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Abstract- The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique 
tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of 
finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by 
Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the 
effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like 
were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter 
model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, 
the laminated membrane coupling and effects of several important parameters, including the unbalance 
value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s 
dynamic characteristics were discussed. The results showed that the influences of laminated membrane 
coupling and transmission error amplitude on the coupled system’s vibration response were prominent, 
which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled 
effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional 
vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail 
shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, 
as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to 
diminish while the axis orbit became larger. The research provides theoretical support for the design of 
the helicopter tail transmission system. 
Keywords- Spiral bevel gear  Oblique tail shaft  Finite element method  Lumped mass method  Tail 
rotor excitation   

1. Introduction 

The helicopter tail transmission system involves an angular spiral bevel gear pair and an orthogonal 
spiral bevel gear pair, and the two gear pairs are connected by a long thin-walled oblique tail shaft. 
Therefore, the vibration response from each part is no longer independent but coupled with each 
other. Moreover, the tail transmission system is not only excited by two spiral bevel gear pairs, but 
also by external excitation such as unbalanced force and tail rotor force, which lead to complex 
dynamic characteristics. To provide more theoretical guidance for the helicopter tail transmission 
system, it is vital to investigate the coupled vibration of the spiral bevel geared rotor system. 

Currently, there were many investigations on the single-pair geared rotor transmission system, 
mainly focusing on the modeling method and dynamic characteristics. Geared rotor transmission 
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system’s modeling methods involved finite element method, centralized mass method, and transfer 
matrix method. Wang [1] and Fan [2] formulated the bending-torsional coupled models of spiral 
bevel gears and planetary gears by the lumped-mass method, respectively. Based on the transfer 
matrix method, Choi [3] and fan [4] analyzed the vibration response of the geared rotor transmission 
system. Neriya et al. [5] simulated the geared rotor system’s bending-torsional coupled vibration by 
the finite element method. This method was used extensively by scholars because it could simulate 
the effect of multiple factors such as elastic shaft and bearing parameters [6-9]. Similarly, Li [10] 
and Yavuz [11] utilized the finite element method to study the dynamic properties of the coupled 
system with spiral bevel gears. Zhu et al. [12] established the dynamic model of a single-stage spiral 
bevel gear system by the hybrid method of finite element and lumped mass, where the influences of 
transmission error, shaft flexibility, and gearbox flexibility were considered. Then, the effects of 
key parameters on the coupled system’s dynamic characteristics were analyzed. 

Based on the single-pair geared rotor transmission system, the relevant studied on the multi-
pair geared rotor system were carried out by various scholars. Wang [13] employed the finite 
element method to derive a coupled dynamic model of the two-stage helical gear system, and the 
effect of eccentricity and other key parameters on the system’s dynamic response was investigated. 
Jian and Parker [14] investigated the influence of meshing stiffness on the multi-stage parallel-shaft 
gear transmission system’s vibration response, involving the effect of meshing frequency, meshing 
phase and other unstable factors. Al-shhyab and Kahraman [15] proposed a nonlinear dynamic 
model of a multi-stage spur geared rotor system. In their work, the effects of key parameters such 
as meshing stiffness, meshing damping and torque on the subharmonic motion were discussed. 
Walha et al. [16] demonstrated 12 degrees of freedom dynamic equations of a two-stage spur gear-
pair, which solved by the Newmark iteration method, and found that the root of nonlinear vibration 
was the contact loss between gear teeth. Rao et al. [17] discussed the two-stage gear transmission 
system’s dynamic characteristics, considering the intermediate shaft’s stiffness, where the system’s 
nonlinear stability was investigated through the multi-scale method. Yassine [18] and Li [19] 
studied the dynamic models of multi-stage straight bevel gear and parallel-shaft gear system, 
respectively. According to Timoshenko beam theory and the Lagrange equation, Tan et al [20] put 
forward a dynamic modeling method, in which some important effects such as main shaft’s 
flexibility and suspension structure were taken into account. Lin et al. [21] discussed the vibration 
response of multi-stage planetary gear reducer by the centralized parameter method, and the 
dynamic equation was solved by the Runge Kutta method. Liu et al. [22] deduced a new discrete 
elastic model of planetary gears, which considered sliding friction and elastic continuous ring gear. 
Then, the impact of sliding friction on the meshing stiffness was discussed. Yan et al. [23] developed 
a two-stage geared rotor system’s dynamic model through the finite element method, where the 
meshing stiffness and clearance were obtained through the tooth surface contact analysis. Mo et al. 
[24-26] employed the centralized parameter method to establish the translational-torsional dynamic 
equations of herringbone planetary gear train and multi-power face gear split-flow system, 
respectively, then the effects of some key factors on the load-sharing characteristic were studied. 
The above analysis of the multi-stage geared rotor transmission system provided a lot of valuable 
references for the dynamic design of the complex gear system. However, the connecting shaft 
between gear pairs was short. Meanwhile, the current study of the multi-stage gear transmission 
system was mainly aimed at the parallel-shaft gear transmission system, and there is little research 
on the multi-pair spiral bevel geared rotor system. Therefore, based on the structural characteristics 



of the helicopter tail transmission system, this paper comprehensively proposed a dynamic model 
of coupled transmission system involving spiral bevel gears of intermediate and tail gearboxes, 
oblique tail shaft, and laminated membrane coupling. 

The main contents of the remaining parts of this paper were organized as follows: firstly, the 
spiral bevel gear coupled system of the intermediate and tail gearboxes in a helicopter tail 
transmission system was chosen as the research object, and its mechanical model was established. 
Then, the transmission shaft’s dynamic equation and meshing element’s stiffness and damping 
matrix were established by the finite element and lumped-mass method, respectively. After that, 
combined with the stiffness matrix of laminated membrane coupling and the ball bearing’s stiffness 
and damping matrix, the dynamic model of the coupled system was proposed. On this basis, the 
dynamic equations were solved by the Newmark numerical algorithm, and the effects of laminated 
membrane coupling, unbalance value, tail rotor excitation, length of the oblique tail shaft and 
transmission error amplitude on the system’s dynamic properties were discussed in detail. 

2. Mechanical model of the coupled system 

Fig. 1 exhibited the coupled system’s three-dimensional model, mainly consisting of angular spiral 
bevel gear-pair, orthogonal spiral bevel gear-pair, oblique tail shaft and laminated membrane 
coupling. Also, the coordinate system O-XYZ was the global coordinate system of the whole 
prototype, and the coordinate systems O1-X1Y1Z1, O2-X2Y2Z2 and O3-X3Y3Z3 were the local 
coordinate systems of the input shaft, oblique tail shaft and output shaft, respectively, wherein the 
local coordinate system of input shaft was consistent with the global coordinate system. 

