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Abstract

Face Recognition is considered one of the most common biometric solutions
these days and is widely used across a range of devices for various security
purposes. The performance of FR systems has improved by orders of magni-
tude over the past decade. This is mainly due to the latest developments in
computer vision and deep convolutional neural networks, and the availability
of large training datasets. At the same time, these systems have been sub-
ject to various types of attacks. Presentation attacks are common, simple,
and easy to implement. These simply involve presenting a video, photo, or
mask to the camera or digital sensor and have proven capable of fooling FR
systems and providing access to unauthorised users. Presentation attack de-
tection is increasingly attracting more attention in the research community.
A wide range of methods has already been developed to address this chal-
lenge. Deep learning-based methods in particular have shown very promising
results. However, existing literature suggests that even with state-of-the-art
methods, performance drops significantly in cross-dataset evaluation. We
present a thorough, comprehensive, and technical review of existing litera-
ture on this timely and challenging problem. We first introduce and discuss
the presentation attack problem and cover related and recent work in this
area. In-depth technical details of existing presentation attack detection
methods are then presented and critically discussed and evaluated, followed
by a comprehensive discussion and evaluation of existing public datasets and
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commonly used evaluation metrics. Our review shows clearly that despite
the recent and significant advances in this area of research, detecting unseen
attacks is still considered a key problem. Machine learning methods tend to
perform well, but only when test data comes from the same distribution as
the training data (i.e. same dataset). New research directions are discussed
in detail, including ways to improve the generalisation of machine learning
methods, and move towards creating more stable presentation attack detec-
tion techniques that generalise across a wide range of unseen samples.

Keywords: Face Recognition, Presentation Attacks, Deep Learning,
Generalisation

1. Introduction

The recent, significant improvements in biometric techniques have sup-
planted conventional authentication methods such as passwords, cards, and
tokens over the past few decades [1]. These systems have facilitated more
secure and automated authentication by utilising physical and behavioral
traits. Face, fingerprint, iris, gait, handwritten signature, and voice are some
of the traits utilized in biometrics [2]. The popularity of Face Recognition
(FR) has increased significantly in recent times [3, 4]. The non-intrusive,
user-friendly nature and low sensor cost account for the universality of FR [5].
Law enforcement, access control, surveillance systems, border security, and
entertainment applications are typical applications [6, 7]. However, like any
other authentication methods, vulnerabilities [8] affect FR systems. These
ubiquitous systems are exposed to various attacks due to progressive technol-
ogy. They include direct and indirect attacks [9]. Presentation attacks (PAs)
[10], disguise [11], makeup [12], and plastic surgery [13] are different varieties
of direct attacks. By showing a photo, or video of a live face, or wearing
a facial mask, an imposter can be authenticated as a genuine user [14, 15].
This method of presenting fake facial attributes to FR systems is defined as
presentation attacks and is commonly known as spoofing [5]. The tools such
as photo, video, and mask, used by attackers, are called Presentation Attack
Instruments (PAIs) [14].

Presentation attacks introduce various distortions and alterations to the
sensor output images [16]. Compared to an authentic image, a spoof image
may contain different noise content [17]. The spoofing image is prone to
distortions like surface reflection, Moiré-effect, colour distortion, and shape
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deformation. This disparity between spoof and genuine images provides cues
for the anti-spoofing methods to detect fake images [18]. Presentation Attack
Detection (PAD) identifies whether the image is genuine or fake [10]. From
Fig. 1, it is evident that PAs occur at the sensor. The sensor output is
pre-processed for face detection and then PAD checks for spoofing in the
image. If the presence of spoofing is confirmed, the system rejects access. If
no attack is detected, the system processes the image for authentication and
access is either granted or denied.

Figure 1: Face Recognition System with Presentation Attack Detection

PAD uses either sensor based methods or feature based methods [5].
Sensor-based methods (hardware methods) mainly involve additional hard-
ware to identify PAs. In sensor based methods, the FR system will obtain
more cues for PAD from additional auxiliary sensors [5]. Some examples
for such additional sensors are Light Field Camera (LFC), multi-spectral
sensors and 3D scanner. However, software associated with these systems
facilitates feature extraction and spoof detection. In feature-based methods
(software-based methods), the PAD involves processing features extracted
from the captured face images [19, 20, 21]. Sensor-based methods relating
to deep learning are covered in this paper but for a more complete overview
the interested reader is referred to [22, 5]. Traditional feature-based meth-
ods adopted hand-crafted feature methods [23, 24] for PAD. Owing to the
distinctive feature processing power, recently developed methods adopt deep
learning for PAD [25]. Distinct methods were developed to detect PA as the
result of considerable research that has been conducted on face PAD. These
methods have performed impressively in a specific attack detection scenarios
or with specific datasets, but were not necessarily capable of detecting unseen
attacks.
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Deep learning has brought progressive changes in PAD approaches. Un-
seen attack detection has been addressed using various deep learning methods
in the last few years. Recently, this binary classification problem was even re-
formed as One Class Classification (OCC) problem. OCC techniques aimed
to classify the genuine face accurately and consider all others as attacks.
This approach assist to enhance generalisation and unseen attack detection.
These OCC approaches include domain generalisation, anomaly detection,
zero-shot and few shot learning. A number of extensive reviews on PAD
already exist in the literature as in Table. 1. These investigations provided
a thorough, in-depth technical review on presentation attacks and their de-
tection methods. The authors discussed PAs and their variants. The reviews
investigated generic taxonomy of PAD. However, recent deep learning ap-
proaches were less discussed in the existing literature. Hence, this review
focuses primarily on recently proposed deep learning based face PAD.

Table 1: Reviews on face presentation attack detection

Author Year Attacks CNN Methods Generalisation Discussion

Kähm and Damer [26] 2012 Photo × × Generic taxonomy of anti-spoofing method
based on different cues

Galbally et al. [27] 2014 Photo, Video, Mask × × Generic taxonomy of anti-spoofing methods

Hadid [28] 2014 Photo, Video × X
Fusion Methods, challenge Response methods,
open issues including generalisation.

Ramachandra et al. [5] 2017 Photo, Video, 3D Mask × X
Generic taxonomy of anti-spoofing methods,
evaluation metrics, relevant international
standardization.

Rakshit and Kisku [2] 2017
Photo, Video, 3D Mask,
Plastic surgery

× × Generic taxonomy of anti-spoofing methods,
generalisation.

Norzali et al. [29] 2017 Photo, Video, 3D Mask × × Generic taxonomy of anti-spoofing methods,
evaluation metrics.

Kumar et al. [19] 2017 Photo, Video, 3D Mask × × Anti-spoofing methods
Mohammadi et al. [30] 2017 Photo, Video X × Vulnerabilities of deep learning based PAD
Souza et al. [14] 2018 Photo, Video, 3D Mask × × Anti-spoofing methods, evaluation metrics.
Rattani et al. [21] 2018 Photo, Video, 3D Mask × × Anti-spoofing in mobile devices

Hernandez-Ortega et al. [10] 2019
Photo, Video, 3D Mask,
Plastic surgery, Make-up

× × Generic taxonomy of anti-spoofing method
based on different cues

Raheem et al. [31] 2019 Photo, Video, 3D Mask × × Generic taxonomy of anti-spoofing methods,
evaluation metrics.

Wu et al. [32] 2019 Photo, Video, 3D Mask X × Recent trends in face anti-spoofing, face
anti-spoofing used in industry.

Bhattacharjee et al. [33] 2019 Obfuscation Attacks X X
Various approaches in face anti-spoofing,
evaluation metrics, one class classification

Kahilal and Kaur [34] 2019 Photo, Video, 3D Mask × × Generic taxonomy of anti-spoofing methods
Munir and Khan [22] 2019 Photo, Video, 3D Mask × × Multi-spectral aspects in face anti-spoofing

Jia et al. [35] 2020 3D Mask X X
A detailed investigation on various methods
in 3D anti-spoofing.

