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Abstract. Concept drift detection algorithms have historically been
faithful to the aged architecture of forcefully resetting the base classi-
fiers for each detected drift. This approach prevents underlying classifiers
becoming outdated as the distribution of a data stream shifts from one
concept to another. In situations where both concept drift and tempo-
ral dependence are present within a data stream, forced resetting can
cause complications in classifier evaluation. Resetting the base classifier
too frequently when temporal dependence is present can cause classifier
performance to appear successful, when in fact this is misleading. In this
research a novel architectural method for determining base classifier re-
sets, BD-SCR, is presented. Burst Detection-based Selective Classifier
Resetting (BD-SCR) statistically monitors changes in the temporal de-
pendence of a data stream to determine if a base classifier should be
reset for detected drifts. The experimental process compares the predic-
tive performance of state-of-the-art drift detectors in comparison to the
“No-Change” detector using BD-SCR to inform and control the resetting
decision. Results show that BD-SCR effectively reduces the negative im-
pact of of temporal dependence during concept drift detection through
a clear negation in the performance of the “No-Change” detector, but
is capable of maintaining the predictive performance of state-of-the-art
drift detection methods.

Keywords: Data streaming - concept drift - temporal dependence.

1 Introduction

Concept drift detection is an area of data stream mining that has received con-
siderable attention over the years. Various methods including statistical (Page,
1954, Gama et al., 2004, Baena-Garcia et al., 2006, Yu & Abraham, 2017), en-
semble (Street & Kim, 2001, Wang et al., 2003, Kolter & Maloof, 2003) and
window based (Bifet & Gavalda, 2007, Domingos & Hulten, 2000, G. Liu et al.,
2013) techniques have been published, adapted and evolved as result of research
in the field. The notion and reasoning behind resetting a base classifier when-
ever a drift occurs is well known; as a drift occurs and the stream distribution
shifts, the base classifier can become outdated and underperform. While there
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are numerous approaches for detecting and handling concept drift, the underly-
ing architecture has remained unchanged.

More recent studies (Wares et al., 2019) have highlighted an issue that stems
from the archaic formula of traditional concept drift, that is the problem of
over-resetting a classifier when temporal dependence is present alongside concept
drift. Temporal dependence is said to exist when arriving instances from a stream
are not independent of the time of arrival, such that arriving instances are likely
to have the same class label as those that arrived before them. This is given in
Equation 1 (Zliobaite et al., 2015).

P(ys, ye—1) # P(ye) P(ye—1) (1)

If a drift occurs when temporal dependence is present within the stream
and the traditional process of classifier resetting and retraining is followed, then
the classifier can produce misleading performance results. Since arriving class
labels are likely to be identical during periods of temporal dependence, when
the classifier is reset and subsequently evaluated it will appear to be performing
with high classification accuracy.

This research proposes a novel approach which suggests an adaptation to the
existing process for resetting base classifiers during detected drifts when tempo-
ral dependence is present. Burst Detection-based Selective Classifier Resetting
(BD-SCR) challenges the assumption that classifiers must be reset for every de-
tected drift and instead statistically monitors changes in the levels of temporal
dependence over the entire stream to make informed decisions about classifier
resetting. BD-SCR proposes a significant contribution to the research domain of
concept drift detection. Recent studies (Zliobaite et al., 2015, Bifet, 2017, Wares
et al., 2019) have identified the negative impact of temporal dependence upon
the evaluation of concept drift detectors caused by the over-resetting of base
classifiers. Currently there exists very little published research which proposes
new methods for handling or processing temporal dependence data in a concept
drift scenario.

This research provides a critical summary of existing metrics and methods
for handling temporal dependence in Section 2. A concise statistical explana-
tion of BD-SCR alongside an algorithmic description is given in Section 3. The
experimental process, results and discussion are provided in Section 4. Finally,
conclusions and suggestions for future research are outlined in Section 5.

2 Background

In the context of stream mining, arriving stream elements are innately assumed
to be independent of their time of arrival, and that arriving class labels y; are
dependent on their feature vectors x;. This assumption is contradicted when
temporal dependence is present in a data stream; arriving elements and their
class labels become dependent on their time of arrival. According to Zliobaite et
al. (2015), a class label is considered to be temporally dependent if
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P(ye,yi-1) < P(ye) P(yi-1) (2)

where y; is a class label and t is the time of arrival. The authors also highlight
that this is only first order temporal dependence; only the immediately previous
label is used for observation. Temporal dependence of the nth order observes the
previous n labels. Temporal dependence itself is not a recent issue but has been
the subject of research in other domains, such as time series analysis (Cheng
et al., 2014, Feng et al., 2018). In the context of stream mining, however, the
impact of temporal is relatively unexplored and is an emerging problem.