 

Fig. 1 The 3D model of the coupled system 

Timoshenko beam element was utilized to discrete the hollow thin-walled rotor, and the finite 
element dynamic equations of each shaft were created, and Spiral bevel gear-pairs were equivalent 
to lumped parameter models. Meanwhile, Laminated membrane couplings were simplified as 
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lumped parameter models, whose stiffness matrix was concentrated on the corresponding nodes of 
the beam element connected with the lamination group, respectively. Moreover, it was essential to 
transform the elements in the local coordinate system into the global coordinate system by way of 
the spatial coordinate transformation due to the diverse directions of the local coordinate system of 
shafts and gear pairs in the system, and then the parameters of each element could be described in 
the global coordinate system. Based on it, the finite element mechanical model of the coupled 
system of the intermediate and tail gearboxes was established in the global coordinate system, as 
demonstrated in Fig. 2. Nodes 1-5 and 6-9 correspond to the input and output shaft beam element 
of the first gear-pair, respectively; nodes 10-16 correspond to the oblique tail shaft beam elements; 
nodes 17-20 and 21-27 correspond to the input and output shaft beam element of the second gear-
pair, respectively. Besides, nodes 5 and 6, nodes 20 and 21 were coupled with each other through 
the first and second meshing unit; nodes 9 and 10, nodes 16 and 17 were affected with each other 
through laminated membrane couplings. 
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Fig. 2 The finite element mechanical model of the coupled system 

3. Dynamic modeling of the coupled system 

3.1. Thin-walled shaft modeling 

Since the bending-torsional-axial-swing coupled vibration was taken into account in spiral bevel 

gears, Timoshenko beam element with 12 degrees of freedom was employed to divide each shaft, 

which could be expressed as 
1 1 1 ( 1) ( 1) ( 1), , , , , , , , , , ,

T

e i i i xi yi zi i i i x i y i z ix y z x y zθ θ θ θ θ θ+ + + + + + =  X . 

According to existing studies [27-28], the mass matrix eM , stiffness matrix eK , damping 
matrix eC  and gyro matrix eG  of the beam element could be obtained, respectively. It could be 
known that the beam element’s characteristic matrix should be described in the global coordinate 
system by the spatial coordinate transformation when building the overall matrix of the system. The 
relationship between the ith beam element’s vibration displacement in the local coordinate system 
and that in the global coordinate system could be written as 
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i i i i i i

T T

i i i x y z i i i x i y i z i i i i x y z i i i x i y i z ix y z x y z x y z x y zθ θ θ θ θ θ θ θ θ θ θ θ+ + + + + + + + + + + +   =   λ (1) 
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where xϕ , yϕ  and zϕ  are the rotation angle around X , Y  and Z  in the global coordinate 

system, respectively. 
Then, the mass matrix, stiffness matrix, damping matrix, gyro matrix and force vector of the 

ith beam element in the global coordinate system could be displayed as below [29]. 

' T
i iM = λ M λ , ' T

i iK = λ K λ , ' T
i iC = λ C λ , ' T

i iG = λ G λ , ' T
i iF = λ F         (2) 

By combining Figs. 1 and 2, the coordinate transformation matrix 1λ , 2λ  and 3λ  of nodes 
1-5, 6-20 and 21-27 were obtained so as to convert the local coordinates of all beam nodes to the 
global coordinate system, which could be shown as 

( )1 1 1 1 1diag , , ,λ = T T T T ; 1 =0 =0 =0γ β αT = T T T                     (3) 

( )2 2 2 2 2diag , , ,λ = T T T T ; 
12 =0 =0 = -( - /180)piγ β α π θ ⋅T = T T T                (4) 

( )3 3 3 3 3diag , , ,λ = T T T T ; 
2 13 =0 = - /180 = -( - /180)pi piγ β θ α π θ⋅ ⋅T = T T T              (5) 

According to the finite element theory, the differential equations of the rth (r=1, 2, 3, 4, 5) shaft 
was obtained, which could be expressed as 

𝐌𝐌𝑟𝑟�̈�𝐗𝑟𝑟 + (𝐂𝐂𝑟𝑟 − 𝜔𝜔𝑟𝑟𝐆𝐆𝑟𝑟)�̇�𝐗𝑟𝑟 +𝐊𝐊𝑟𝑟𝐗𝐗𝑟𝑟 = 𝐅𝐅𝑟𝑟                     (6) 
where rM , rC , rG  and rK  are the mass, damping, gyro and stiffness matrices of the rth shaft, 

respectively; rF   and rω   represent the load vector and angular velocity of the rth shaft, 

respectively; �̈�𝐗𝒓𝒓, �̇�𝐗𝑟𝑟 and 𝐗𝐗𝑟𝑟 are the rth shaft’s acceleration, velocity and displacement vectors, 

respectively. 

3.2. Modeling of spiral bevel gear 

3.2.1 Calculation of time-varying meshing stiffness 
Stiffness excitation is the main excitations of the geared rotor system vibration. For spiral bevel 
gears, it is tricky to achieve the accurate meshing stiffness because of the complicated tooth surfaces. 
Consequently, the spiral bevel gear pair’s time-varying stiffness was solved accurately through 
ANSYS finite element analysis in the study [12], where the spiral bevel gear pairs’ main parameters 
were exhibited in Table 1. According to the reduction ratio between the spiral bevel gears, the load 
torque of the first one is 102.44Nm when the load torque of the second spiral bevel gear pair is 
T=300Nm. Under this condition, the two spiral bevel gear pairs’ comprehensive meshing stiffnesses 
were calculated, respectively, as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 



Table 1 Main design parameters of spiral gear pairs 

Parameter First gear-pair Second gear-pair 

Young’s modulus (MPa) 𝐸𝐸1 = 2.068e5 𝐸𝐸2 = 2.068e5 

Poisson’s ratio 𝜈𝜈1 = 0.29 𝜈𝜈2 = 0.29 

Pressure angle (°) α1 = 20 α2 = 20 

Spiral angle (°) β1 = 35 β2 = 35 

Module (m) 𝑚𝑚1 = 5.6e − 3 m2 = 7.98e− 3 

Teeth width (m) B1 = 3.3e − 2 B2 = 5.7e− 2 

Teeth number of the pinion 𝑁𝑁𝑝𝑝1 = 29 𝑁𝑁𝑝𝑝2 = 14 

Teeth number of the gear 𝑁𝑁𝑔𝑔1 = 35 𝑁𝑁𝑔𝑔2 = 41 

Shaft angle (°) 𝜃𝜃1 = 126 𝜃𝜃2 = 90 

Transmission error mean (m) 𝑒𝑒𝑚𝑚1 = 1e − 5 𝑒𝑒𝑚𝑚2 = 1e − 5 

Transmission error amplitude (m) 𝑒𝑒𝑟𝑟1 = 5e − 6 𝑒𝑒𝑟𝑟2 = 5e − 6 

The comprehensive time-varying stiffness was transformed into a Fourier series, which could 
be displayed as follows. 

[ ]0
1

( ) cos( )+ sin( )
N

h i h i h
i

k t A A i t B i t
=

= + Ω Ω∑                  (7) 

Here 0A  and N are the meshing stiffness’s average value and the order of the Fourier series, and 

N=6; iA   and iB  are the ith harmonic amplitudes of the meshing stiffness; hΩ   denotes the 

meshing circle frequency. 