Jia et al. [36] 2020 Not specified X X
Multiple aspects of mobile anti-spoofing
including generalisation

Liu et al. [37] 2020 Not specified × × Presents face anti-spoofing challenge
and its outcomes

The main contributions of this review are:

• An extensive and detailed discussion, categorisation and evaluation of
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various types of attacks on face recognition, including 2D and 3D Face
Presentation attacks.

• Systematic and in-depth technical discussion and evaluation of current
face PAD and the state of the art methods including recent deep learn-
ing techniques. This review delves into the approaches used in face
presentation attack detection. We present in detail recent trends in
deep learning research (e.g. domain generalisation, anomaly detection
and few-shot learning, domain adaptation and others) and how it has
been applied to detect face presentation attacks.

• An extensive investigation of existing datasets based on the attack type,
variants, modalities and size and detailed discussion of evaluation met-
rics used in face PAD context.

• A detailed evaluation of face presentation attacks detection limitations,
which sheds light on some research gaps and challenges in this area and
suggests future research directions to address these challenges

The article is organised as follows: Section. 2 presents attacks on face
recognition systems and Section. 3 details a general taxonomy of presentation
attack detection. Section. 4 includes thorough investigation of recent deep
learning methods and techniques in the existing literature to enhance gen-
eralisation. Section. 5 and Section. 6 describe the face presentation attack
detection datasets and evaluations metrics respectively. Section.7 highlights
current open issues and introduces possible future directions, concluding the
article.

2. Attacks on FR Systems

Attacks on FR system are generally classified into direct and indirect
attacks. Direct attacks occur at the sensor stage by presenting forged facial
artifacts. Indirect attacks affect matching, feature extraction, database and
decision modules. The attacker should be aware of the system knowledge to
execute these attacks [5]. Direct and indirect attacks influence the FR system
as shown in the Fig. 2. Duplicating and introducing the facial artifacts to
the FR system has become easier with technological improvements [27, 5].
Common direct attacks are:

• Presentation Attacks

5



• Disguised/makeup

• Modifications done through plastic surgery

Figure 2: Attacks on Face Recognition system

Disguised faces are one type of direct attack. Disguise accessories can
intentionally or unintentionally impersonate or obfuscate. Unintentional dis-
guises include sunglasses, hats, or scarves. FR is vulnerable to various types
of intentional and unintentional disguise accessories. The authors of [38] ob-
served that the facial portions under disguise accessories provide false data
and FR cannot use these for identifying a user. Hence disguise accessories
facilitated the hiding or imitating of identity. These types of disguise attack
are prominent in border crossing and airport security applications [11].

Makeup is another direct attack similar to disguised faces. It is harder to
identify makeup attacks as they have close resemblance to the real face [39].
While keeping the genuine appearance of human face, makeup can easily
obfuscate the true identity of the user. Among the direct attacks, it is easily
available, cheaper and variant in nature.

Plastic surgery is a direct attack, too. Face regions including nose, eyes,
lips, ear, or bone structure are reformed to obtain desired appearances. These
cause long-lasting changes in features in specific facial regions. The reference
database may contain the pre-surgery sample for face recognition. In this
case post surgery biometric recognition becomes challenging due to the al-
terations [40]. Some disease treatment surgeries can also unintentionally
increase variations in facial appearance [2].

Attackers make use of eye glasses, facial hair and caps either to imper-
sonate or obfuscate. Such effects are generated using adversarial methods
too. These adversarial generated attacks are able to mislead the classifier
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in deep learning based FR systems [41]. These perturbations are physically
imperceptible or even ignored by human eyes, yet capable of causing mis-
classification in FR systems [42]. Thus, synthetic images generated through
adversarial methods and modified images with adversarial perturbation act
as PAs [43]. Attackers add perturbations in two ways, ‘no target’ and ‘dodg-
ing’. In ‘no target’, the aim is to hide the identity of the user, whereas in
‘dodging’, perturbation is added to access the identity of a target user. The
authors of [44] introduced an eye glass printing method to generate physically
realisable attacks. Sharif et al. [45], using 3D printed eye glasses, generated
attacks to execute impersonation. Using an infrared lighting cap [46] was
able to create adversarial physical attacks. Adjusting the positions, size and
intensity of the infrared dots generated by this cap, the attacker could pass
through the security system. Nguyen et al. [47] proposed a more convenient
method to create adversarial attacks using light projections. Real-time phys-
ical attacks were created changing camera-projector setting suitable to the
attacking environment.

2.1. Presentation Attacks

Presentation attacks (PA) [48] are used either to impersonate or to ob-
fuscate a user while passing through a FR system. Impersonation is carried
out by copying a genuine user’s facial attributes to gain access through FRS.
Obfuscation is used to hide the user’s identity using various methods such as
glasses, makeup, disguised face and facial hair [49]. A generic FR system de-
tects faces from the image or the video input and recognises authorised users
with respect to the reference database. PAs have duplicate facial features in
the form of photo, video or mask. This will assist the attacker to invade the
security system if the FR does not have a detection module to differentiate
between genuine and fake faces. Hence, PAs affect the proficiency of FR
system in security applications [50].

PAs are broadly classified into 2D and 3D attacks as can be seen in Fig. 4.
Photo attacks and replay attacks are 2D attacks [51], whereas mask attacks
are included in 3D attacks [35].
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(a) Bona-fide (b) Print Attack

Figure 3: Figure showing bonafide and print attack from NUAA Imposter database [52]

2D attacks are very common. They are carried out by presenting facial
artifacts using photo or video to the sensor [5]. Flat printed photos, digital
display of photos, eye-cut photos, warped photos are photo attack variants
[14]. Fig. 3 gives an example of authentic and print attack images from
NUAA Imposter database [52].

In cut-photo attacks there will be holes on the position of eyes and mouth.
These help the imposter to imitate live features like eye blinking, mouth
movements [14]. Spoofing of FR system which work based on the liveness
of the user can be carried out using these types of photos. Such ways of
spoofing are harder to detect compared to flat printed photo attacks [53].

Video attack is performed by presenting video of a genuine user to FR
system [14, 5]. Using mobile, tablet or any other digital devices these videos
are captured and displayed to the FR system in order to use them as PAIs [27,
10]. Since the video consists of both movement and background information,
distinguishing fake user from bona fide user in these cases is a challenging
problem [16].
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Figure 4: Types of Presentation Attacks

While FR sensors capture images for authentication, the imposter can
wear a mask with features of a genuine user. 3D masks possess face-like
depth and this is a challenge in detecting the 3D mask PA. Ramachandra et
al. [54] experimented to find vulnerabilities in two commercial FR systems
and observed that, due to the False Acceptance Rate (FAR) threshold, these
systems were vulnerable to custom silicon mask. As the FAR threshold
was set to lower values, the vulnerability decreased. In a similar study,
Bhattacharjee et al. [55] investigated custom made silicon masks and found
that FR systems were highly vulnerable to flexible mask attacks.

There are various types of masks made of distinct materials. Much of
the literature covers 2D type attacks as, historically, it was difficult and
costlier to produce 3D masks. Lately there have been developments in 3D
printing technologies which have provided cheaper and easier ways to produce
3D masks [35]. 3D masks are made of different materials [40]. Hard/rigid
mask can be made from paper, resin or plastic. These masks are used as
an improved variant of photo attacks. These cheaper types of mask appear
visually very similar to real faces due the enhanced printing options available
nowadays. Masks which are produced using silicon or latex are soft, flexible
and adapt to different facial shapes and sizes. They have close similarity with
genuine facial texture and colour. It makes these soft masks more challenging
to detect than rigid masks.
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3. Presentation Attack Detection

In feature-based PAD methods, spoof detection involves processing fea-
tures extracted from the captured face images [19, 20, 48]. Texture, tem-
poral data, image quality and life signs are typical features processed to
identify PA. Feature based methods are classified as two types: static and
dynamic [5]. Texture and image quality based PAD methods are examples
of static approaches, whereas temporal (or motion-based) and vital signals
based methods are dynamic approaches.