While concept drift detection techniques have become well established over
the years, recent literature has identified that temporal dependence can cause
misleading performance. The problem stems from resetting base classifiers when
drifts are detected and temporal dependence is also present. Bifet (2017) effec-
tively highlights this issue by comparing the performance of a “No-Change” drift
detector to that of several state-of-the-art drift detectors. The “No-Change” de-
tector does not implement any unique statistical concept drift detection, but
instead emits a detected change every 60 instances. The justification for this
is to demonstrate the how severely misleading the classification performance
evaluation can be if temporal dependence is present in the data.

Table 1. State-of-the-art drift detectors with Naive-bayes

Drift Detector Elec2 Forest Covertype

CUSUM 79.21 81.55
Page-Hinckley 78.04 80.06
DDM 81.18 88.03
EDDM 84.83 86.08

No-Change 86.16 88.79

Table 2. State-of-the-art drift detectors with Hoeffding Tree

Drift Detector Elec2 Forest Covertype

CUSUM 81.71 83.01
Page-Hinckley 81.95 81.65
DDM 85.41 87.35
EDDM 84.91 86.00

No-Change 85.54 88.04

Table 1 (Bifet, 2017) shows the results of a Naive-bayes classifier using state-
of-the-art drift detectors on two popular concept drift datasets; Electricity (Har-
ries & Wales, 1999) and Forest Covertype (Blackard et al., 1998). As shown
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above, the “No-Change” detector clearly appears to achieve higher performance
accuracy than that of the state-of-the-art drift detectors, even though the “No-
Change” detector performs no unique statistical drift detection. To ensure this
anomaly is not caused by the base classifier itself, Bifet (2017) also shows the
same results are found when using Hoeffding Tree in place of Naive-bayes (2).
The author states the reason for this anomaly is due to the existence of temporal
dependence within the datasets.

2.1 Advancements in Concept Drift Detection

While concept drift detection has several established state-of-the-art methods
such as Page Hinckley (PH) (Page, 1954), Cumulative Sum (CUSUM) (Page,
1954), ADWIN (Bifet & Gavalda, 2007), Drift Detection Method (DDM) (Gama
et al., 2004) and Early Drift Detection Method (EDDM) (Baena-Garcia et al.,
2006), there have been additional new proposed methods published in recent
literature, such as ECHO (Haque, Khan, Baron, Thuraisingham, & Aggarwal,
2016), SAND (Haque, Khan, & Baron, 2016), RDDM (Barros et al., 2017),
FPDD (de Lima Cabral & de Barros, 2018), FSDD (de Lima Cabral & de Barros,
2018) and FTDD (de Lima Cabral & de Barros, 2018). There have also been
recent advancements in unsupervised detection, such as NN-DVT (A. Liu et al.,
2018).

An interesting recent proposition which has inspired the architecture for
the original work contained in this research is Hierarchical Hypothesis Test-
ing (HHT) (Yu et al., 2019) which offers a unique framework for drift detection.
HHT proposes a two layer architecture for drift detection where the first layer
is responsible for detecting a drift whilst the second layer performs validation.
This framework is shown in Figure x. The Hierarchical Linear Four Rates method
(HLFR) (Yu et al., 2019) is a modern drift detection method developed under
the HHT framework. The experimental results for HLFR show that this method
outperforms both DDM and EDDM in terms of drift detection rate.

The DetectA method proposed by Escovedo et al. (2018) is another recent
development in concept drift detection. Where historically drift detectors have
always been reactive, that is a drift is detected and then some decision is made,
DetectA instead proposed a reactive drift detection method. This is achieved by
predicting class labels through distance based clustering of feature vectors in a
process called Pattern Mean Shift. Experimental results for DetectA indicate the
Pattern Mean Shift proactive approach to drift detection is capable of detecting
drifts, however, when compared to traditional reactive drift detection methods
the results do not yield significantly higher performance accuracy.