Fig. 4 depicted the Fourier series curve of the meshing stiffness of the two gear pairs. Among 

them, the meshing stiffness curves’ specific parameters were shown in Table 2. 

 
Fig. 3 The curve of time-varying meshing stiffness      Fig. 4 Fourier series form of meshing stiffness 

 

 

 



Table 2 The value of the Fourier series of the meshing stiffness 

𝑖𝑖 
First gear-pair Second gear-pair 

𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 

0 1.38e8 / 3.32e8 / 

1 30202549 22834929 65580492 42172424 

2 -2993967 7080456 -5388366 13972822 

3 4134967 -11618311 6615947 -20371833 

4 6872001 -535227 12543190 -3324939 

5 -5497601 -428182 -10034552 -2659954 

6 -2067483 -5809155 -3307973 -10185916 

3.2.2 Modeling of meshing unit 

The spiral bevel gear pair’s bending-torsional-axial-swing coupled dynamic model was established 

by the concentrated mass method, which ignores the effects of tooth surface friction, backlash and 

impact excitation. Then, 12 degrees of freedom of the meshing unit could be obtained, i.e., 

, , , , , , , , , , ,p p p px py pz q q q qx qy qzx y z x y zθ θ θ θ θ θ    . The dynamic modeling process of the meshing 

units of the first and second spiral bevel gear pairs was as follows. 

1) First gear pair 

The relative displacement of the spiral bevel gear pair on the meshing line could be converted 

into that of a pair of virtual spur gears [10]. The conversion process of the relative displacement was 

displayed in Fig. 5, in which the driving gear’s local coordinate system was consistent with the 

global coordinate system, and the driving gear was assumed to rotate counterclockwise. 

       
(a)                           (b)                                  (c) 

Fig. 5 The transformation process of relative displacement 

The normal cosine 1in ( , )i p q=  projected from the displacement of the driving and driven 

gear in each direction to that of the engagement direction could be represented as [10] 



1 1 z 1 11 1 1= T ( ) T ( ) T ( ) [1 0 0][ , , ]= T
i x i y ii x i y i zn n n δ ψ⋅ Φ ⋅ − ⋅n              (8) 

Here 1iδ ， 1iψ  and 1Φ  are the spiral bevel gear’s pitch cone angle, spiral angle and pressure angle, 

respectively. Based on the rotation direction and the hand of the driving gear, it could be obtained 

that 1 1=pδ δ  , 1 2=g piδ δ−  , 1 1=pψ β  , 1 1gψ β= −  , 1 1pi αΦ = −  , where 1δ   and 2δ   represent the 

driving and driven gear’s pitch cone angles, respectively. 
2) Second gear pair 
Similarly, Fig. 6 showed the transformation process of the second gear pair’s vibration 

displacement to the direction of the engagement line. According to Fig. 1, there was a certain angle 

between the second gear pair’s local coordinate system and the global coordinate system. So, the 

meshing stiffness matrix, damping matrix and excitation force vector should be converted to the 

global coordinate system. 

     

(a)                                     (b)                            (c)  

Fig. 6 The transformation process of relative displacement 

The normal cosine 2in ( , )i p q=  projected from the displacement of the second gear-pair in 

each direction to that of the meshing direction could be expressed as [10] 

2 2 z 2 22 2 2= T ( ) T ( ) T ( ) [0 1 0][ , , ]= T
i y i x ii x i y i zn n n δ ψ⋅ Φ ⋅ − ⋅n              (9) 

where 2 3( )p piδ δ= − − ， 2 4=gδ δ− ， 2 2=pψ β− ， 2 2gψ β= ， 2 2( )pi αΦ = − − ; 3δ  and 4δ  denote 

the pitch cone angles of the driving and driven gear of the second gear-pair, respectively. 

Moreover, the radius of rotation of the gear pair j(j=1,2) could be acquired by 

�
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐧𝐧𝑖𝑖𝑖𝑖𝑇𝑇 ⋅ �𝐮𝐮𝑖𝑖𝑖𝑖 × 𝐫𝐫𝑖𝑖𝑖𝑖� = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐧𝐧𝑖𝑖𝑖𝑖𝑇𝑇 ⋅ (𝐮𝐮𝑖𝑖𝑖𝑖 × 𝐫𝐫𝑖𝑖𝑖𝑖) = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐧𝐧𝑖𝑖𝑖𝑖𝑇𝑇 ⋅ (𝐮𝐮𝑖𝑖𝑖𝑖 × 𝐫𝐫𝑖𝑖𝑖𝑖) = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

 ( ,i p q=  and 1,2j = ) (10) 

where 𝐫𝐫𝑖𝑖𝑖𝑖 = [𝐫𝐫𝑖𝑖𝑖𝑖𝑖𝑖 𝐫𝐫𝑖𝑖𝑖𝑖𝑖𝑖 𝐫𝐫𝑖𝑖𝑖𝑖𝑖𝑖]𝑇𝑇 is the equivalent meshing point’s position vector. According to the 

directions of the local coordinate systems of the driving and driven gear, the position vectors of the 

equivalent meshing points of the two gear pairs are 𝐫𝐫𝑝𝑝1 = [0 𝑟𝑟𝑝𝑝1 0]𝑇𝑇 , 𝐫𝐫𝑔𝑔1 = [0 𝑟𝑟𝑔𝑔1 0]𝑇𝑇 , 

𝐫𝐫𝑝𝑝2 = [−𝑟𝑟𝑝𝑝2 0 0]𝑇𝑇  and 𝐫𝐫𝑔𝑔2 = [−𝑟𝑟𝑔𝑔2 0 0]𝑇𝑇 , in which p1r  , g1r  , p2r   and g2r   represent 

the pitch circle radii of the first and second gear pairs at the midpoint of the tooth widths; 𝐮𝐮𝑖𝑖𝑖𝑖 =

[1 0 0]𝑇𝑇, 𝐮𝐮𝑖𝑖𝑖𝑖 = [0 1 0]𝑇𝑇 and 𝐮𝐮𝑖𝑖𝑖𝑖 = [0 0 1]𝑇𝑇 mean the unit vectors in the X, Y, and Z 



directions, respectively. 

The relative displacement of the spiral bevel gear pair j (j = 1,2) along the normal direction of 

the meshing point with transmission errors could be written as 

( )+( )+( ) ( )

( ) ( ) ( )
nj pj gj pj gj pj gj pjx gjx

pjy gjy pjz gjz

pjx gjx pjy gjy pjz gjz pjx gjx

pjy gjy pjz gjz nj

X x n x n y n y n z n z n

e t
θ λ θ λ

θ λ θ λ θ λ θ λ

= − − − + −

+ − + − −
  (11) 

Here = + sin( t+ )nj mj rj j je (t) e e φΩ  ; jΩ   and jφ   represent the meshing circle frequency and 

transmission error’s initial phase angle of gear pair j, respectively. 

