between R(x) and Dmin(x) is chosen over a linear
relation as it favors sensitive behavior in static regions (and thus
helps to generate sparse segmentation noise), but also provides
robust and rapidly scaling thresholds elsewhere.

Here, the segmentation noise indicator v(x) is used as a factor
that, in dynamic regions, allows faster threshold increments
and can even freeze R(x) in place when Dmin(x) recedes
to lower values. This parameter control method is conducive
to generating sparse segmentation noise and helps to provide
reliable and rapidly expanding thresholds elsewhere.

Step 5: To overcome the influence of lighting, shadows,
and moving targets on the detection results, the SuBSENSE
background model is further updated as follows, where T (x)
represents the model update rate:

T (x) =

{
T (x) + (v (x) ·Dmin (x))

−1, St (x) = 1

T (x)− v (x) (Dmin (x))
−1, St (x) = 0.

(30)

If the current pixel is classified as a background, then any
random pixel in the background sample has 1/T probability of
being replaced by the current pixel, and its neighboring pixels
have 1/T probability of being randomly replaced by any value
in its neighborhood sample. Random replacement of samples
and random updates of pixels can prevent static foreground
objects from being quickly absorbed and ensure the authenticity
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of short-term and long-term background representations in the
model. The spatial consistency of the background model can
suppress the impact of camera shake on LSS-target detection.

B. False Alarm Eliminating Algorithm

In our approach, four evaluation indexes are used to reduce
the false alarms, including the area ratio change, the centroid dis-
tance, the filling rate difference, and the aspect ratio difference,
as detailed in the following:

1) to automatically obtain the smallest bounding boxes of all
candidate targets;

2) calculate the target area ratio

Δs =

∣∣∣∣ |t|
K (x, y)

∣∣∣∣ (31)

3) calculate the centroid distance

Δc =

∥∥∥∥ cxbw +
cy
bn

∥∥∥∥
2

(32)

4) calculate the aspect ratio

Δa = bw/bn (33)

where |t| = ∑
K(x, y) denotes the number of pixels

of the target in the image; K(x, y) represents the area
of the bounding box of the candidate target; and bw
and bn denote, respectively, the width and height of that
bounding box.

Specifically, the aspect ratio reflects the morphological state
of the target to some extent as the ideal LSS target appears like
a spot, i.e., the aspect ratio is close to 1. If the width or height
are much disparity to each other, the suspected area becomes a
long strip, which will unlikely be determined as an LSS target
even if it meets other constraints. Therefore, it will be classified
as a false target to be eliminated. In our approach, the aspect
ratio that can tolerate false targets is set to 0.35. Assume the set
R contains m candidate targets {r1, r2, . . . rm}, and Tf is the
target set after removing the false alarms. The specific process
of eliminating the false targets is given as follows.

False Alarms Eliminating Algorithm
Input: Candidate target set R
1. ti = {ri} , Ti = {∅} Δ Initialization
2. For i = 1, ri ∈ R

3. If ∀Si :
{ 0.8≤Δs<1
0.75≤Δc<1
Δa≥0.35

Then

4. Tnew = Texist ∪ ti Δ Update target Set
5. Else Texist = Tf Δ Eliminate false alarms
End for
Output: Target set Tf

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this article, three groups of multisource images are selected
for performance assessment. Video 1 is the “Take 1 sequence”
of the “Guanabara Bay: Outdoor” in the Toet A.TNO (Image

TABLE I
TEST VIDEO INFORMATION

TABLE II
SELF-ACQUIRED VIDEO INFORMATION

fusion dataset) dataset [18], which is referred to as Guanabara
Bay in this article. Video 2 is the “fire_sequence” of the “DHV”
in the Toet A.TNO dataset, denoted as DHV in this article. Video
3 is the “Duine_Image” of “FEL_Image” in the VID dataset
[19], which is referred to as FEL in this article. The specific
information of the test datasets in terms of the camera scene and
image resolution is displayed in Table I.

Due to the particularity of the LSS-target detection problem,
there are rare suitable datasets publicly available. In order to
enhance the persuasiveness of the proposed method, three self-
acquired datasets are added, which are named as V1, V2, and
V3 in this article. All the self-acquired videos are focused on
the UVA surveillance, and the specific information in terms of
image resolution and image resolution is listed in Table II.

For verifying the efficacy and robustness of the proposed
approach, we have collected our own datasets from UAVs under
various challenging scenarios, such as small-scale, fast-moving,
similar background, dark illumination, complex background,
etc. Among them, the dataset V1 contains small-scale targets,
and V2 is for targets of similar background and fast-moving.
As can be seen, the drone in V2 has similar intensity values to
the surrounding pixels, whereas the target is blurred due to the
rapid rotational movement of its propeller, leading to difficulty
for target detection. As for the V3 dataset, it is mainly for dark
illumination and complex background, where the trees and the
monitoring machines in the background may introduce false
targets and extra difficulty for accurate target detection.

The parameter settings of our method are given below. The
number of decomposition levels is typically set as N=4, which is
the same as most of other fusion methods [39] and has produced
satisfactory fusion results. The initial spatial weight is set as
σ0
s = 2. Generally, the value of λ is in the range of [0.005,

0.02], and we set k = 0.01 in this article.
The experimental results of the extracted candidate targets are

shown in Fig. 3. As shown in Fig. 3(a), the target is obviously
visible in the visible image but invisible in the infrared image.
In Fig. 3(b), the visibility of the target is lower in the visible
image but more obvious in the infrared image. In Fig. 3(c),
the target has a rough outline in the visible image and more
obvious in the infrared image. However, only aircraft engines
with high heat can be observed in infrared images, and image
information of other parts seems missing. The corresponding
results of the self-acquired result are shown in Fig. 3(d)–(f). The
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Fig. 3. Visual results of LSS-target detection from visible and infrared images with a poor resolution, separately. The first column is the original visible images,
the second column is the extracted candidate regions from visible images, the third column is the original infrared image, and the fourth column is the extracted
candidate regions from infrared images.
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Fig. 4. Fusion comparison on the frames of the Guanabara Bay sequence.

