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• GrabCut processing boosts accuracy for
morphological change detection on
P. agardhii.

• Adamand RMSProp optimizers enhance
accuracy for trichome classification.
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be used to ensure water safety globally.
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The presence of harmful algal bloom in many reservoirs around the world, alongside the lack of sanitation law/
ordinance regarding cyanotoxinmonitoring (particularly in developing countries), create a scenario inwhich the
local population could potentially chronically consume cyanotoxin-contaminated waters. Therefore, it is crucial
to develop low cost tools to detect possible systems failures and consequent toxin release inferred bymorpholog-
ical changes of cyanobacteria in the rawwater. This paper aimed to look for the best combination of convolutional
neural network (CNN), optimizer and image segmentation technique to differentiate P. agardhii trichomes before
and after chemical stress caused by the addition of hydrogenperoxide. Thismethod takes a step towards accurate
monitoring of cyanobacteria in the field without the need for a mobile lab. After testing three different network
architectures (AlexNet, 3ConvLayer and 2ConvLayer), four different optimizers (Adam, Adagrad, RMSProp and
SDG) and five different image segmentations methods (Canny Edge Detection, Morphological Filter, HP filter,
GrabCut and Watershed), the combination 2ConvLayer with Adam optimizer and GrabCut segmentation, pro-
vided the highest median accuracy (93.33%) for identifying H2O2-induced morphological changes in
P. agardhii. Our results emphasize the fact that the trichome classification problem can be adequately tackled
with a limited number of learned features due to the lack of complexity in micrographs from before and after
chemical stress. To the authors' knowledge, this is the first time that CNNs were applied to detect morphological
changes in cyanobacteria caused by chemical stress. Thus, it is a significant step forward in developing low cost
tools based on image recognition, to shield water consumers, especially in the poorest regions, against
cyanotoxin-contaminated water.
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1. Introduction

Due to climatic conditions and inadequate sanitation systems, reser-
voirs in many tropical and developing countries are eutrophic and have
become favourable environments for harmful cyanobacterial blooms
(Barros et al., 2017; Carloto et al., 2015). Among harmful cyanobacteria,
Planktothrix has been identified as a dominant bloom-forming genus, as
well as a frequent toxin producer (Huisman et al., 2018). Many
oxidation-based treatment methods have been proposed for use in
water treatment plants (WTPs) (Steynberg et al., 1996; Chen et al.,
2009; Jian et al., 2019), and within reservoirs (Bauzá et al., 2014;
Matthijs et al., 2012; Wang et al., 2012; Barrington and Ghadouani,
2008; Zhou et al., 2018) to control phytoplankton. Hydrogen peroxide
(H2O2) has been demonstrated as a suitable in-reservoir solution due
to being a strong oxidant, selective against cyanobacteria and lack of
toxic by-product formation (Drabkova et al., 2007; Yang et al., 2018).
Although addition of H2O2 can significantly reduce the cell density of
cyanobacteria, it can also cause cell lysis/damage, possibly releasing
toxins into the surrounding water (Westrick et al., 2010; Pietsch et al.,
2002; Daly et al., 2007; Zamyadi et al., 2010; Hobson et al., 2012; Huo
et al., 2015; Fan et al., 2013, 2014). Thus, a warning system to alert op-
erators to potential toxin release is needed. Image recognition could
provide this tool. Convolutional Neural Networks (CNN) are the most
successful method used for pattern recognition in images (Sarigul
et al., 2019). CNN roughly mimic the visual cortex of humans and are
characterized by a successful hierarchical object recognition system
which extracts localized features from input images, enabling classifica-
tion of the output (Ciresan et al., n.d.). Outputs can be enhanced by
image segmentation as a pre-processing step (Tang et al., 2018).
Image segmentation divides a given image into different regions, aiding
localization of objects and object boundaries (Cheng et al., 2001; Ying,
2016). Recently, many studies have reported on the use of CNN for phy-
toplankton recognition (Pedraza et al., 2017; Zheng et al., 2017; Li et al.,
2017; Dunker et al., 2018; Park et al., 2019; Baeka et al., 2020; Panta
et al., 2020; Qian et al., 2020), however, this is the first study using
CNN to detect morphological changes in filamentous cyanobacteria
caused by chemical stress. The current study elucidates the effective-
ness of CNN for the detection of trichome breakage caused by chemical
stress through (i) finding the most suitable segmentation method; and
(ii) determining the best CNN architecture for Planktothrix agardhii rec-
ognition before and after the addition of H2O2.