Then, the relative displacement could be rewritten as 

= ( )nj j nj njX e t−V X                               (12) 

Here = , , , , , , , , , , ,j pjx pjy pjz pjx pjy pjz gjx gjy gjz gjx gjy gjzn n n n n nλ λ λ λ λ λ− − − − − −  V   denotes the projection 

vector of the jth gear pair’s displacement; 𝐗𝐗𝑛𝑛𝑖𝑖 = [𝐗𝐗𝑝𝑝𝑖𝑖𝑇𝑇   𝐗𝐗𝑞𝑞𝑖𝑖𝑇𝑇 ] is the displacement vector of the jth 

gear pair. 

Therefore, the meshing force of the gear pair j could be calculated by 
𝐹𝐹𝑛𝑛𝑖𝑖 = 𝑘𝑘ℎ𝑖𝑖(𝑡𝑡)𝐗𝐗𝑛𝑛𝑖𝑖 + 𝑐𝑐𝑚𝑚𝑖𝑖�̇�𝐗𝑛𝑛𝑖𝑖                      (13) 

where mjc  refers to the meshing damping of gear pair j, which could be given by 

=2 (1 / 1 / )mj mj epj egjc k m mξ +                       (14) 

Here ξ  means the meshing damping ratio, generally, in the range of 0.03 to 0.17 [30-31]. In this 

research, it was set to 0.07; mjk   denotes the stiffness of gear pair j; 2/epj zpj pjm I r=   and 
2/egj zgj gjm I r=  stand for the equivalent mass of the driving and driven gears of the jth (j = 1,2) gear-

pair, respectively. 
The dynamic equations of the meshing unit j (j = 1,2) could be written as 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚𝑝𝑝𝑖𝑖�̈�𝑥𝑝𝑝𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝𝑖𝑖Ω𝑝𝑝𝑖𝑖2 cos (Ω𝑝𝑝𝑖𝑖𝑡𝑡)
𝑚𝑚𝑝𝑝𝑖𝑖�̈�𝑦𝑝𝑝𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝𝑖𝑖Ω𝑝𝑝𝑖𝑖2 sin (Ω𝑝𝑝𝑖𝑖𝑡𝑡)

𝑚𝑚𝑝𝑝𝑖𝑖�̈�𝑧𝑝𝑝𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖
𝐼𝐼𝑝𝑝𝑖𝑖�̈�𝜃𝑝𝑝𝑖𝑖𝑖𝑖 + 𝐽𝐽𝑝𝑝𝑖𝑖Ω𝑝𝑝𝑖𝑖�̇�𝜃𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖
𝐼𝐼𝑝𝑝𝑖𝑖�̈�𝜃𝑝𝑝𝑖𝑖𝑖𝑖 − 𝐽𝐽𝑝𝑝𝑖𝑖Ω𝑝𝑝𝑖𝑖�̇�𝜃𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖

𝐽𝐽𝑝𝑝𝑖𝑖�̈�𝜃𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖
𝑚𝑚𝑔𝑔𝑖𝑖�̈�𝑥𝑔𝑔𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑔𝑔𝑖𝑖𝑒𝑒𝑔𝑔𝑖𝑖Ω𝑔𝑔𝑖𝑖2 cos (Ω𝑔𝑔𝑖𝑖𝑡𝑡)
𝑚𝑚𝑔𝑔𝑖𝑖�̈�𝑦𝑔𝑔𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑔𝑔𝑖𝑖𝑒𝑒𝑔𝑔𝑖𝑖Ω𝑔𝑔𝑖𝑖2 sin (Ω𝑔𝑔𝑖𝑖𝑡𝑡)

𝑚𝑚𝑔𝑔𝑖𝑖�̈�𝑧𝑔𝑔𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖
𝐼𝐼𝑔𝑔𝑖𝑖�̈�𝜃𝑔𝑔𝑖𝑖𝑖𝑖 + 𝐽𝐽𝑔𝑔𝑖𝑖Ω𝑔𝑔𝑖𝑖�̇�𝜃𝑔𝑔𝑖𝑖𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖
𝐼𝐼𝑔𝑔𝑖𝑖�̈�𝜃𝑔𝑔𝑖𝑖𝑖𝑖 − 𝐽𝐽𝑔𝑔𝑖𝑖Ω𝑔𝑔𝑖𝑖�̇�𝜃𝑔𝑔𝑖𝑖𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖

𝐽𝐽𝑔𝑔𝑖𝑖�̈�𝜃𝑔𝑔𝑖𝑖𝑖𝑖 = −𝐹𝐹𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖𝑖𝑖

               (15) 

Subsequently, Eqs. (13)-(14) were introduced into the eq. (15), and the differential equations 
of meshing element j (j = 1,2) were deduced, which could be expressed as 

𝐌𝐌𝑚𝑚𝑖𝑖�̈�𝐗𝑚𝑚𝑖𝑖 + �𝐂𝐂𝑚𝑚𝑖𝑖 + �
Ω𝑝𝑝𝑖𝑖𝐆𝐆𝑝𝑝𝑖𝑖

Ω𝑔𝑔𝑖𝑖𝐆𝐆𝑔𝑔𝑖𝑖
�� �̇�𝐗𝑚𝑚𝑖𝑖 + 𝐊𝐊𝑚𝑚𝑖𝑖𝐗𝐗𝑚𝑚𝑖𝑖 = 𝐅𝐅𝑖𝑖 + 𝐅𝐅𝑒𝑒𝑖𝑖    (16) 

where 𝐗𝐗𝑚𝑚𝑖𝑖, �̇�𝐗𝑚𝑚𝑖𝑖 and �̈�𝐗𝑚𝑚𝑖𝑖 are the displacement, velocity and acceleration vectors of the meshing 



unit j, respectively; pjΩ  and gjΩ  indicate the rotation speeds of the main and driven gears of the 

meshing unit j, respectively; pjG   and gjG   are the gyro matrices of the meshing unit j, 

respectively; jF  is the internal excitation force, which could be shown as  
𝐹𝐹𝑖𝑖 = (𝑘𝑘ℎ𝑖𝑖(𝑡𝑡)𝑒𝑒𝑛𝑛𝑖𝑖(𝑡𝑡) + 𝑐𝑐𝑚𝑚𝑖𝑖�̇�𝑒𝑛𝑛𝑖𝑖(𝑡𝑡))𝐁𝐁𝑖𝑖𝑇𝑇                 (17) 

Here [ , , , , , , - , - , - , - , - , - ]T
j px py pz px py pz px py pz px py pzn n n n n nλ λ λ λ λ λ=B . 

ejF  refers to the external excitation force of the engagement unit j, which could be given by 
=[ ]T

ej epj egjF F F                             (18) 
2 2=[ cos( ) sin( ) 0 0 0 0]epj pj pj pj pj pj pj pj pjm e t m e tΩ Ω Ω ΩF       (19) 

2 2=[ cos( ) sin( ) 0 0 0 0]egj gj gj gj gj gj gj gj gjm e t m e tΩ Ω Ω ΩF       (20) 

mjM  means the mass matrix of meshing element j, which could be written as 
=[ ]mj mpj mgjM M M                            (21) 