Static approaches include texture and image quality based techniques.
They do not rely on temporal information and a single image is processed at
a time to detect spoofing [10, 2]. By processing each frame independently,
static approaches can perform anti-spoofing tasks using video. The processed
outcome of the majority of frames are taken into account to form the final
decision. Due to their performance, low computation and low cost, static
approaches are popular. In comparison with dynamic approaches, static
approaches are faster [5].

Through micro-textural analysis of the facial image, textural PAD meth-
ods distinguish real images from fake ones [10]. These methods identify photo
and replay attacks [5]. Local Binary Pattern (LBP) descriptors are the most
widely used technique in texture based-PAD methods. Authors of [23] pro-
posed a PAD method using LBP for textural analysis for photo attacks.
Replay attack detection was explored in [24] using the same technique tuned
for video attacks. The advantages of these methods were easy deployment
and no user interaction. However, these methods required feature vectors
and exhibited poor performance with low resolution images [56].

Presentation attacks affect the quality of the image [10]. Spoofing images
are prone to distortions like surface reflection, Moiré-effect, colour distor-
tion, and shape deformation [18]. In [16], the authors detailed the various
distortions an image may be subject to due to spoofing medium, camera and
printing. Spoofing medium (LCD or paper) causes specular reflection. Blur
is introduced if the camera is out of focus while capturing the spoofing image.
Reduced resolution of printed paper or LCD can also create colour distortion.
Spoofing mediums add noise to the image [17]. The frequency histogram a
spoof image would be different to that of a genuine image. Face PAD sys-
tems use these quality variations in the image as cues while performing spoof
detection.

Dynamic approaches depend upon temporal information to identify the
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presence of spoofing in FR systems [57]. They process life signs or motion to
verify the liveness in the input presented to the facial sensor in FR system. In
dynamic approaches, performing temporal feature analysis, based on relative
motion in the video provides information for spoof detection. Hence, dynamic
approaches require more computational time compared to static approaches
[5]. Some dynamic approaches rely on life signs too. Pulse, eye blinking, lip
movement, head rotation can be used to confirm the liveness in FR system
[10].

A temporal information based algorithm Dynamic Mode Decomposition
(DMD) was used in [58] to identify liveness. The authors used eye blinking
and lip movements as motion cues. Motion based PAD techniques demand
user co-operation during the identifying process. This affects the processing
time in FR system [10]. Some motion based methods exploit impulsive move-
ments of the facial parts in the input videos [59]. In [60], the authors followed
a multiple-motion-cue-based method, considering eye-blinking, chin and lip
movement. The authors of [61] presented liveness detection methods based
on pupil tracking. Remote Photo Plethysmography (rPPG) is used for ac-
quisition of vital signals such as pulse or heart rate without contact with the
human body. Since these vital signals are extracted from live faces, they acts
as the perfect cues for liveness. Face liveness detection methods presented by
authors of [62] utilized pulse cues from videos. Pulse detection using rPPG
was effective in 3D mask attack detection [63]. In [64], the authors presented
a face liveness detection approach based on blood flow analysis. rPPG and
patch CNN based method was adopted in [65] to detect face liveness too.

Face recognition systems process static and dynamic cues using different
techniques for spoof detection. Earlier feature-based methods mainly de-
ployed hand-crafted features in detecting presentation attacks. Local Binary
Patterns (LBP) [24, 23], Histogram of Oriented Gradient descriptors (HOG)
[66, 67], Speeded-Up Robust Features (SURF) [68], Difference of Gaussian
(DoG) [69, 52] were the techniques adopted in hand-crafted feature methods.
The hand-crafted feature methods commonly used texture analysis. Textural
features vary with the variation in spoofing medium and devices. This leads
to poor generalisation in these methods [70]. The emergence of deep learning
methods provided effective feature learning in many applications. Moreover,
deep learning methods provided better detection performance compared to
hand-crafted methods. Thus the most recent trends demonstrate a large shift
towards deep learning based approaches in face PAD.
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4. Recent trends in deep learning based PAD

Deep learning-based methods have been successfully applied to various
domains including speech enhancement and recognition [71], lip reading from
visual content [72], analysing intractable and complex biological datasets [73],
security and intrusion detection [74], and others. Convolutional neural net-
works in particular, have introduced remarkable developments in computer
vision applications, especially in biometrics [75]. Deep learning, along with
its inherent feature learning capability, constructed a novel path to solve
the anti-spoofing challenge. Existing methods based on deep neural net-
works, show excellent intra-dataset performance. However, these methods
have also exhibited poor cross-dataset performance and unseen attack detec-
tion [76, 77].

Figure 5: Recent trends in deep learning based FPAD

In the last few years, there has been a trend towards improving generalisa-
tion in PAD. In particular, unseen attack detection methods involve trying to
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accurately classify genuine samples and consider any sample except genuine
ones as attacks. Some existing approaches have used only genuine samples
for training so that the proper clustering and classification of genuine face
would lead to desired detection of unseen attacks. These methods followed
one class classification, as opposed to earlier models which followed binary
classification for face PAD. A typology of recent trends in deep learning based
FPAD is shown in Figure. 5.

4.1. Transfer Learning

Transfer learning is the process of re-utilising the learned features from
a base network using base dataset to a target network to be trained with
target dataset and task. Transfer learning helps to avoid overfitting when
the training data is limited [78]. As training is not started from scratch, it
also saves on computational resources. Nagpal et al. [79] analysed different
CNN models for face anti-spoofing and their performance in detecting pre-
sentation attacks. Based on their research the authors recommended transfer
learning with a deeper model utilizing lower learning rates for restricted com-
putational resources. Lucena et al. implemented transfer learning for spoof
detection in their work [80]. Among the deep learning methods deployed in
FPAD, transfer learning is the most common one.

Domain adaptation and domain generalisation utilised a transfer learning
approach to improve generalisation in FPAD. In domain adaptation, informa-
tion from a source domain is transferred to a target domain using different
techniques [81, 82]. Yu et al. [83] developed a neural architecture search
based face anti-spoofing (NAS-FAS) system. This method used central dif-
ference convolution and pooling. Transfer learning approach was applied
on NAS for spoof detection task. However, a cross-dataset evaluation for
3D mask attacks with NAS-FAS showed that challenges still remain the the
generalisation capacity of even transfer learning approaches.

4.1.1. Domain adaptation

Domain adaptation mitigates the disparity between source and target
domains. It facilitates feature learning in scenarios with limited training
data. Hence, generalisation capacity of face PAD can be improved using this
method. In domain adaptation the model learns from the source domain
on related distinct target domain [84]. Hence, recent research has utilised
this technique to mitigate domain shift. Yang et al. [81] introduced domain
adaptation in their research on personal specific face anti-spoofing approach.

13



This approach transferred source domain subject specific information on real
and fake samples. This information facilitated synthesis of virtual fake sam-
ples for subjects without fake samples in target domain. Spoof detection was
performed using a trained classifier for each person in this method. In real
life scenarios, there would be genuine samples without corresponding fake
samples. However, personal specific models required samples from all attack
variants in target domain to attain desired performance. This method also
demanded more source domain fake samples for generalisation enhancement.

Inspired by the applications of Generative Adversarial Networks (GANs)
[85] in various compute vision applications, Wang et al. [84] presented a
domain adaptation method using them to address FPAD problem. Adver-
sarial domain adaptation combined with deep metric learning assisted this
model to outperform other state of the art methods in both cross-dataset and
intra-dataset evaluation. The authors extended this method using an unsu-
pervised adversarial domain adaptation technique (UDA-Net) in [86]. UDA-
Net carried out unsupervised adversarial domain adaptation. This facilitated
extraction of common features associated with both target and source do-
mains. As DR-Net assisted to transfer domain independent information, it
enabled better spoof detection in a unlabeled target domain. The authors
carried out extensive evaluation on more publicly available datasets.