2.2 Temporal Dependence

A recent review by Wares et al. (2019) critically discusses and evaluates the issues
surrounding temporal dependence and concept drift, echoing the ever emerging
need for existing methods of drift detection to be able to cope with temporal
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Fig. 1. HLFR Framework (Yu et al., 2019)

dependence. At the time of writing there exists little published work which ad-
dresses coping with temporal dependence in a data streaming scenario. A recent
study by Duong et al. (2018) harnesses temporal dependence in streaming data
to aid in change detection by way of a Candidate Change Point model. While
this method makes use of the existence of temporal dependence in data streams,
it does not aid in solving the issues presented by resetting base classifiers while
temporal dependence is present. While existing methods for handling tempo-
ral dependence in such contexts are few, some published work does exist which
provides important metrics and algorithmic solutions for handling temporal de-
pendence.

One such metric is the Kappa Temporal Statistic (Zliobaite et al., 2015),
which is given as

P—-P
ker: re 3
P = 1P, (3)

where k., is the Kappa Temporal value, P is the accuracy of a base classifier
and Py, is the probability of the Persistent classifier which predicts that the next
arriving class label will be identical to the immediately previous label. Classifiers
achieving perfect classification performance will yield a result of 1, whilst those
performing on equal terms with the Persistent classifier will result in 0. There is
also potential for the Kappa Temporal value to fall below 0 in instances where
the base classifier is performing worse than the Persistent classifier.

The Kappa Temporal statistic provides a valuable metric for indicating the
severity of temporal dependence by how well a classifier performs in contrast to
the Persistent classifier. However in the case of imbalanced datasets this metric
can be ineffective. Instead the authors recommend the use of the Combined Mea-
sure which incorporates both the Kappa Temporal and Cohen’s Kappa statistic.
The Combined Measure (Zliobaite et al., 2015) is given as

Kt = \/max(O, k)ymaz(o, kper) (4)
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Two methods for handling temporal dependence are also proposed by Zliobaite
et al. (2015); the Temporal Correction classifier and Temporally Augmented
classifier. The Temporal Correction method involves estimating the posterior
probabilities and is given as

Py =i | yr—1)
Py = 1)

where y; is a class label at time t, X; is the corresponding feature vector

and 7 is some class from the set ¢ € {1,...,k}. This provides a single score

which indicates a classifier’s ability to handle not only temporal dependence but

imbalanced data. The key drawback to this Temporal Correction method is the

assumption surrounding previous labels being known. If there is any delay in the

arrival or retention of a previous label then the performance and effectiveness of
this approach is negatively impacted.

The second, and more elegant, suggestion by Zliobaite et al. (2015) is the
Temporally Augmented classifier. This method involves augmenting the features
vector of an arriving instance with the last x previously observed class labels.
A classification model is trained using the augmented feature vectors, with the
prediction g; given as

Py =i | Xy), ()

U = ht(Xtyytflwnvytfl) (6)

where h; is the classification model and [ is the length of the temporal dependence
order. While this is a more elegant solution, it still suffers from the reliance of
class labels arriving on time. The authors also note that the Persistent classifier
already performs a similar job in predicting that the next arriving label will be
the same as the last, and sometimes outperforms the Temporally Augmented
classifier approach.

3 BD-SCR

This research suggests a novel approach for handling concept drift in streams
which also suffer from temporal dependence. This proposed method, Burst Detection-
based Selective Classifier Resetting (BD-SCR), challenges the assumption that
base classifiers should be reset for each detected drift. Note that BD-SCR is not

a drift detector itself but instead monitors the levels of temporal dependence
within a stream to inform the decision of resetting the base classifier.

This section examines the construction of BD-SCR, through definition and
description of both the burst detection method and the process for selective
classifier resetting. A full algorithmic overview of the complete method is also
provided.

3.1 Burst Detection

Zhu & Shasha (2003) describes burst detection as the process of detecting ab-
normalities or outliers within data streams. In essence, burst detection involves
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the monitoring of events over specific time period and signals an alarm when an
anomaly is detected.

In this research, BD-SCR utilises burst detection in order to determine when
there has been a significant increase in the amount of temporal dependence
within a data stream. BD-SCR uses a short-term average (ST A) and long-term
average (LTA) analysis, which is used to determine the burst value B. This is
given in equation 7. This method of burst detection has been used extensively
in stream based event detection research, particularly in the field of earthquake
detection (Earle et al., 2012) (Ross & Ben-Zion, 2014) (Kong et al., 2015). This
is an effective yet lightweight method for identifying sudden changes in normality
for any given data stream.