2. Materials and methods

2.1. Cyanobacteria culture and enumeration

Axenic Planktothrix agardhiiCCNP 1305 culturewas incubated in BG-
11 (Rippka et al., 1979) medium at 20 ± 1 °C with 12 h/12 h light/dark
cycle under cool white fluorescent light with an intensity of 20 μmol
photons m−2 s−1. Cell density was estimated using an Olympus micro-
scope (Model BX53M), with a Sedgewick-Rafter chamber at 200×
magnification.

2.2. Oxidation of P. agardhii CCNP 1305 with hydrogen peroxide

In order to train a CNN in recognising the morphological changes in
P. agardhii CCNP 1305 it was necessary both to choose a chemical com-
pound and determine its ideal concentration that induces morphologi-
cal changes rather than complete destruction of the organisms. Since
H2O2 has been known as damage-causing compound in cyanobacteria
cells (Latifi et al., 2009), used to a great extent as cyanobacterial blooms
suppression (Matthijs et al., 2012; Matthijs et al., 2016) and as a perox-
idation compound in water treatment plants (Wang et al., 2018), it was
the chosen compound to perform the experiments. Tofind the optimum
H2O2 concentration three batch-type experiments were performed.
Hydrogen peroxide was added to P. agardhii CCNP 1305 cell suspension
2

(SM Table S1) to achieve final concentrations of 5, 10, 15, 20 mg L−1 in
40 mL of H2O2. A second experiment was carried out with three differ-
ent concentrations of 30, 40 and 80mg L−1 H2O2. Finally, a third, confir-
matory, study was performed repeating concentrations 40 and 80 mg
L−1 H2O2. In all experiments P. agardhii CCNP 1305 cultures were ex-
posed to H2O2 with a contact time of 24 h at 20 ± 1 °C and constant
cool white fluorescent light with 40 μmol photons m−2 s−1 intensity.
Samples were taken before the addition of H2O2 and after 0.5, 1, 3, 6
and 24 h. Flask for each concentration were prepared in triplicate.

2.3. Image acquisition and image dataset

The RGB (Red, Green, Blue) images were captured using a YenCam
HD (YenwayMicroscopes) camera at 500×magnification and a resolu-
tion of 1920 × 1080 pixels. Different points of the microscope slides
were randomly selected to capture the images, in order to ensure that
no P. agardhii trichome was captured more than once. The acquired im-
ages were saved in PNG format. Images of P. agardhii CCNP 1305 were
captured before and after hydrogen peroxide addition. Many images
containedmultiple trichomes, and nomanual attempt wasmade to iso-
late individual organisms from other organisms or background. The
final dataset of original images consisted of 2099 images before, and
2099 for each sampling point after the application of the given H2O2

concentrations.

2.4. Hardware and software

The CNNmodelswere implemented usingKeras/TensorFlowpython
libraries, on an Omen Hp laptop with 16GB RAM (HP Inc., USA), Intel
Core i7 2.6 GHz central processing unit and equipped with a NVIDIA
GeForce RTX 2060 graphics card.

2.5. Image processing

All images were resized from their original size of 1920 × 1080 to ei-
ther 128 × 128 pixels for the smallest CNN architecture or 224 ×
224 pixels for the larger architectures. Reducing the size of the raw im-
ages reduces and distorts finer details but maintains the overall image
and the overall shape of the trichomes. All imageswere also normalized,
which is a commonprocedure in image pre-processing that changes the
range of each pixel intensity value.