Zhou et al. [87] adopted a multi layer domain adaptation technique for
spoof detection in face recognition systems. In order to reduce the disparity
between source and target domains, the authors used a Multi Layer Max-
imum Mean Discrepancy (ML-MMD). Similarly, Nikisins et al. [82] used
domain adaptation by transferring facial features from RGB domain to multi-
spectral domain. Domain adaptation was carried out using autoencoders. In
this model, a set of multi-channel encoders were used for feature extraction.
Classification of these features were performed by Multi Layer Perceptron
(MLP). The authors of [88] evaluated domain adaptation through domain
guided pruning of CNN. Recent domain adaptation research in face PAD are
presented in Table. 2.

Table 2: Face PAD using domain adaptation method

Author Method year Datasets
Yang et al. [81] Person Specific Anti-spoofing 2015 CASIA, REPLAY ATTACK
Wang et al. [84] Adversarial Domain Adaptation 2019 CASIA, MSU-MFSD, REPLAY ATTACK
Zhou et al. [87] Multi Layer Maximum Mean Discrepancy 2019 CASIA, REPLAY ATTACK
Nikisins et al. [82] Multi-Channel Encoder 2019 WMCA
Mohammadi et al. [88] Domain guided pruning of CNN 2020 REPLAY Mobile, SWAN, WMCA
Wang et al. [86] Unsupervised Adversarial Domain Adaptation 2020 Idiap, MSU, CASIA, ROSE-YOUTU, CASIA-SURF, OULU
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In domain adaptation, trained features are aligned to the target features
to achieve better generalisation capacity through adapting the features of the
target or test domain. However, for unseen attacks cases, the target domain
may be unknown and this would impact domain adaption.

4.1.2. Domain Generalisation

Domain generalisation is one of the techniques adopted by the biometric
community to acquire generalisation in unseen attack scenarios. In exist-
ing face PAD methods, there is bias towards the cues learned from training
data. This impedes generalisation against unseen attacks with different en-
vironments, devices, lighting conditions or materials.

Costa-Pazo et al. [89] adopted domain generalisation for PAD. The au-
thors designed a framework Generalised PAD (GPAD) to address the general-
isation problem and suggested an aggregate dataset with variance in attacks,
lighting, capture devices, and resolution. The GRAD-GPAD (Generalisation
Representation over Aggregated Datasets for generalised Presentation At-
tack Detection) provided a common evaluation method for face anti-spoofing
techniques.

Saha et al. [90] addressed domain shift in face PAD using a domain ag-
nostic model. A class-conditional domain discriminator and gradient rever-
sal layer were utilised to learn domain independent features. Source domain
features were learned through training using multiple datasets. The model
showed improved generalised feature learning across multiple domains for
print and video attacks. The multiple domains were formed due to the vari-
ations in illumination, background, printers, display screens, and the quality
of recording devices. Wang et al. [91] utilised GANs to address unseen
attack detection. The adversarial domain adaptation facilitated transfer-
ring source domain features to target domain. This technique included a
Disentangled Representation learning (DR-net) and Multi Domain learning
(MD-net). DR-net learned disentangled features. MD-net learned the gen-
eralised features across multiple domains using these disentangled features
from these domains. Evaluation with CASIA, REPLAY -ATTACK, MSU
and OULU-NPU datasets provided an improved cross-domain performance
compared to existing state of the art methods. However, the experiments
also confirmed the fact that a larger dataset with more attack variants would
be required for effective unseen attack detection.

Shao et al. [92] proposed another domain generalisation method without
using the target domain data. Adaptive and automatic learning of gener-
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alised features was facilitated by a multi adversarial deep domain generalisa-
tion module. Integrating a dual-force triplet-mining constraint enhanced the
disparity in the generalised feature space. The model used auxiliary depth
supervision to further improve generalisation. Unlike the aforementioned
models, Jia et al. [93] followed a single domain generalisation. Retaining the
boundary of feature domains of real and fake faces has become increasingly
difficult due to novel attacks. In order to avoid grouping and extracting gen-
eralised features from multiple domains, the authors used a single domain.
Use of Asymmetric Triplet Mining ensured effective clustering of real face
features while spreading away the fake ones. Zhang et al. [94] introduced
a FPAD model disentangling features into live and content features. Depth
supervision and translated images were utilised in this model.

Existing domain generalisation approach transferred generalised features
from source domain to a pre-defined distribution. However, this distribution
might not be an optimal feature space [92]. Learning discriminant features
requires multiple components in these models. Elimination of any of these
feature discriminators might deteriorate the generalisation capability of the
model [93].

4.2. Anomaly Detection

Unseen attack detection was addressed using anomaly detection approach
in recent research. Anomaly detection followed one class classification. From
Table. 3, it is evident that this approach had gained more popularity in
last few years for unseen attack detection. In face PAD problem genuine or
live face images are considered normal samples, whereas all possible attacks
forms the anomalous sample space. It has been found that the genuine class
has lower variance within the feature distribution and a forms a close cluster.
They had more generalised features than the attacks. Attacks, on the other
hand, can vary substantially from one another. The higher variance in attacks
results in anomalies in the feature space. Using this close cluster behaviour
of genuine samples in the feature space, anomaly detection techniques have
classified authentic faces more accurately. Any samples outside the margin
of the genuine sample cluster would be considered as the attacks. Since the
real face sample has a defined class, unseen attacks can be detected.

Arashloo et al. [95] introduced anomaly detection for face PAD. This
technique used only genuine face samples for training. The authors set up
a new evaluation protocol to gauge the affects of unseen attacks. In terms
of generalisation, these fake or negative samples represented all the spoofing
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samples. This method produced comparable results with the models using
binary classification. In [96], Arashloo and Kittler proposed a similar tech-
nique to address unseen attack scenarios. The authors incorporated multiple
kernel fusion, client-specific modelling, sparse regularisation and probabilistic
modelling of score distributions to enhance the performance of the system.
Through extensive evaluation using different datasets, it was shown that the
method performed better than the existing state of the art models in unseen
attack detection.

Anomaly detection was explored by Nikisins et al. [97] too. Similar to
[95], the authors used only genuine samples for training. Feature space was
created using Image Quality Measures (IMQ) in this model. A Gaussian
Mixture Model (GMM) to find out the probability distribution of genuine
samples. Combining REPLAY-ATTACK, Replay-Mobile and MSU-MFSD
public datasets, an aggregate dataset was formed. Compared to the binary
classification methods, the designed model exhibited better generalisation
when tested with the aggregate dataset. In a similar research, Fatemifar et
al [98] used a client specific model. In one class classification, each biometric
trait has scores which would be distinct for genuine and attack samples. In
this way, a threshold can be defined to distinguish between real and fake
images. A client specific threshold was set which provided better distinctive
capability to categorise genuine and attacks. This method exploited only
real face information to implement a perfect anomaly detection approach.
However, more mechanisms might be needed to refine single class learners
if the training data included fake samples. Fatemifar et al. [99] presented
another subject specific model. They fused the individual one class classifier
using a new normalisation technique in this ensemble learning method. A
weighted average fusion strategy was used in the model.