=diag( ), , , , ,mpj pjx pjy pjz pjx pjy pjzm m m I I IM                    (22) 
=diag( ), , , , ,mgj gjx gjy gjz gjx gjy gzjm m m I I IM                    (23) 

In the global coordinate system, the stiffness matrix mjK   and damping matrix mjC   of 

meshing element j could be obtained by 

j km m
T
j jK = B B                              (24) 

cmj mj
T
j jC = B B                              (25) 

The directions of the stiffness matrix, damping matrix and internal force vector of meshing unit 
1 were consistent with the global coordinate system, while that of meshing unit 2 should be 
converted to the global coordinate system through corresponding coordinate transform, and the 
expression could be written as 

22 2 22(k )m m
TTλ λK = B B                          (26) 

22 2 22( )m m
TT cλ λC = B B                           (27) 

22 2
Tλ=F F                                      (28) 

Additionally, the driven gear of the first gear pair and the driving gear of the second gear pair 

were connected by the oblique tail shaft, whose mass matrix ( 1mgM  and 2mpM ), gyro matrix ( 1gG  

and 2pG  ), and external excitation vector ( 1egF   and 2epF  ) should be converted to the global 

coordinate system by way of the matrix 2λ ; meanwhile, the mass matrix 2mgM , gyro matrix 2gG  

and external excitation vector 2egF  of the second gear pair should be transformed by matrix 3λ . 

3.3. Modeling of laminated membrane coupling 

Laminated membrane couplings were extensively employed in the helicopter tail transmission 
system to connect various hollow shaft, as exhibited in Fig. 7, including flange plates, diaphragm 
groups and other important parts. The laminated membrane coupling was affected by multiple forces 
such as torque, radial shear force and axial tensile force during the working process. In this study, 
Ansys software was utilized to perform finite element simulation on the laminated membrane 
coupling, and the stiffness in all directions was calculated. Moreover, Fig. 8 demonstrated the 
coupling’s finite element mesh model. The material parameters of the coupling were presented in 
Table 3. 



   

Fig.7 3D model of laminated membrane coupling     Fig.8 Mesh model of laminated membrane coupling 

Table 3 Material parameters of laminated membrane coupling 

Item Material 
Material Properties 

Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio 

Flange plate 30CrNi4MoA 7885 2.04e5 0.307 

Diaphragm group 1Cr17Ni7E4 7709 2.12e5 0.27 

Nut 30CrMoA 7820 2.09e5 0.279 

Bolt 30Ni4CrMoA 7849 2.04e5 0.308 

The stiffness matrix ckK  (k=1,2) of the diaphragm group could be given as 

coupling coupling
ck

coupling coupling

K K
K

K K
− 

=  − 
                       (29) 

Here 

rx

ry

a
coupling

x

y

T

k
k

k
K

k
k

k

α

α

 
 
 
 

=  
 
 
 
  

 , rx ryk k=  , ak  , x yk kα α=   and Tk   are 

the radial, axial, angular and torsional stiffness of the laminated membrane coupling, respectively, 
as shown in Table 4. 

Table 4 Stiffness of laminated membrane coupling  

Stiffness Result 

Radial stiffness (N/m) 9.9e8 

Axial stiffness (N/m) 8.8e4 

Angular stiffness (Nm/rad) 4.2e4 

Torsional stiffness (Nm/rad) 6.5e5 

To verify the accuracy of the simulation results, the electro-hydraulic servo torsion test 
bench was employed to conduct an analogue test on the laminated membrane coupling, and the 
stiffness of the laminated coupling in the torsional direction was computed, as shown in Fig. 9. 
The torsion test bench mainly involved acquisition system, loading device and cooling system 

Flange plate 
Diaphragm group Bolt 

Nut 



and so on. 

  
(a) Torsion test rig                              (b) Test piece 

Fig. 9 Schematic diagram of torsion test bench 
The curves of torque versus rotation angle under forward and reverse rotation were obtained 

by controlling the angular displacement, as illustrated in Fig. 10. It could be observed that the 
forward and reverse torsional stiffness of the laminated coupling were identical, and the torsional 
stiffness's value varied slightly. For the initial stage of loading, the torque did not vary, which was 
mainly brought about by the existence of circumferential clearance. On this basis, the torsional 
stiffness of the test piece was obtained by using the same parameter setting as the coupling in the 
helicopter tail drive in ANSYS simulation, and compared with the test results, as manifested in Table 
5. The error between the test and simulation results was 7.3%, which could meet the actual 
engineering accuracy requirements. Therefore, the stiffness of the laminated membrane coupling 
obtained by simulation in each direction contained a certain accuracy, which could characterize the 
dynamic characteristics of the laminated membrane coupling. 

  
(a) Forward rotation                        (b) Reverse rotation 

Fig. 10 Curve of torque with the rotation angle 

Table 5 Comparison of simulation and test data 

Stiffness Experiment Result Simulation Result Error 

Torsional stiffness (Nm/rad) 1.779e5 1.65e5 7.3% 

Furthermore, the laminated membrane coupling was installed on the oblique tail shaft, so the 
stiffness matrix was converted to the global coordinate system by the coordinate transformation 

matrix 2λ . 

Laminated membrane coupling 

Loading device 

Cooling system 

Acquisition system 
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3.4. Modeling of ball bearing 

The system was supported by eight angular contact ball bearings. The bearing is equivalent to a 

spring-damping element in this study; at the same time, due to the scanty coupled action between 

the degrees of freedom, only the stiffness and damping values of the main term are retained. Hence, 

the stiffness matrix blK   and damping matrix blC   (l=1,2,3,4,5,6,7,8) of the bearing could be 

acquired by 

y( , , , , ,0)l xx yy zz xdiag k k k k kθ θ=bK                        (30) 

y( , , , , ,0)l xx yy zz xdiag c c c c cθ θ=bC                        (31) 

Also, to characterize the bearing’s stiffness and damping matrix in the global coordinate system, 

corresponding coordinate transformations were required. 1λ , 2λ  and 3λ  represent the coordinate 

transformation matrix of bearings 1-2, 3-6 and 7-8, respectively. 

3.5. The coupled dynamic equations of the whole system  

On this basis, dynamic equations of the coupled system were established [32-33], which could be 

written as 
𝐌𝐌�̈�𝐗(𝑡𝑡) + (𝐂𝐂 − Ω𝐆𝐆)�̇�𝐗(𝑡𝑡) + 𝐊𝐊𝐗𝐗(𝑡𝑡) = 𝐐𝐐                   (32) 

where M , C , G  and K  denote the mass, damping, gyro and stiffness matrix of the system in 
the global coordinate system, respectively; 𝐗𝐗，�̇�𝐗，�̈�𝐗 and Q  represent the displacement, velocity, 
acceleration and force vector of the system in the global coordinate system, respectively. 

4. Solution and discussion 

The system possessed many degrees of freedom, and it was difficult to get accurate results utilizing 
the theoretical solution method. Therefore, the Newmark numerical algorithm was employed to 
solve the dynamic equations, where the integral step size was 1/400 of the excitation frequency. 
Moreover, the material of the shaft in the helicopter is aluminium alloy, whose elastic model 𝐸𝐸, 
Poisson’s ratio 𝜇𝜇  and density 𝜌𝜌  are 6.8e4MPa , 0.3  and 2800kg/m3 , respectively. The 
relevant parameters of the beam element and bearing are displayed in Table 6 and Table 7, 
respectively. 