In the first instance, no image pre-processing was applied (From
now on called None), and the resized and normalized RGB images
were passed straight to the CNN. Thereafter, image refinementwas per-
formed using five different methods: high pass filtering; Canny edge
detection (Canny, 1986); GrabCut (Rother et al., 2004); Watershed
(Meyer, 1992) and morphological mask image segmentation.

2.6. Convolutional neural networks for cyanobacteria recognition

In order to determine a suitable CNN architecture three different ar-
chitectures were tested: one simple architecture loosely based on
LeNet5 (LeCun et al., 1998), from now on called 3ConvLayer, a variation
on AlexNet (Krizhevsky et al., 2012) and one based on a Keras imple-
mentation which is known to achieve 99.25% accuracy on MNIST
(LeCun et al., 1998), fromnow on called 2ConvLayer. TheMNIST dataset
consists of greyscale images of handwritten digits.MNIST is relevant be-
cause classification of MNIST digits relies solely on the shape of the
digits as no texture is present. Trichomes exposed toH2O2 adopt distinc-
tive shapeswhichmight prove to be a suitably discriminative feature for
classification.

The descriptions use the following notations: convnxn-m means a
convolutional layer with a nxn kernel size and m filters; maxpoolnxn
means a max pooling layer, fc-n means a fully connected dense layer
with n nodes. All networks use Rectified Linear Units (ReLU) activations.
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LeNet5 is an old CNN architecture first applied to the recognition of
handwritten digits (Canny, 1986). It is known to be able to classify small,
simple images based on the shapes depicted in them. The architecture of
our 3ConvLayerwas: conv3x3-32, conv3x3-32, conv3x3-32, fc-64, softmax.
3ConvLayer has ~30.5 million trainable parameters with no dropout.

AlexNet (Krizhevsky et al., 2012) was a CNN designed to tackle the
ImageNet dataset of real-world images (Deng et al., 2009). Our variation
architecture is: conv11x11-96, maxpool2x2, conv11x11-256,
maxpool2x2, conv3x3-384, conv3x3-384, conv3x3-256, maxpool2x2,
fc-4096, fc-4096, fc-1000, softmax. The network also uses batch normal-
ization to allow training of such a deep neural network and dropout of
40% in the fully connected layers. Input image size was 224 × 224. The
use of large kernels in the early layers of this model investigates
whether other features, such as texture can be learned from the present
dataset and enhance classification accuracy. Thismodelwas the deepest
model in our tests and has ~28 million trainable parameters.

The third CNN model consists of conv3x3-32, conv3x3-64, maxpool,
dense-128, softmax. The input image size for this model was 224 × 224,
and the stride of the first layer was 4. Dropout of 50% was applied to the
dense layer only. 2ConvLayer has just under 24 million trainable parame-
ters. ComparedwithourAlexNet variation, it is a shallowbutwidenetwork.

2.7. Selection of optimizers

In order to obtain a high level of classification accuracy, the neural
network architecture and the dataset must be matched with an appro-
priate method of optimization for training. In a neural network, the
sample data is passed through the neural network and a predicted clas-
sification is calculated. The difference between the classification pre-
dicted by the network and actual classification is called the loss. The
loss is then back propagated through the network and used to alter
the network's internal parameters so that the loss is minimised. The op-
timizer ultimately controls how the loss is used to change the internal
network parameters during training. The different optimizers tested
here are: Stochastic Gradient Descent (SGD) (Chung, 1954); RMSProp
(Tieleman and Hinton, 2012); Adagrad (Duchi et al., 2011); and Adam
(Kingma and Ba, 2014). Of these, SGD is the only non-adaptive
optimiser. Adaptive optimisers base the weight change on current and
previous values and often allow neural networks to converge faster
and produce more accurate results.