Table 3: Anomaly detection approaches in recent face PAD research

Author Year Remarks

Arashloo et al. [95] 2017 A new evaluation protocol to detect the affects of unseen attacks
Arashloo and Kittler [96] 2018 Multiple kernel fusion, client-specific modelling, sparse regularisation, probabilistic modelling of score distributions
Nikisins et al. [97] 2018 Image Quality Measures (IQM), Gaussian Mixture Model (GMM)
Fatemifar et al. [98] 2019 Subject specific models
P´erez-Cabo et al. [100] 2019 Deep Metric Learning
Fatemifar et al. [99] 2019 Client Specific Modeling
Abduh & Ivrissimtzis [101] 2020 Convolutional Autoencoder, in-the-wild training images
Li et al. [102] 2020 Hypersphere loss function
Feng et al. [103] 2020 A spoof cue generator and an auxiliary classifier.
Baweja et al. [104] 2020 Pseudo-negative class samples

Deep metric learning was used in anomaly detection to address general-
isation. Perez-Cabo et al. [100] proposed this method and evaluation was
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carried out using GRAD-GPAD [89]. Metric learning based loss provided
lower intra-class variance and higher inter-class separability. Better classi-
fication of fake and genuine samples resulted using metric learning based
approach. Feng et al. [103], presented another anomaly detection based
face PAD. In this method, the framework had a spoof cue generator and an
auxiliary classifier. The model used a residual learning network to extract
the spoof cues. The method achieved good state of the art performance in
unseen attack detection. In [102], Li et al. addressed face PAD in an open
setting with an anomaly detection method. They introduced a new hyper-
sphere loss function for end-to-end learning. Real faces formed a close cluster
near to the origin of the hypersphere sustaining intra-class compactness. The
attack samples scattered at a specific distance from the genuine face cluster
in the feature space to maintain the predefined margin between real and fake
features. Hypersphere loss identified these attacks directly without using a
separate classifier. Baweja et al. [104] introduced a novel training approach
for anomaly detection. The absence of negative samples made end-to-end
learning in one class classification non-viable. Hence, the authors proposed
a ”Pseudo-negative class” sample feature space, which helped the model in
learning better decision boundaries between genuine and fake samples. The
pseudo-negative class was modeled using a Gaussian distribution. Unlike
other existing OCC models, end-to-end learning was carried out for both
classifier and feature representation. The authors of [101] included in-the-
wild images in the training dataset of a one class classifier. These images
were recorded in an uncontrolled environment. Hence, features learned dur-
ing training facilitated model operation in uncontrolled environment. This
enhanced unseen attack detection.

4.3. Few-shot and zero-shot learning

Few-shot learning (FSL) [105] is the process of learning from few samples
with the supervised data. FSL is suitable to applications which require large
scale data from supervision. FSL has only a small number of labelled target
samples. When the number of these samples for target class is zero, FSL is
called zero-shot learning. Since the requirement of target samples are very
few or zero (in zero-shot scenario), FSL is suitable for detecting unseen or
novel attacks. Recent research made use of this advantage of FSL to detect
unseen attacks in face PAD.

Qin et al. [106] proposed face PAD using zero-shot and few-shot ap-
proaches. The authors designed Adaptive Inner-update Meta Face Anti-
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Spoofing (AIM-FAS) with meta learning. Using pre-defined live and fake
samples along with a few samples of unknown attacks, the model carried out
spoof detection. The meta learner provided better discrimination between
live faces and attacks. With adaptive inner update, the discriminative ca-
pacity enhanced, improving generalisation. Liu et al. [107] used a zero-shot
approach to address the unseen attack detection in face PAD. The authors
used a deep tree network to learn the semantic attributes of pre-defined at-
tacks in unsupervised methods. Even though live samples clustered well in
the feature space, they positioned very close to a specific group of attacks like
transparent mask, funny face, obfuscation makeup and paper glasses. This
made detection more challenging in such scenarios, and implies that these
attacks might be more challenging to detect.

4.4. Auxiliary Methods

Anti-spoofing is considered as a binary classification problem. Hence, the
majority of the anti-spoofing models follow binary supervision. Nevertheless,
binary supervision has demerits too. Even though it provides arbitrary cues
to detect spoofing, some of the spoof patterns may disappear over the feature
duplication process. This results in poor generalisation [108]. To overcome
poor generalisation, auxiliary supervision has been used in a number of re-
cent researches. It has been shown that auxiliary supervision with end-to-end
learning can provide better anti-spoofing [109]. The methods which use aux-
iliary data are presented in the Table. 4. As in the table, depth was used as
an auxiliary feature in the majority of the existing models.

Table 4: PAD with auxiliary supervision

Method Auxiliary Cues Attacks

Patch CNN [109] Depth Print, Replay
CNN-RNN [108] Depth, rPPG Print, Replay
Frame-level CNN [110] Pixel wise binary Print, Replay
CNN with OFFB and ConvGR [111] Depth Print, Replay
Central Difference CNN [112] Depth Print, Replay
Multi-Spectral Central Difference CNN [113] Pixel wise Print
Bilateral Convolutional Network(BCN) [114] Human material Print,Replay
Bipartite Auxiliary Supervised Network (BASN) [115] Bipartite (Depth, Reflection) Print, Replay
Contextual Patch-Based CNN [65] rPPG 2D, 3D
Patch CNN [116] Depth Print, Video
SLNet [117] Disparity Print, Video
Image Decomposition [17] Noise Photo

Atoum et al. [109] introduced the depth supervision for anti-spoofing by
proposing a depth supervised patch based CNN. From the random patches,
local features are extracted. These features were fused with a depth map to
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identify spoofing. A similar auxiliary supervised approach using depth and
Remote Photoplethysmography (rPPG) supervision was proposed by Liu et
al. [108]. The authors used a CNN and recurrent neural network (RNN)
combination for spoof detection. rPPG facilitated temporal information ex-
traction using the difference in live signals for live face and spoof image.
Distinct from the above-mentioned single frame PAD methods with auxil-
iary supervision [109, 108], a multi-frame approach was followed by Wang et
al. in [111]. This approach exploited temporal information along with depth
supervision. The authors followed the distinguishing patterns of temporal
depth and motion between live and spoof images in the temporal domain.
This approach facilitated efficient spoof detection under depth supervision
by examining complex facial variations and motions.

Auxiliary methods used depth and temporal features for supervision. The
acquisition and processing of these features might take longer time. Never-
theless, in real-time scenario, especially in mobile devices this delay would
not be acceptable. As the depth calculation consumed more computational
resources and time, George et al. [110] followed a pixel wise supervision PAD
method. This method was claimed as a suitable approach for mobile devices
as it avoided the pixel wise depth calculation. In order to extract more gener-
alisable features in auxiliary supervised PAD, Kim et al. introduced a novel
Bipartite Auxiliary Supervised Network (BASN) [115]. This approach used
auxiliary cues from both live face and spoof images, distinct from existing
PAD methods with auxiliary supervision.

Following the aforementioned auxiliary supervised methods and leverag-
ing the Central Difference Convolution (CDC), Yu et al. [112] introduced
a spoof detection approach using Central Difference Convolutional Network
(CDCN). By utilising Neural Architecture Search (NAS) architecture, low,
mid and high level features were extracted. These features were fused us-
ing a Multi-scale Attention Fusion Module (MAFM). CDC provided better
results by combining intensity and gradient information. Apart from achiev-
ing generalisation in face pose, expression, spoof medium, cross/unknown
attack variants, this approach showed considerable performance in terms
of domain shift. The authors extended the methods incorporating multi-
spectral mode in [113] using two fusion strategies for the modalities. The
fusion was done either by input-level fusion via concatenating three-modal
inputs to 256x256x9 directly or score-level fusion via weighting the predicted
score from each modality. Yu et al. [114] also proposed a human material
recognition model for face spoof detection. The authors included a Bilateral
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Convolutional Network (BCN) for capturing human material patterns. The
BCN was able to learn macro-micro features associated with material. A
multi-level feature refinement module along with multi-headed supervision
facilitated enhanced BCN performance by refining multi-scale features and
learning shared features.