Table 6 Shaft element parameters. 

Node to node 1-2 2-3 3-4 4-5 6-7 7-8 8-9 

Outer diameter (m) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Inner diameter (m) 0.084 0.084 0.084 0.084 0.084 0.084 0.084 

Length (m) 0.05 0.05 0.05 0.05 0.08 0.08 0.08 

Node to node 10-11 11-12 12-13 14-15 15-16 17-18 18-19 

Outer diameter (m) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%85%b7%e6%9c%89&tjType=sentence&style=&t=possessed
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Inner diameter (m) 0.084 0.084 0.084 0.084 0.084 0.084 0.084 

Length (m) 0.2 0.2 0.2 0.2 0.2 0.08 0.08 

Node to node 19-20 21-22 22-23 23-24 24-25 25-26 26-27 

Outer diameter (m) 0.09 0.09 0.09 0.09 0.09 0.086 0.086 

Inner diameter (m) 0.084 0.084 0.084 0.084 0.084 0.08 0.08 

Length (m) 0.08 0.05 0.05 0.05 0.05 0.1 0.1 

Table 7 Bearing parameters. 

Stiffness Bearing 1-4 Bearing 5-8 

kxx, kyy (N/m) 2e8 2e8 

kzz (N/m) 1e8 1e8 

kθx, kθy (Nm/rad) 1e6 1e8 

Damping Bearing 1-4 Bearing 5-8 

cxx, cyy (Ns/m) 1e3 1e3 

czz (Ns/m) 1e3 1e3 

cθx, cθy (Ns/rad) 800 800 

4.1. Influence of laminated membrane coupling on dynamic properties of systems 

In the helicopter tail transmission system, a laminated membrane coupling was contained between 
the oblique tail shaft and gear shaft to compensate the installation error between them. In previous 
studies, most of the gear dynamic models did not consider the flexibility of laminated membrane 
coupling. Therefore, the effect of laminated membrane coupling on the system’s dynamic behaviour 
was discussed without the eccentricity here. 

The coupled system was mainly subjected to the internal excitation produced by two gear-pairs. 
Fig. 11(a) demonstrated the transverse vibration’s amplitude-frequency response curve of the 
oblique tail shaft at node 13 in the speed range of 0-8000r/min with and without laminated 
membrane coupling. Two amplitudes in the figure were corresponding to the case that the meshing 
frequency of the first and second gear-pair was equal to the system’s natural frequency, respectively. 
It was obvious that gear pair exerted a critical effect on the vibration response of the oblique tail 
shaft when the coupling stiffness was taken into account. The amplitude of the oblique tail shaft at 
the critical point was significantly reduced, which was conducive to cross the resonance point. 
However, the influence of the coupling stiffness on the natural frequency of the system was light. 
Besides, the vibration behaviours of the system were less fluctuant on the position that was not 
isolated by laminated membrane coupling. Fig. 11(b) illustrated the amplitude-frequency response 
curve of the lateral vibration response of node 6 in gear 2. The meshing force of the first gear-pair 
exerted little effect on the vibration response of node 6 with and without the laminated membrane 
coupling, while that of the second gear-pair significantly influenced the vibration response of node 
6 due to the vibration isolation effect of the laminated membrane coupling in the vibration 
transmission. 
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(a) node 13                                 (b) node 6 

Fig. 11 Amplitude-frequency response curve of lateral vibration response of the system 

Taking node 6 in gear 2 and node 20 in gear 3 as examples, a detailed analysis was carried out 
to study the effect of laminated membrane coupling on the coupled action between gear pairs. 
Spectrograms of vibration displacement of nodes 6 and 20 were calculated at the speed of 4000r/min, 
respectively, as shown in Fig. 12. It could be known that due to the mutual influence of two gear 
pairs during the movement, the meshing frequency of the first and the second gear pairs, i.e. 𝑓𝑓𝑚𝑚1 
and 𝑓𝑓𝑚𝑚2, appeared simultaneously in nodes 6 and 20. The meshing frequencies of nodes 6 and 20 
were reduced when the coupling stiffness was considered. The related multi-span shafting dynamics 
research also showed that the laminated membrane coupling held damping effect; similarly, in the 
geared rotor transmission system, the laminated membrane coupling could not only effectively 
isolated the vibration but also reduced the coupled effect between gear pairs. 

  
(a) node 6                                     (a) node 20 

Fig. 12 Spectrograms of lateral vibration response of the system 

4.2. Influence of gear eccentricity on dynamic properties of systems 

4.2.1 The effect of the gear eccentricity on the vibration of the oblique tail shaft 
Gear pairs 1 and 2 commonly contained a certain amount of eccentricity due to machining error. In 
the light, it was assumed that the eccentricity of each gear was 𝜌𝜌1 = 5𝑒𝑒 − 6m, 𝜌𝜌2 = 5𝑒𝑒 − 6m, 
𝜌𝜌3 = 5𝑒𝑒 − 6m  and 𝜌𝜌4 = 5e − 6m , respectively. In order to study the influence of the gear 
eccentricity on the of the oblique tail shaft’s vibration response, the waterfall diagram of transverse 
and torsional vibration of node 13 in the oblique tail shaft was solved under the speed range of 0-
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8000r/min, as presented in Fig. 13. It could be observed that the rotation frequency 𝑓𝑓1 of the input 
shaft, rotation frequency 𝑓𝑓2 of the oblique tail shaft, rotation frequency 𝑓𝑓3 of the output shaft, 
meshing frequencies, i.e. 𝑓𝑓𝑚𝑚1 and 𝑓𝑓𝑚𝑚2, appeared simultaneously in the torsional vibration, and the 
rotation frequency components of each shaft rise continuously with the increase of rotational speed. 
The main reason was that the oblique tail shaft was not only subjected to the meshing force of two 
gear pairs simultaneously but also there existed a bending-torsion coupled effect at the meshing 
point. Therefore, the lateral vibration caused by the gear eccentricity exerted an impact on the 
oblique tail shaft’s torsional vibration. However, no other rotational frequency of the shaft was found 
in the transverse vibration of the oblique tail shaft, in which only the rotation frequency 𝑓𝑓2 and the 
meshing frequency of two gear pairs, i.e. 𝑓𝑓𝑚𝑚1 and 𝑓𝑓𝑚𝑚2 were appeared. The main reason was that 
gears 2 and 3 were connected by the oblique tail shaft, so the eccentricity exerted a direct impact on 
the transverse vibration of the oblique tail shaft; however, the effect of the eccentricity of gears 1 
and 4 on the oblique tail shaft’s transverse vibration was light through the meshing action of spiral 
bevel gears. It could be summarized that gear eccentricity had a greater effect on the torsional 
vibration of the oblique tail shaft compared with the transverse vibration. This result was similar to 
the result of the parallel shaft gear transmission system in some works of literature [34-35], and the 
impact of the gear eccentricity on the torsional vibration of the transmission system was greater than 
that of the transverse vibration. 