2.8. Statistical analysis

Three different CNN architectures with four different optimizers on
image datasets that were pre-processed in six different ways were
tested. Randomisation was inherent in the initial configuration of our
CNNs as was allocation of images to test/train sets. Since the used
dataset is perfectly balanced (2099 before/2099 after H2O2 exposure),
accuracy rate was used as performance evaluation index (Galar et al.,
2012). Statistical analysis was performed in order to ascertain the opti-
mal architecture/optimizer/image pre-processing combination. The
Shapiro-Wilk normality test was performed for each analysed parame-
ter to determine the data distribution type (significance level of 5%).
According to the result, parametric or non-parametric tests were uti-
lized to compare the parameters. To test the significance of difference
between different combinations of experimental parameters, nonpara-
metric Kruskal-Wallis (KW) and one-tailed Pairwise Wilcoxon
rank-sum (PW) tests (with Bonferroni) were applied (5% significance
level). All statistical analyses were performed in RStudio.

3. Results and discussion

3.1. P. agardhii CCNP 1305 trichome breakage caused by the addition of H2O2

Morphological changes for all H2O2 concentrationswere verified bymi-
croscopy (Fig. 1). No changes were observed for 5, 10, 15, 20 mg L−1 H2O2
3

for any sample over the contact time (SMFigs. S1–S4). As nomorphological
changes were observed initially, three higher concentrations of H2O2 (30,
40 and 80mg L−1)were applied. Here no trichome alterationwas detected
for 30mg L−1 (SM Fig. S5), however, from 1 h onwards, complete destruc-
tion of the trichomes was observed for samples treated with 40 mg L−1

H2O2 (SM Fig. S6). Surprisingly, no breakage of trichomeswas observed be-
fore 6 h with 80 mg L−1 H2O2(SM Figs. S7–S8).

Additionally, colour changes and intracellular content release were
observed.

A confirmatory experiment was carried out (40 mg L−1 and 80 mg
L−1). Complete destruction of the trichomes in samples treated with
40 mg L−1 H2O2 was observed again, but only from 3 h onwards (SM
Fig. S9). In samples treated with 80 mg L−1 H2O2 trichome breakage
was only observed after 24 h of H2O2 addition (SM Figs. S10–S11).
Ultimately, it was decided to use 80mg L−1 H2O2 (SM Fig. S7) to induce
morphological changes in P. agardhii CCNP 1305 to create the library of
“after treatment” images to train the CNN.

3.2. Image process methods

3.2.1. Image segmentation outcomes
The high pass filter method applied a discrete Fourier transforma-

tion to the normalized, greyscale image then used a high pass filter to
smooth low frequency background pixels. The pixels were then seg-
mented based on a threshold derived from their mean and variance
(SM Fig. S12). For GrabCut, a border round the edge of the imagewas la-
belled “definite background”. Since the majority of the trichome pixels
are in the central portion of the images, this was sufficient to segment
slide background from trichome (SM Fig. S13). The morphological filter
used a mask created by thresholding the image based on Otsu's
thresholding (Otsu, 1979), to create a rough trichome/background seg-
mentation. Themaskwas then refined using erosionwith a 3 × 3 kernel
to remove noise, followed by dilation to ensure all relevant trichome
pixels were captured (SM Fig. S14).

Image refinement suppressed pixels that were irrelevant to image
classification by setting them to zero. The high pass filtered background
suppression left the trichome shape intact with a clearly visible border
of surrounding background pixels (Fig. 2).

The Cannyfilter revealed somenoise surrounding the trichomes that
is invisible in the unprocessed images. GrabCut provided neat segmen-
tation, but some potential noise in the background passes through and
some spatially close trichomes were completely connected by back-
ground sections. The morphological mask removed all noise but re-
moved some trichomes as well.

All forms of image segmentation and background suppression were
performed prior to resizing and normalization, except for GrabCut,
where the images were resized prior to applying the algorithm to re-
duce processing time. OpenCV was used for image pre-processing.