Authors of [65] proposed a method incorporating rPPG and textural
information to attain generalisation in terms of 2D and 3D mask attacks.
Multi-scale long term statistical spectral features for rPPG information was
incorporated with contextual patch CNN. Remote Photoplethysmography
(rPPG) provided 3D mask and photo attack detection while textural cues
identified the replay attacks. Liu et al. [116] developed a face PAD combining
Patch CNN and Depth based CNN. This approach was designed as a PAD
for mobile devices. Depth based CNN showed degraded performance for low
resolution images, whereas Patch based CNN showed low performance for
high resolution images. The combination of these two improved the overall
PAD performance in mobile devices. Unseen attack detection was addressed
by learning disparity maps and training end-to-end classifier simultaneously.
Rehman et al. [117] proposed an approach similar to the depth supervised
auxiliary method. The learned disparity maps facilitated better detection
of unseen attacks. Auxiliary supervision was investigated by Jourabloo et
al. [17], too. They set up the auxiliary supervision of CNN to obtain the
noise pattern and showed how different spoof mediums exhibited different
noise patterns. In particular, noise patterns of live and fake image were
different. End-to-end training of a CNN distinguished accurately between
live and spoof accurately. Authors of [118] proposed a novel model, Spatio-
Temporal Anti-Spoofing Network (STASN) to differentiate between live and
spoofed faces. For anti-spoofing both temporal and spatial cues were used.
The model used a new data synthesis method which provided a huge amount
of training data. STASN combined with extensive training data provided
improved performance when compared with the state of the art methods.

4.5. Multi-spectral methods

In a FRS, PAs occur in the visible light range. However, more cues on
attacks are available from a other spectral images [22]. Multi spectral face
PAD approaches in recent literature are listed in Table. 5.

Jiang et al. [119] proposed a multi-spectral presentation attack detection
approach to detect 3D mask and print attacks based on visible spectrum
(VIS) and near infra red (NIR) images. Similarly George et al. [120] used
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multi-channels (VIS, NIR and Thermal) and transfer learning to enhance per-
formance. The method failed in identifying scenarios like prescribed glasses
and facial hair attacks. Enhanced performance provided by extended-range
imaging was utilized to detect PAIs in [121].

Kotwal et al. [121] addressed custom silicone mask based impersonation
PAD by deploying multi channel inputs and CNN. Extracted feature vectors
from CNN were classified using a logistic regression classifier. A two stream
convolutional neural network approach was set up in [122]. Two imaging
spaces, RGB and Multi-Scale Retinex (MSR) were used in this approach to
extract textural features and high-frequency information. The model was
found to be insusceptible to illumination changes. A multi-spectral method
to identify disguise was described by Dhamecha et al [38]. This method
classified facial portions into patches of biometric and non-biometric based
on the presence of disguise tools and then performed a recognition task.

Table 5: Multi spectral anti-spoofing methods

Method Modality Attacks Databases

Multi Level Image Fusing [119] RGB, NIR Print, 3D CGIT PMT
Multi Channel CNN [120] RGB, NIR, Thermal, Depth 2D, 3D WMCA

Attention based Two Stream CNN[122] RGB, MSR Print, Replay
CASIA FASD, REPAY ATTACK,
OULU

Multi Spectral Disguise Detection [38] RGB, Thermal Disguise BVSD, IHTD
Multi Spectral Deep Embedding[121] RGB, NIR, Thermal Silicon Mask XCSMAD
NIR Silent Liveness Detection Network Architecture [123] NIR Photo Proprietary Dataset
Multi-modal FPAD with Spatial and Channel Attention [124] RGB,IR,Depth Photo CASIA-SURF

Multiple Categories Image Translation GAN [125] RGB, NIR Photo, Video
CASIA-MFSD, REPLAY-ATTACK,
Proprietary Dataset

Multi-Task cascaded CNN [126] RGB, IR Photo, Video
CASIA-MFSD, REPLAY-ATTACK,
NenuLD

Fan et al. proposed and evaluated NIR and VIS methods with NIR and
VIS datasets respectively [123]. Through the experiments conducted, the
authors verified the capability of NIR methods compared to VIS method. As
per their observation, NIR provided more distinct features and NIR camera
itself has some resistance to spoofing as it could not take images of replay
attack using mobile and high colour photos. Jiang et al. [125] utilised the
cues from visible spectrum (VIS) and Near Infra Red (NIR) images. In
this work, NIR images were synthesised using GANs [127] through image
translation technique. The VIS and NIR pair gave cues for better spoof
detection. Image translation using GAN provided required NIR image.

Liu et al. [126] proposed a PAD approach using IR and RGB images.
The authors used a Multi-Task cascaded CNN (MTCNN). This approach
exhibited lower responding time, making it suitable for real world applica-
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tions. Wang et al. [124] presented another multi-modal technique to detect
spoofed faces. Using RGB, IR and depth modalities, the authors used an
attention mechanism to capture information to detect spoofing. These three
modalities and their combination trained a ResNet-18 model and were clas-
sified using the combination of softmax loss and center loss.

Authors of [82] used domain adaptation to transfer source domain in-
formation from VIS domain to multi-spectral target domain. These multi-
spectral methods were able to enhance spoof detection using reflection in-
variant cues obtained through extended imagery. However, these methods
required an additional sensor along with VIS camera. Similar to existing
other CNN based PAD methods, multi-spectral methods also required larger
dataset with more attack variants in all modalities.

5. Datasets

Datasets have pivotal role in the performance of any presentation attack
detection method. Generalisation of PAD relies on variance in samples of
a dataset. Access to a wider variety of PAs facilitates the learning of more
attack features during the training process. This eventually leads the system
to detect the PAs of wide range. Samples of print attack images with different
illumination conditions are shown in Figure. 6. Other attack variants include
replay attacks, 3D mask attacks and its variants.

It is evident from Table. 6 that existing datasets consist of more 2D at-
tacks than 3D attacks [128, 5]. However, diverse novel attacks are increasing
with progressive technology. Dataset diversity is decided by PAs and their
variants. Factors such as environment, recording set up, illumination, pose,
expression and spoofing medium also affect the dataset content.

(a) (b) (c) (d) (e)

Figure 6: Print attack images from NUAA Imposter Dataset [52]
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Table 6: Face spoof datasets

Dataset Year Subjects Samples Modality Attacks

NUAA [52] 2010 15 12,641 RGB Print
CASIA-MFSD [129] 2012 50 600 RGB Print, Replay
Replay-Attack [24] 2012 50 1,200 RGB Print, Replay
YMU [130] 2012 151 604 RGB Makeup
ERPA [131] 2013 5 86 RGB, Depth, IR, Thermal 3D Silicon/resin Mask
MIW [132] 2013 125 154 RGB Makeup
MLFP [133] 2013 10 1,350 RGB, Thermal 3D Latex, Paper Mask
GUC-LiFFAD [134] 2015 80 4,826 RGB Print, Replay
MSU-MFSD [16] 2015 35 440 RGB Print, Replay
3DFS-DB [135] 2016 26 520 RGB, IR 2D/3D Mask
3DMAD [136] 2016 17 255 RGB, Depth 3D Mask
HKBU MARs [137] 2016 12 1,008 RGB 3D Rigid Mask
MSSPOOF [6] 2016 21 4,704 RGB, IR Print
Replay-Mobile [138] 2016 40 1,030 RGB Print, Replay
BRSU [139] 2017 50 141 RGB, IR 3D Masks, Facial disguise
CIGIT-PPM [119] 2017 72 93,358 RGB, IR Print, 3D Mask
EMSPAD [140] 2017 50 14,000 7-band multi-spectral data Print
MIFS [141] 2017 107 416 RGB Makeup
Oulu-NPU [142] 2017 55 5940 RGB Print, Replay
SMAD [143] 2017 From internet 130 RGB 3D Silicon Mask
CS- MAD [55] 2018 14 308 RGB, IR, Depth, LWIR 3D Silicon Mask
DFW [144] 2018 1000 11,155 RGB Disguise
Rose-Youtu [145] 2018 20 3350 RGB 2D, 3D
SiW [108] 2018 165 4620 RGB Print, Replay
WMCA [51] 2018 72 6716 RGB, Dept, IR, Thermal Print, Replay, 2D/3D Mask
3DMA [146] 2019 115 920 RGB, IR 3D Mask
AIM [147] 2019 72 456 RGB Makeup
CASIA-SURF [148] 2019 1000 21000 RGB, Depth, IR Print, Cut
I2BVSD [38] 2019 75 681 RGB, Thermal 3D Facial Disguise
LCC FASD [149] 2019 243 18827 RGB Photo
PR-FSAD [150] 2019 30 127440 RGB Print, Replay
SiW-M [107] 2019 493 1,630 RGB Print, Replay, 3D Mask, Makeup
WFFD [151] 2019 745 2300 RGB Wax figures
CASIA SURF CeFA [152] 2020 1,607 23538 RGB, Depth, IR 2D, 3D
CelebA-Spoof [153] 2020 10177 625537 RGB Print, Replay, 3D, Paper cut