Fig. 5. Fusion comparison on the frames of the DHV sequence.

Fig. 6. Fusion comparison on the frames of the FEL sequence.
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Fig. 7. Fusion comparison on the frames of video V1.

Fig. 8. Fusion comparison on the frames of video V2.

Fig. 9. Fusion comparison on the frames of video V3.
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TABLE III
FUSION COMPARISON OF GUANABARA BAY

The best results in each group highlighted in bold.

TABLE IV
FUSION COMPARISON OF DHV

The best results in each group highlighted in bold.

experimental results show that integrating the candidate target
regions of infrared and visible images can reduce the missed
detection from poor images with a single sensor.

In order to demonstrate the effectiveness of the proposed
fusion method, seven classic fusion algorithms including WLT
[23], CWT [24], CVT [25], NSCT [26], ADF [27], MSVD [28],
and WLS [29] are compared. The fusion results are shown in
Figs. 4–9, in which our method can extract more texture and
intensity features in the fused image for more effective target
detection. After applying the fusion algorithm, almost all the
targets can be identified in the six test sequences, thanks to
the enhanced saliency measurement, and the amount of image
information can also be significantly enriched after fusion.

The detailed results are listed, respectively, in Tables III–VIII,
in which the best results are all bolded. As can be seen, the
proposed fusion algorithm could perform well and obviously
better than other algorithms in combination.

The idea of detecting the LSS target on the fused image and
performing background modeling in the candidate target region
was also validated as it could greatly increase the detection speed
and reduce the false alarm rate. The comparison of the detection
result with different SOTA algorithms is shown in Figs. 10 and
11, respectively, where (a) is the input image, (b) is the detection
result of the LOBSTER algorithm [36], (c) is the detection result
of the PBAS algorithm [14], (d) is the detection result of the
(DLCM) algorithm [37], and (e) is the detection result of the

TABLE V
FUSION COMPARISON OF FEL

The best results in each group highlighted in bold.

TABLE VI
FUSION COMPARISON OF V1

The best results in each group highlighted in bold.

TABLE VII
FUSION COMPARISON OF V2

The best results in each group highlighted in bold.

TABLE VIII
FUSION COMPARISON OF V3

The best results in each group highlighted in bold.
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Fig. 10. Comparison of the final detection results of the public datasets: Guanabara Bay, DHV and FEL. From top to bottom, the five rows are the input images
and results from the LOBSTER, PBAS, DLCM, and our proposed approach, respectively. (a) Input image. (b) Detection result of LOBSTER. (c) Detection result
of PBAS. (d) Detection result of DLCM. (e) Detection result of the proposed method.

Fig. 11. Comparison of the final detection results of the self-collected datasets: V1, V2 and V3. From top to bottom, the five rows are the input images and results
from the LOBSTER, PBAS, DLCM, and our proposed approach, respectively. (a) Input image. (b) Detection result of LOBSTER. (c) Detection result of PBAS.
(d) Detection result of DLCM. (e) Detection result of the proposed method.

proposed algorithm. As can be seen, the proposed algorithm can
detect the complete LSS target more accurately.

In the process of detection, multiple targets may be detected;
however, not every target detected could be considered as LSS
target. So, for quantitative analysis, the accuracy and F-value
are used to evaluate the detection performance of the approach
proposed. The accuracy is the proportion of the LSS targets

among all detected targets. The recall rate is the proportion
of detected LSS targets in the global samples. The F-value is
the weighted harmonic mean of the accuracy and recall rate.
As shown in Table IX, it can be seen from the results that
the algorithm is still robust even when one of the sensors has
poor imaging and achieves a higher detection accuracy than the
traditional background-modeling algorithm.
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TABLE IX
DETECTION ACCURACY (DA) AND F-MEASURE (F-M)

The best results in each group highlighted in bold.

TABLE X
COMPARISON OF THE TIME FOR LSS-TARGET DETECTION IN EACH FRAME

(TIME IN MILLISECOND FOR EACH FRAME)

In addition, the detection speed of the proposed method is
also compared with others in Table X, where the time needed
for processing each frame is given, according to two publicly
available datasets and three our own datasets. Thanks to the
background modeling of the candidate target region, which has
greatly increased the detection speed. As can be seen, our method
can achieve a high detection accuracy with a very competitive
running time in comparison to SOTA approaches.

VII. CONCLUSION

In this article, we have presented a novel algorithm for the de-
tection of LSS targets through the effective fusion of visible and
infrared images. First, an ROI extraction module based on 1-D
information entropy and weighted average is proposed to reduce
the overall calculation time and alleviate the interference from
the unnecessary background information. Second, an efficient
and effective multiscale layered image fusion module is intro-
duced, with a saliency map for enhancing the image details of
the fused image. Finally, accurate LSS-target detection is com-
pleted by local background modeling with the local SuBSENSE
method. The experimental results also illustrate the efficacy of
the two fusion modules, as our proposed approach outperforms
the SOTA. More importantly, the proposed approach can be
effectively used to detect LSS targets with a high accuracy and
robustness even when a single sensor has poor images.
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