3.2.2. Comparison of architecture performance
To determine the most suitable configuration for detection of mor-

phological changes, all architectures were run with and without seg-
mentation techniques, as well as four different optimizers, resulting in
a total 432 runs (each combination was run 10, 25 and 30 epochs
twice) (SM Table S2). The overall accuracy was determined (Table 1).
To compare the results of all possible combinations of parameters, the
distribution of the accuracy data was determined by the SW test. The
distribution of accuracy data (AlexNet: p-value: 9.64 10−9; 3ConvLayer:
p-value: 7.51 10−15 and 2ConvLayer: p-value: 6.13 10−10) were signif-
icantly different (p < 0.05) from normal distribution, thus, the median
was chosen as a measure of central tendency.

In 31 out of 432 of all combinations, accuracies ≥90%were achieved.
Although the highest accuracy (95.4%)was achieved in AlexNet after 30
epochs, and 3ConvLayer after 25 epochs, 2ConvLayer achieved better
results when considering the median accuracy (76.5%) of all applied
combinations. The median value of 3ConvLayer accuracy was 53.6%,
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Fig. 1. Effect of all analysed concentrations of H2O2 on P. agardhii CCNP 1305 trichomes after 6 h contact time (Magnification 500×). Red arrows indicate trichome breakage. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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while for AlexNet it was 67.7%. Of the 31 combinations that achieved an
accuracy of >90%, 13 were achieved by 2ConvLayer and nine each by
AlexNet and 3ConvLayer.

The Kruskal-Wallis test (KW), followed by Pairwise Wilcoxon
signed-rank (PW) test were performed. There was a significant differ-
ence in accuracy among the architectures (KW p-value: 6.3 10−8).
Further, the accuracies of 3ConvLayer were different from both AlexNet
(PW p-value: 1.9 10−5) and 2ConvLayer (3.6 10−7), while 2ConvLayer
and AlexNet were statistically the same (p-value: 0.07).

The deeper AlexNet variation would theoretically allow for more
complicated shapes and inter- and intra-class variation (Krizhevsky
et al., 2012). The trichomes themselves do not exhibit such complexity,
therefore the depth of AlexNet is not an advantage for their classifica-
tion. The higher number of parameters in the largely convolutional
3ConvLayer network means that it fails to converge or converges
more poorly more frequently than the others. The 2ConvLayer architec-
ture contains fewer convolutional layers than the others and the fewest
trainable parameters of all. The fact that it has the best overall perfor-
mance implies that the trichome classification problem can be ade-
quately tackled with fewer learned features.

3.2.3. Comparison of image segmentation performance
For all combinations of network architectures and optimizers, the

median value for accuracy was 50.0%, when no data segmentation
4

method was utilized (Fig. 3A), meaning that the networks were not
able to learn any pattern. On the other hand, even without image seg-
mentation, 2ConvLayer network with the RMSProp and with the
Adam optimizers (after 30 epochs respectively) accuracies of 91.6%
and 90.9% respectively were achieved.

Themedian accuracy for theWatershed optimizer was 51.7%. Out of
72 runs performed with all networks 30 achieved an accuracy of 50.0%,
similar to running the network without any data segmentation. When
combining the 2ConvLayer network with the Adam optimizer an accu-
racy of 92.8% (25 epochs) was achieved. Canny Edge achieved amedian
accuracy of 62.6%. The HP and Morphological Filters achieved median
accuracies of 81.8% and 82.4%, respectively. The maximum accuracies
were reached with 3ConvLayer for HP filter (with Adam) and AlexNet
(with RMSProp) for morphological filter at 88.7% each. While the
GrabCut segmentation had a median accuracy of 86.2%, achieving max-
imum accuracy of 95.4% with AlexNet and the Adagrad optimizer (30
epochs). Out of 72 runs performedwith the GrabCut segmented dataset
28 (40%) achieved ≥90.0%.

The KWand PW tests determined a significant difference in accuracy
by applying data segmentation (p-value: 2.2 10−16, results of PW test in
SM Table S3).