Jiang et al. [119] introduced a dataset, “CIGIT Paired VIS and NIR im-
ages for Photo and Mask attacks” (CIGIT-PPM) incorporating RGB images
and 3D attacks. The dataset shows variance in terms of attacks, medium
of spoofing, recording environment, pose, expression, glasses/no glasses, res-
olution and distance. George et al. [120] created a multi modal dataset,
Wide Multi-Channel presentation Attack (WMCA). 2D and 3D attacks were
included in this dataset. The dataset comprises various imaging sensors,
attacks, illumination and recording environments. Multi-modal images pro-
vided features which assisted in better PA detection. Datasets with different
modalities are shown in Table. 7.
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Table 7: Multi-spectral datasets

Database Year Modality Samples Attacks

ERPA [131] 2013 RGB, Depth, IR, Thermal 86 3D Silicon/ resin Mask
MLFP [133] 2013 RGB, Thermal 1350 3D Latex/ Paper Mask
I2BVSD [154] 2014 RGB, Thermal 681 3D Facial Disguise
3DMAD [136] 2016 RGB, Depth 255 3D Mask
MSSPOOF [6] 2016 RGB, NIR 4704 Print
EMSPAD [140] 2017 7-band multi-spectral data 14,000 Print
BRSU [139] 2017 RGB, 4 SWIR bands - 3D Masks, Facial disguise
CIGIT-PPM [119] 2017 RGB, NIR 93358 Print, 3D Mask
WMCA [51] 2018 RGB, Depth, IR, Thermal 6716 Print, Replay, 2D/ 3D Mask
3DMA [146] 2019 RGB, NIR 920 3D Mask
CASIA-SURF [148] 2019 RGB, Depth, IR 21000 Print, Eye-Cut photo
CASIA-SURF CeFA [152] 2020 RGB, Depth, IR 23538 2D, 3D

Dhamecha et al. [38] developed a multi-spectral dataset for disguise at-
tacks called IIITD: In and Beyond Visible Spectrum Disguise (I2BVSD). This
dataset consists of 75 subjects with various disguise accessories. Both visi-
ble and thermal spectra were considered for data acquisition. The authors
introduced distinct disguise variants for dataset as:

• Without disguise

• Variations in hair styles

• Variations due to beard and mustache

• Variations due to glasses

• Variations due to cap and hat

• Variations due to mask

• Multiple variations

Disguised Faces in the Wild (DFW) dataset [155] is a similar dataset
with disguised face attacks. It has images of 1000 subjects. A total of 11,155
face images of real world disguise variants obtained from internet sources,
formed this dataset. Bhattacharjee et al. [55] created a new Customised
Silicon Mask Attack Dataset (CS-MAD) and verified the vulnerability of
face biometric system using the dataset. The boost in technology made the
manufacturing process of mask easier and cheaper and a number of recent
datasets incorporate 3D attacks. Different mask attack datasets are described
in Table. 8.
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Table 8: 3D mask datasets

Database Year Subject Sample Material

3DMAD [136] 2013 17 255 Paper, hard resin
3DFS-DB [135] 2016 26 520 Plastic
HKBU-MARs [137] 2016 12 1008 Rigid (Two different manufactures)
BRSU [139] 2016 137 141 Silicon, plastic, resin, latex
SMAD [143] 2017 From internet 130 Silicon
MLFP [133] 2017 10 1350 Latex, paper
ERPA [131] 2017 5 86 Resin, silicone
WMCA [51] 2019 72 1679 Rigid, silicone, paper
WFFD [151] 2019 745 2300 Wax figure
CIGIT-PPM [119] 2019 72 93358 Leather, rubber, plastic
3DMA [146] 2019 115 920 48 Variations of masks

Zhang et al. [148] developed a new dataset, CASIA-SURF which was
larger than existing datasets in size. The dataset consists of three modalities
which are VIS, IR and depth. It has 21,000 sample videos from 1000 subjects.
The authors of [147] formed a novel Age Induced Makeup (AIM) dataset. 456
samples using age progressive makeup type from 75 subjects were considered
while forming the dataset. Liu et al. [156] formed a Spoof in the Wild
(SiW) dataset introducing more spoofing medium and recording settings with
photos of 165 subjects. The authors of [146] developed a dataset for 3D Mask
Attacks (3DMA) based on VIS and NIR. Xiao et al. developed this dataset in
order to apply more variance in lighting distance and illumination deploying
various methods. 920 videos of 67 subjects were included in the dataset.
There were 48 3D mask variants used to create this dataset.

Emphasizing on video replay attack, Timoshenko et al. created a larger
dataset. The Large Crowd Collected Facial Anti-Spoofing Database (LCC
FASD) in [149] has more variance in devices deployed for recording and re-
play. The dataset has 1942 real faces and 16885 attack samples. In [150],
the authors introduced a novel dataset Pattern Recognition Face Spoofing
Advancement Dataset (PR-FSAD) for spoof detection which emphasizes on
variations in angle and distance. 42,480 real and 84,960 fake samples from
30 subjects used to construct the dataset. A new dataset, Digital Forensic -
Face Presentation Attack Detection (DF-FPAD) was created for the evalua-
tion process of a presentation attack detection framework using this textural
noise in [157]. The dataset was made using higher quality images of fake and
genuine faces under controlled conditions.
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6. Evaluation Metrics

Face PAD is commonly considered as a binary classification problem. Var-
ious performance associated metrics are used to evaluate the performance.
Chingovska et al. detailed about measuring face PAD as a binary classifi-
cation problem [158]. Since these binary classification systems are provided
with two classes of input, they normally termed as positive and negative
classes. Their performance is evaluated by the types of errors committed
and the method to measure them. False Positive and False Negative are
the errors exhibited by the binary classification systems. Normally recorded
error rates are False Positive Rate (FPR) and False Negative Rate (FNR).
FPR is the ratio of FP to the total number of negative samples and FNR is
the ratio of FN to the total number of positive samples.

In biometric verification systems, the performance relies upon acceptance
or rejection of the sample. So the terms False Positive Rate (FPR) and False
Negative Rate (FNR) are replaced by False Acceptance Rate (FAR) and
False Rejection Rate (FRR), respectively [159]. As there is matching process
involved in the verification task, FAR and FRR are often described as False
Match Rate (FMR) and False Non-Match Rate (FNMR) [160]. Anti-spoofing
systems function on the concept of acceptance and rejection. So usually PAD
systems use FRR and FAR. The ratio of incorrectly accepted spoofing attacks
defines FAR, whereas FRR stands for the ratio of incorrectly rejected real
accesses [158].

Presentation Attack Detection (PAD) follows ISO/IEC DIS 30107-3:2017
[161] to evaluate the performance of the PAD systems [33]. Authors of [5]
described evaluation metrics used for testing different scenarios in a PAD
system. The most commonly used metric in anti-spoofing scenarios is Half
Total Error Rate (HTER) [158]. HTER is found out by calculating the
average of FRR (ratio of incorrectly rejected genuine score) and FAR (ratio
of incorrectly accepted zero-effort impostor). FAR is associated with SFAR
(ratio of incorrectly accepted spoof attacks). PAD methods used Equal Error
Rate (EER) to test reliability [5]. EER is a specific value of HTER at which
FAR and FRR have equal values.