In the light of the above, the torsional vibration of node 13 in the oblique tail shaft with and 
without gear eccentricity was calculated at the speed of 6000r/min, as shown in Fig. 14. It was 
exhibited that the torsional vibration amplitude of the oblique tail shaft tended to rise due to the 
effect the gear eccentricity, and the waveform also became more complex; meanwhile, the rotation 
frequency of each shaft appeared in the frequency spectrum. 

  
(a) Lateral vibration of node 13                     (b) Torsional vibration of node 13 

Fig. 13 The waterfall diagram of vibration response of oblique tail shaft with gear eccentricity 
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(a) Time history of torsional vibration of node 13       (b) Spectrum of torsional vibration of node 13 

Fig.14 Analysis of torsional vibration response of node 13 

4.2.2 Interaction between gear eccentricities 
The waterfall diagrams of the system’s lateral and torsional vibration were calculated during the 
speed range of 0-8000r/min, and the node 5 at gear 1 and node 20 at gear 3 were chosen to discuss 
in detail, as displayed in Fig. 15. It was found that there also existed a coupled effect between the 
first and second gear-pair. Specifically, the transverse vibration of node 5 consisted of the rotation 
frequency 𝑓𝑓1 , meshing frequencies 𝑓𝑓𝑚𝑚1  and 𝑓𝑓𝑚𝑚2  in the first gear-pair; however, the rotation 
frequency of each shaft, i.e. 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3, meshing frequencies 𝑓𝑓𝑚𝑚1 and 𝑓𝑓𝑚𝑚2 occurred in the 
torsional vibration at the same time. Furthermore, the vibration law of node 20 in the second gear-
pair was similar. It could be a conclusion that compared with the lateral vibration, the coupled effect 
between the eccentricity mainly affected the torsional vibration in different gear pairs. 

  
(a) Lateral vibration of node 5                  (b) Torsional vibration of node 5 
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(c) Lateral vibration of node 20                  (d) Torsional vibration of node 20 

Fig. 15 Waterfall diagram of gear vibration response with gear eccentricity 

4.3. Influence of tail rotor excitation on dynamic properties of systems 

The torsional excitation formed in the tangential direction was taken into consideration in the study. 
The blade was subject to periodic tangential torque when the tail rotor was running in the uneven 
flow field, which was the main source of torsional excitation of the helicopter tail transmission 
system, and the excitation frequency was the blade frequency or blade doubling frequency. In the 
actual calculation process, the blade frequency excitation was usually expressed as the form of the 
Fourier series of the frequency expansion, which could be written as 

𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑠𝑠 + ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑝𝑝
𝑛𝑛
𝑖𝑖=1 sin (𝑖𝑖𝑧𝑧𝑝𝑝𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑𝑖𝑖𝑖𝑖𝑝𝑝)                    (33) 

Here 𝜔𝜔𝑡𝑡 represents the speed of the tail rotor; 𝑧𝑧𝑝𝑝 is the number of blades of the tail rotor; 𝑇𝑇𝑠𝑠 
represents the stable value of the tail rotor excitation; 𝑇𝑇𝑖𝑖𝑖𝑖𝑝𝑝   denotes the amplitude of the ith 
excitation moment, i.e. 𝑇𝑇𝑖𝑖𝑖𝑖𝑝𝑝 = 𝛼𝛼𝑇𝑇𝑠𝑠, in which 𝛼𝛼 = 0.03~0.1; 𝜑𝜑𝑖𝑖𝑖𝑖𝑝𝑝  refers to the phase angle of the 
ith excitation moment. 

The second-order component of the Fourier series was utilized in this study, which could be 
expressed as follows 

𝑇𝑇𝑡𝑡 = 𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑖𝑖𝑝𝑝 sin �𝑧𝑧𝑝𝑝𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑1𝑖𝑖𝑝𝑝� + 𝑇𝑇2𝑖𝑖𝑝𝑝 sin �2𝑧𝑧𝑝𝑝𝜔𝜔𝑡𝑡𝑡𝑡 + 𝜑𝜑2𝑖𝑖𝑝𝑝�         (34) 

where 𝑧𝑧𝑝𝑝 = 4, 𝛼𝛼 = 0.05, 𝜑𝜑1𝑖𝑖𝑝𝑝 = 0 and 𝜑𝜑2𝑖𝑖𝑝𝑝 = 0. 
Firstly, the waterfall diagram of the transverse and torsional vibration of node 13 in the oblique 

tail shaft in the speed range of 0-8000r/min was calculated so as to investigate the effect of the tail 
rotor excitation on the coupled system’s vibration response, as shown in Fig. 16. It was revealed 
that the excitation frequency 𝑓𝑓𝑝𝑝 of the tail rotor occurred in the transverse vibration and torsional 
vibration simultaneously. For a clearer demonstration, the frequency spectrum of transverse and 
torsional vibration of node 13 at the speed of 6000r/min was calculated, as observed in Fig. 17. 
Rotation frequency 𝑓𝑓2, tail rotor excitation frequency 𝑓𝑓𝑝𝑝, meshing frequency, i.e. 𝑓𝑓𝑚𝑚1 and 𝑓𝑓𝑚𝑚2, 
were displayed in the lateral vibration. The main reason was the bending-torsional coupled effect at 
the mesh point of gear-pair and then the transverse vibration of the tail shaft was affected by the 
torsional excitation of the tail rotor. The shaft frequency, i.e. 𝑓𝑓3, 𝑓𝑓2 and 𝑓𝑓1, tail rotor excitation 
frequency 𝑓𝑓𝑝𝑝, meshing frequency, i.e. 𝑓𝑓𝑚𝑚2, 𝑓𝑓𝑚𝑚1, were showed in the torsional vibration at the same 
time; meanwhile, the excitation frequency component of the tail rotor in torsional vibration was 
higher, so the influence was more prominent. 
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(a) Lateral vibration of node 13                   (b) Torsional vibration of node 13 

Fig. 16 Waterfall diagram of vibration response of node 13 in the oblique tail shaft with tail rotor excitation 

  

(a) Lateral vibration of node 13                  (b) Torsional vibration of node 13 

Fig. 17 Spectrogram of vibration response of node 13 in the oblique tail shaft with tail rotor excitation 

Furthermore, the vibration responses of node 3 in the input shaft and node 23 in the output 
shaft were computed, as demonstrated in Figs. 18 and 19, respectively. It can be found that the tail 
rotor excitation frequency 𝑓𝑓𝑝𝑝 did not appear in the spectrogram of transverse vibration at node 3, 
while obvious tail rotor excitation frequency was observed in the torsional vibration’s spectrogram. 
Therefore, the effect of the tail rotor excitation on the transverse vibration at node 3 was not 
prominent; however, the torsional vibration was remarkable. For node 23, the excitation frequency 
𝑓𝑓𝑝𝑝 of the tail rotor was obvious in both lateral and torsional vibrations, in which that of the tail rotor 
in torsional vibration was relatively prominent. So, the tail rotor excitation exerted an effect on both 
lateral and torsional vibrations, and the torsional vibration was affected considerably. To sum up, 
the tail rotor excitation exerted an impact on the torsional and lateral vibration of the system, in 
which the torsional vibration had a greater impact; and the effect gradually decreased from the 
output shaft to the input shaft, that is, the closer to the tail rotor, the greater the influence. 