Only the HP and Morphological Filters were not statistically differ-
ent. Although there is a difference between the Watershed segmenta-
tion and the runs without data segmentation, the p-value was the
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Fig. 2. Effect of 80mg L−1 H2O2 addition on trichomes of P. agardhii CCPN 1305 after 6 h,magnification 500×. Effect is visualized by application of different segmentation techniques on the
micrograph.
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closest to significance level of 5%. Therefore, Watershed segmentation
was the least effective pre-processing method and GrabCut the most.
Thus, suppressing background pixels in images by setting them to
zero is a valid technique for enhancing CNN accuracy and reproducibil-
ity. Since GrabCut was the only pre-processing technique that resized
the images before applying the filter, images can be validly resized
prior to processing without substantial loss in classification accuracy.

3.2.4. Comparison of optimizers
When the Adam optimizer was used the median value of accuracy

was 80.8%, the highest of all optimizers (Fig. 3B). For RMSProp, the me-
dian accuracy was 78.7%, while for SGD and Adagrad median accuracies
were 56.3% and 51.0%, respectively. There was a significant difference be-
tween accuracies (KW p-value: 5.2 10−9). Therewas no significant differ-
ence betweenAdamandRMSPropor betweenAdagrad and SGD (PWtest
results in SM Table S4). The adaptive optimizers RMSProp and Adam
5

performed better than SGD. Thus, the intra-class variation in the present
image dataset as interpreted by the two shallower networks is relatively
small, leaving Adagrad with little advantage over SGD.

3.2.5. Overall evaluation of combinations of architecture, segmentation and
optimizer

2ConvLayer and AlexNet were the best performing architectures,
GrabCut was the highest performing segmentation technique and
Adam and RMSProp were the best optimizers tested. To determine the
best combination of architecture, segmentation and optimizer statistical
analysis was employed (Fig. 4).

For AlexNet, the highest median accuracy was achieved with
GrabCut (88.1%), followed by Morphological Filter (81.7%). Using im-
ages without segmentation or using Watershed segmentation, the net-
work cannot be trained, reachingmedian accuracies of 50.0% and 55.5%,
respectively.



Table 1
Overall accuracy results, for architectures and segmentation. Bold values represent the
highest value of accuracy achieved for median and maximum values.

Architecture Segmentation Median Max SD Count

2ConvLayer Canny 0.712 0.849 0.116 24
2ConvLayer GrabCut 0.861 0.933 0.169 24
2ConvLayer Hp filter 0.837 0.859 0.146 24
2ConvLayer Morph. filter 0.849 0.878 0.133 24
2ConvLayer None 0.574 0.916 0.149 24
2ConvLayer Watershed 0.648 0.928 0.146 24
3ConvLayer Canny 0.557 0.684 0.053 24
3ConvLayer GrabCut 0.713 0.945 0.202 24
3ConvLayer Hp filter 0.717 0.887 0.166 24
3ConvLayer Morph. filter 0.563 0.88 0.165 24
3ConvLayer None 0.500 0.677 0.058 24
3ConvLayer Watershed 0.500 0.665 0.054 24
AlexNet Canny 0.649 0.818 0.096 24
AlexNet GrabCut 0.880 0.954 0.153 24
AlexNet Hp filter 0.809 0.854 0.131 24
AlexNet Morph. filter 0.817 0.887 0.131 24
AlexNet None 0.500 0.694 0.058 24
AlexNet Watershed 0.554 0.849 0.100 24

SD = Standard Deviation; Count = Total of runs performed with a combination of archi-
tecture and image segmentation in each line.
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There were significant statistical differences between image seg-
mentation methods (KW p-value: 5.19 10−12, PW test results SM
Table S5). Only the HP and Morphological Filters were statistically
equal. GrabCut, the segmentation method with the highest median ac-
curacy, was statistical different from every other groups. Therefore, for
AlexNet, the best image segmentation method was GrabCut.