While evaluating some methods, metrics mentioned as per ISO standard
in [161] were used. They were Attack Presentation Classification Error Rate
(APCER), Normal Presentation Classification Error Rate (NPCER) and Av-
erage Classification Error Rate (ACER). NPCER is identical to Bona fide
Presentation Classification Error Rate (BPCER). A Face PAD is evaluated
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Table 9: Commonly used evaluation metrics in face PAD

Metrics Equation

False Acceptance Rate FAR FP
Fake samples

False Rejection Rate FRR FN
Genuine samples

Equal Error Rate EER (FRR = FAR)
Half Total Error Rate HTER FAR+FRR

2

Attack Presentation Classification Error Rate APCER FP
FP+TN

Bona fide Presentation Classification Error Rate BPCER FN
FN+TP

Average Classification Error Rate ACER APCER+BPCER
2

in terms of classification of attacks and real face, intra dataset performance
and cross-dataset performance [17]. BPCER and APCER measures bona
fide and attack classification error rates respectively. ACER evaluates the
intra dataset performance, whereas HTER scales cross-dataset performance
[161]. Commonly used metrics [37, 14, 5] in face anti-spoofing are listed in
Table. 9.

7. Conclusion and future directions

Presentation attacks continue to pose a challenge for the research commu-
nity despite the recent and significant progress in the development of detec-
tion methods. Methods such as anomaly detection, domain generalisation,
few-shot learning, zero-shot learning and others have shown some promising
results. In this paper, we have presented an extensive, in-depth review of the
most recent literature with an emphasis on deep learning-based methods.
We have provided context for this with a comprehensive review of existing
presentation attack methods, and critical evaluation of recent datasets and
evaluation metrics.

Despite the recent progress in presentation attacks detection methods,
unseen attack detection is still considered a challenging problem. Existing
methods showed promising results when evaluated using specific type of at-
tacks under controlled environment or using public datasets. PAD models
trained used predefined attacks also show promising results, however, such
models tend to be biased toward these type of attacks [162]. While ma-
chine learning models perform well on samples taken from within the same
distribution as the training set, that performance is not maintained across
different datasets or in new conditions. In other words, generalising per-
formance across wide range of attacks and across different datasets is still
considered an inherently challenging problem. This can be partly attributed
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to common computer vision challenges such as distance of the subject to
the camera, image resolution, light [88], pose variations and others. This
suggests strongly that, PAD in an uncontrolled environment requires further
research efforts [21, 163].

One of the key challenges to progress research and development of PAD
methods is the large number of ways that such attacks can be performed.
It remains impractical to compile a dataset that captures all current attack
variation regardless of its type (e.g. 2D, 3D attacks). It is impossible to pre-
dict the varieties of attack that new technological advances will bring in the
future. The literature shows that compared to existing 2D attack datasets,
3D attack datasets and multi-spectral datasets are scarce with fewer sub-
jects to compare to image classification and face recognition datasets. More
datasets in the public domain are required to progress research in this area.
In particular, datasets that capture novel attacks using recording devices,
and other new emerging technologies [148].

The inclusion of temporal features, such as motion or rPPG, for auxil-
iary supervision is a another challenging task in face PAD. The majority of
auxiliary methods in face PAD used spatial features, especially depth as an
auxiliary feature. These have considered a single frame for detection. Lim-
ited research has been conducted to utilise temporal features for auxiliary
supervision. This may be partly attributed to computer processing require-
ments and the need for rapid processing in face recognition systems. Multiple
frames with longer duration have to be processed to deploy temporal fea-
tures for auxiliary supervision. Hence, multiple frame-based models increase
processing time within the face recognition systems [112]. As technology ad-
vances, however, temporal features might increase accuracy in PAD, and this
research area should not be neglected.

Remodeling face presentation attack detection as one class classification
approach has provided impressive results in unseen attack detection. Hence,
this approach is a promising future research direction. Delving further into
into anomaly detection, few-shot learning, zero-shot learning, and domain
generalisation is recommended for enhancing unseen attack detection. Com-
bining this with further investigation into auxiliary supervision with more
spatial and temporal features would provide a powerful, new research di-
rection. Recent research has investigated multi-spectral data augmentation
using image translation and GANs. This has provided new methods which
utilize multi-spectral cues without the need for physical auxiliary sensors.
GANs have also been used for learning generalised features over multiple

29



domains in feature space. Hence, further study with GANs in anti-spoofing
might provide some way of generalising presentation attack detection over
unseen attacks.
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[23] J. Määttä, A. Hadid, M. Pietikäinen, Face spoofing detection from
single images using micro-texture analysis, in: 2011 international joint
conference on Biometrics (IJCB), IEEE, 2011, pp. 1–7.

[24] I. Chingovska, A. Anjos, S. Marcel, On the effectiveness of local binary
patterns in face anti-spoofing, in: 2012 BIOSIG-proceedings of the
international conference of biometrics special interest group (BIOSIG),
IEEE, 2012, pp. 1–7.

[25] K. Sundararajan, D. L. Woodard, Deep learning for biometrics: A
survey, ACM Computing Surveys (CSUR) 51 (3) (2018) 1–34.
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Castro, R. J. López-Sastre, Generalized presentation attack detection:
a face anti-spoofing evaluation proposal, in: 2019 International Con-
ference on Biometrics (ICB), IEEE, 2019, pp. 1–8.

[90] S. Saha, W. Xu, M. Kanakis, S. Georgoulis, Y. Chen, D. P. Paudel,
L. Van Gool, Domain agnostic feature learning for image and video
based face anti-spoofing, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2020, pp.
3490–3499.

[91] G. Wang, H. Han, S. Shan, X. Chen, Cross-domain face presentation
attack detection via multi-domain disentangled representation learning,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 6678–6687.

[92] R. Shao, X. Lan, J. Li, P. C. Yuen, Multi-adversarial discriminative
deep domain generalization for face presentation attack detection, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 10023–10031.

[93] Y. Jia, J. Zhang, S. Shan, X. Chen, Single-side domain generalization
for face anti-spoofing, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 8484–8493.

[94] K.-Y. Zhang, T. Yao, J. Zhang, Y. Tai, S. Ding, J. Li, F. Huang,
H. Song, L. Ma, Face anti-spoofing via disentangled representation
learning, in: European Conference on Computer Vision, Springer, 2020,
pp. 641–657.

[95] S. R. Arashloo, J. Kittler, W. Christmas, An anomaly detection ap-
proach to face spoofing detection: A new formulation and evaluation
protocol, IEEE Access 5 (2017) 13868–13882.

39



[96] S. R. Arashloo, J. Kittler, Client-specific anomaly detection for face
presentation attack detection, arXiv preprint arXiv:1807.00848 (2018).

[97] O. Nikisins, A. Mohammadi, A. Anjos, S. Marcel, On effectiveness
of anomaly detection approaches against unseen presentation attacks
in face anti-spoofing, in: 2018 International Conference on Biometrics
(ICB), IEEE, 2018, pp. 75–81.

[98] S. Fatemifar, S. R. Arashloo, M. Awais, J. Kittler, Spoofing attack
detection by anomaly detection, in: ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 8464–8468.

[99] S. Fatemifar, M. Awais, S. R. Arashloo, J. Kittler, Combining multiple
one-class classifiers for anomaly based face spoofing attack detection,
in: 2019 International Conference on Biometrics (ICB), IEEE, 2019,
pp. 1–7.

[100] D. Pérez-Cabo, D. Jiménez-Cabello, A. Costa-Pazo, R. J. López-Sastre,
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