  
(a) Lateral vibration                        (b) Torsional vibration 

Fig. 18 Spectral diagram of vibration response of node 3 in the input shaft with tail rotor excitation 
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(a) Lateral vibration                    (b) Torsional vibration 

Fig. 19 Spectral diagram of vibration response of node 23 in output shaft with tail rotor excitation 

4.4. Influence of length of the oblique tail shaft on dynamic characteristics of systems 

The coupled system composed of the intermediate and tail gearbox was connected by a long thin-
walled oblique tail shaft in the tail transmission system, whose vibration characteristics were 
complicated. In the light, the shaft length was taken as L=0.8m, 1.2m and 1.6m, respectively, so as 
to study the influence of the length of the oblique tail shaft on the vibration response of the system.  

As shown in Fig. 20, the axis trajectories of node 4 at the input shaft, node 13 at the oblique 
tail shaft and node 23 at the output shaft were obtained, respectively. It could be seen that the axis 
trajectories of the input and output shaft failed to fluctuate with changing of the length of the oblique 
tail shaft, but the shaft length exerted a vital effect on the oblique tail shaft itself. The main reason 
was that with the increase of the shaft length, the bending stiffness decreased correspondingly, so 
the transverse vibration rose obviously, which would lead to the rub-impact fault easily in the 
process of rotation. 

 
(a) node 4                     (b) node 13                      (c) node 23 

Fig. 20 Axis locus 

Then, time-domain diagrams of the torsional vibration corresponding to the different length of 
the oblique tail shaft were solved under the speed of 6000r/min, as depicted in Fig. 21. It could be 
seen from Figs. 21(a) to (c), with the shaft length rose, the torsional stiffness decreased, which 
resulted in the location of the torsional vibration centre also increasing. The centre of torsional 
vibration with various shaft lengths was set to zero position so as to observe the variation of torsional 
vibration. Meanwhile, the torsional vibration displacement of the tail skew shaft also tended to 
smaller when the torsional stiffness of the oblique tail shaft became tinier, as shown in Fig. 21(d). 
Besides, for the torsional vibration of the node 4 and node 23 that were located in the input and 
output shaft, respectively, the fluctuation of the torsional vibration displacement caused by the 
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length variation of the oblique tail shaft was slight, as revealed in Fig. 22. The main reason was that 
the oblique tail shaft was subjected to the meshing action of two spiral bevel gear-pairs 
simultaneously, which led to the apparent variation of torsional vibration displacement of the 
oblique tail shaft. A similar conclusion had been obtained in reference [36], but in which the 
dynamic modelling of the torsional vibration of the helicopter tail transmission system was only 
carried out, and few factors were merely considered in the model. 

  
(a) L=0.8m                                  (b) L=1.2m 

  

(c) L=1.6m                                 (d) L=0.8m, 1.2m, 1.6m 

Fig. 21 Torsional vibration response of oblique tail shaft with various shaft lengths 

   
 

(a) node 4                                (b)  node 23 



Fig. 22 Torsional vibration responses of input and output shaft under various lengths of the oblique tail shaft 

4.5. Influence of transmission error amplitude on dynamic characteristics of systems 

Transmission errors were inevitable due to the geometric structure of the gear or factors such as 
manufacturing and installation, which held a prominent impact on the dynamics of the coupled 
system. To investigate the impact of transmission error excitation on the dynamic characteristics of 
the whole coupled system, the coupled system's vibration responses were calculated when the 
transmission error excitation amplitude of the gear-pair 1 was set to 1e− 5m , 1.5e− 5m  and 
2e − 5m, respectively. As manifested in Fig. 23, the time history diagram of node 4 in gear 1 with 
various transmission errors was exhibited under the speed of 6000r/min. It could be seen that as the 
amplitude of the error excitation increases, the vibration response at the gear 1 increases 
significantly, and the effects on both lateral and torsional vibration were significant. Besides, the 
vibration response of the oblique tail shaft in node 13 was shown in Fig. 24. Due to the flexural-
torsional coupled vibration effect of the entire system, the effect on the vibration characteristics of 
the oblique tail shaft also exhibited the corresponding trend, that is, as the gear transmission error 
excitation rises, the vibration response in all directions was grown, but the variation degree was less 
than the excitation source. Hence, for multiple pairs of the geared rotor transmission system, the 
transmission precision of gears should be ensured during parts processing and installation. Once the 
error limit was exceeded, the vibration of the entire coupled system would be deteriorated, thereby 
reducing the service life. 

  
(a) Lateral vibration                        (b) Torsional vibration 

Fig. 23 Vibration response of node 4 in gear 1 with various transmission error amplitudes 

  

(a) Lateral vibration                       (b) Torsional vibration 

Fig. 24 Vibration response of node 13 in the oblique tail shaft with various transmission error amplitudes 



5. Conclusions 

In this study, the coupled dynamic model of the intermediate and tail gearboxes’ system was 
proposed by the finite element and lumped mass method. Then, the dynamic equations were solved 
by Newmark numerical algorithm. On this basis, the effects of laminated membrane coupling, 
eccentricity, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude on the 
system dynamics were investigated, and the following conclusions were obtained. 

(1) The effect of laminated membrane coupling on the coupled system’s vibration response 
was prominent; meanwhile, the vibration response of the system was less fluctuant on the position 
that was not isolated by the laminated membrane coupling. Additionally, the laminated membrane 
coupling could reduce the mutual effect between gear pairs. So, the laminated membrane coupling 
should not be omitted in the dynamic model. 

(2) The lateral vibration caused by the gear eccentricity exerted an impact on the oblique tail 
shaft’s torsional vibration because of bending-torsional coupled effect; meanwhile, gear eccentricity 
had a greater influence on the oblique tail shaft’s torsional vibration compared with the transverse 
vibration. Moreover, the coupled effect between the eccentricities of gear pairs mainly affected the 
torsional vibration, but not the transverse vibration in the low-speed range. 

(3) The tail rotor excitation exerted an impact on the torsional and lateral vibration of the 
system, in which it had a more prominent effect on the system’s torsional vibration, and the influence 
gradually decreased from the output shaft to the input shaft.  

(4) With the changing length of the oblique tail shaft, the oblique tail shaft’s bending and 
torsional vibration varied intensely. Therefore, the length of the connecting shaft should be chosen 
reasonably. 

(5) As the transmission error amplitude increases, both the lateral vibration and torsional 
vibration of the gear pair rise. Besides, due to the flexural-torsional coupled effect, the effect on the 
vibration characteristics of the of other parts of the system also exhibited the corresponding trend, 
but the variation degree was less than the excitation source. 
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