Regarding the optimizers applied to AlexNet architecture, although
RMSProp provided the highest median accuracy (70.1%), Adagrad
achieved the highest accuracy (95.4%). No significant difference
between optimizers could be determined (SM Table S6), thus, to
Fig. 3. The effect of different segmentation techniques (A) and different optimizers (B) on ove
morphological changes in P. agardhii after 6 h contact time with 80 mg L−1 H2O2.

6

determine the best combination for AlexNet, the best-performing seg-
mentation (GrabCut) and optimizer (Adagrad) were selected as they
provided both the highest median and maximum accuracies.

For 3ConvLayer, the highest median accuracy (71.8%) was reached
when the HP filter was applied to the original images, followed by
GrabCut with 71.3% median accuracy (Fig. 4). Nevertheless, the maxi-
mum accuracy (94.5%) was achieved when 3ConvLayer was used with
GrabCut. Similar to AlexNet, while either using no segmentation orWa-
tershed segmentation, the network cannot be reliably trained (median
accuracies of 50.0% each).

There was a difference in accuracy for the image segmentation
methods (KW p-value: 1.70 10−6, PW results SM Table S7). There is
no significant difference between None and Watershed and None be-
tween Canny, GrabCut and both HP and Morphological Filters. As
GrabCut provides the best maximum accuracy, it was chosen as the
best segmentation technique for 3ConvLayer.

Regarding optimizers for 3ConvLayer, the highestmedian accuracies
were achieved with the Adam optimizer (66.3%) and RMSProp (63.8%).
The Adagrad optimizer was ineffective (median accuracy 50.0%; highest
accuracy 54.1%). There was a significant difference of accuracy between
optimizers (KW p-value: 6.36 10−10, PW test results SM Table S8).

The Adagrad optimizer was significantly different from all three
other optimizers, but there is no significant difference between Adam,
RMSProp and SGD. However, RMSProp was chosen as the best opti-
mizer, as it provided the highest accuracy with GrabCut segmentation
(94.5%). Thus, for 3ConvLayer the best combination was GrabCut seg-
mentation with the RMSProp optimizer.

For 2ConvLayer network (Fig. 4), the highest median accuracy
(86.1%) was achieved with GrabCut segmentation, followed by the
Morphological Filter (84.9%). GrabCut also achieved the highest maxi-
mum accuracy (93.3%). When no image segmentation technique and
when Watershed was used; accuracy >90.0% was achieved for the
2ConvLayer network.
rall accuracy achieved by different CNN architectures in determining chemically induced



Fig. 4.The effect of different segmentation on overall accuracy achievedbyeachCNNarchitectures in determining chemically inducedmorphological changes in P. agardhii after 6 h contact
time with 80 mg L−1 H2O2.
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There was a significant difference between segmentation methods
(KWp-value: 2.90 10−5, PWtest results SMTable S9). No significant dif-
ference between Canny, no segmentation andWatershedwas detected.
There was also no significant difference between the GrabCut and
Morphological Filter segmentation techniques. As GrabCut achieved
the maximum accuracy for the 2ConvLayer architecture, it was chosen
as the best image segmentation technique.

For optimizers, Adam provided the highest median accuracy
(84.4%), followed by RMSProp (82.0%). There was significant difference
between optimizers (KW p-value: 3.61 10−9, PW test results SM
Table S10). There was no significant difference between Adam, Adagrad
and RMSProp, with only SGD significantly different from all others.
However, Adam was selected, as it provided both the highest median
and maximum accuracies for the 2ConvLayer architecture.

3.2.6. Proposing an optimal combination of CNN architecture,
segmentation, and optimizer for pattern detection on chemical-
stressed P. agardhii

Todetermine the optimal combination of CNNarchitecture, segmen-
tation and optimizer 31 runswere selectedwhere accuracy values were
≥90.0%, to analyse other possible suitable combinations (SM Table S11).

Among the 31 runs, five different combinations were selected to be
rerun to analyse the effect of the random division of training, test and
validation sets on accuracy (Fig. 5). The selected combinations were:
Combination 1 (C1): 2ConvLayer/GrabCut/Adam; Combination 2 (C2):
AlexNet/GrabCut/Adagrad; Combination 3 (C3): 3ConvLayer/GrabCut/
RMSProp; Combination 4 (C4): 2ConvLayer/None/RMSProp; Combina-
tion 5 (C5): 2ConvLayer/None/Adam.

Each of those five combinations was run ten times (SM Table S12).
The highest median accuracy (93.3%) was achieved C1, reaching a max-
imumaccuracy of 94.2%. Themedian accuracy values for both C2 and C3
were 92.7% and, 91.0%, respectively. Although, C4, achieved 92.8% max-
imumaccuracy, this combination had a high standard deviation (0.171),
being unable to train (accuracy ~50%) in three out of ten runs. While C5
7

had the highest standard deviation (0.179), being unable to train in six
out ten runs.

There were significant differences between the five combinations
(KW p-value: 1.29 10−6, PW test results SM Table S13), C1 was signifi-
cantly different from all but C2. Further, there was no significant differ-
ence between C4 and C5, the two combinations without image
segmentation and the lowest median accuracies (C4: 83.0%; C5: 50.0%).

Although C2 achieved the highest overall accuracy (95.5%), C1 was
chosen as the most suitable combination, since it is shallower, has
fewer trainable parameters, it could be trained properly earlier than
C2 (10 epochs versus 25 epochs, respectively). Moreover, since C1 had
the highest median accuracy, it proved to be more reliable than C2, de-
spite the lack of statistical difference between them.

Since many locations (e.g. developing countries) worldwide face a
scenario of both occurrence of harmful algal bloom and the lack sophis-
ticated devices for detection of cyanotoxins (e.g. LC/MS) the present
study is a ground-breaking step in developing a low cost tool based on
image recognition to ensure water safety globally, as we offered a new
approach onwater treatment qualitymonitoring. This allows the devel-
opment of a shallow-CNN-based application for computers or other
electronic devices (e.g. smartphones and tablets) which will be able to
provide toxin release risk warnings to the operators of different water
treatment systems through a single photograph acquired by a simple
set-up of microscope and camera.

Having demonstrated that a relatively small amount of cyanobacteria
images (2099 before/2099 after H2O2 exposure), with the appropriate
image segmentation technique, is sufficient to train networks like C1,
the presented neural network architecture will likely work for other
cyanobacterial species. Due to the comparatively simple morphology
of cyanobacteria images will present a sufficient level of detail and
variation to train the network to detect morphological changes in other
cyanobacterial species.

Which means that instead of acquiring costly sophisticated toxin de-
tection equipment for eachwater treatment plant/system,water utilities



Fig. 5.Accuracies achieved by the final five combinations of CNN architecture, image segmentation and optimizer for detection of chemically inducedmorphological changes in P. agardhii
after 6 h contact with 80 mg L−1 H2O2.
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could train networks for different species of cyanobacteria. This would
allow utilities to specifically target known bloom-forming and toxin-
producing cyanobacteria species individually for each raw water body.
Implementing a routine formicrographics production to detectmorpho-
logical changes in the required cyanobacteria species through this pro-
posed network as an early warning or an indication of the potential for
toxin release into product water.

Such a warning system is crucial to water treatment systems in
remote areas, where it might take many hours and even days to col-
lect and prepare samples to perform chromatographic analysis to
discover whether there are cyanotoxins in the product water. Such
a time lag could endanger public health, as entire populations
could potentially consume cyanotoxin present in tap water. Using
the proposed system, WTP operators could, in minutes, detect the
potential for cell lysis/morphological changes in cyanobacteria spe-
cies and adjust the treatment operations (especially steps involving
chemical oxidation) in order to remove cyanobacteria without
compromising the integrity of cells and avoiding consequent toxin
release into the product water.
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