B =STA/LTA (7)

In BD-SCR, ST A is the average of a sliding window containing the Kappa
Temporal values for all predictions since the last detected drift. This window is
reset each time a drift is detected. Similarly, LT A is the average of a window
which stores the Kappa Temporal values for predictions made over the entire
stream. In typical scenarios, values of B exceeding 1.0 indicate a burst. B is
recalculated each time a drift is detected by the underlying drift detector. How-
ever, if ST'A > 0 at the point of detection then the classifier is allowed to reset
as per traditional drift detection since a positive ST A value indicates that the
temporal dependence presence level in the current window is low and that the
base classifier is performing well.

3.2 Selective Resetting

The decision of when to reset the base classifier is of paramount importance.
Resetting too frequently results in the same core issue presented by the results
of Bifet (2017) and the “No-Change” detector in Section 1. However resetting
too infrequently will risk the base classifier becoming outdated as more drifts
are detected.

To overcome this problem BD-SCR does not reset the base classifier in every
instance where B > 1.0. Instead B is compared against a user specified param-
eter T' which defines a threshold indicating the maximum amount of increase,
or maximum burst, of temporal dependence that is permitted between detected
drifts. For any detected drift, the following conditions are evaluated to determine
whether or not the base classifier is reset:

If B < T reset base classifier
If B > T do not reset base classifier,

(8)

Algorithm 1 below provides an overview of the entire BD-SCR method. Note
that the algorithm covers the burst detection and selective resetting process,
base classifiers are trained using arriving instances as normal.
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Algorithm 1 BD-SCR Algorithm

wSTA: Sliding window of Kappa Temporal values since last detected drift
wLT A: Kappa Temporal values for the whole stream

ST A: The average of wSTA

LT A: The average of wLT A

B: Burst value

T: Burst threshold

KT;: Kappa Temporal value for arriving instance ¢

C': The base classifier

1: Add KT; to wSTA and wLT A
2: if drift detected then

3: if STA > 0 then

4: Reset C'

5: else

6: calculate ST A from wSTA
7 calculate LT A from wLT A
8: calculate B

9: if B <T then
10: reset C'
11: end if
12: reset wST A
13: end if
14: end if

4 Experiment

BD-SCR was implemented using MOA (Bifet et al., 2010) with experimenta-
tion undertaken in the same environment. In order to evaluate BD-SCR and
determine its effectiveness in overcoming the temporal issue presented by Bifet
(2017), this experiment follows a similar in terms of drift detectors, classifiers
and datasets. BD-SCR is tested using a Naive-bayes classifier in conjunction with
the Drift Detection Method (DDM), Early Drift Detection Method (EDDM),
Page Hinckley (PH) and Cumulative Sum (CUSUM) drift detectors. Since it is
already proven that the anomaly is not caused by the base classifier, this ex-
periment tests only with a Naive-bayes classifier. Datasets used are Electricity
(Harries & Wales, 1999) and Forest Covertype (Blackard et al., 1998). T values
for experimentation range from 1 to 3 with increments of 0.1. Table 3 and Fig-
ure 2 contain the results for the Electricity dataset whilst Table 4 and Figure 3
portray the results for the Forest Covertype dataset.

In this experimentation classifier accuracy is the key performance metric used
for evaluation. Whilst other metrics have become popular for the evaluation of
statistical drift detectors, for example False Alarm Rate (FAR), Mean Time be-
tween False Alarms (MTFA) and Mean Time to Detection (MTD), these are not
used used in this literature. The aforementioned metrics are used for evaluating
the statistical performance of an individual drift detector, whereas BD-SCR is
a novel framework for handling and coping with temporal dependence during
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concept drift detection. BD-SCR is not a statistical drift detector nor does it
alter or amend the original statistical methods of any existing drift detectors.

Table 3. Numerical Results for Electricity Dataset

T DDM EDDM CUSUM PH NO-CHANGE

1 80.88 80.93 77.51 75.36 76.12
1.1 76.54 80.61 77.86 76.47 76.11
1.2 76.56 81.27 77.98 76.47 76.17
1.3 81 837 78.01 76.47 76.23
1.4 81.01 84.74 77.7 76.75 76.15
1.5 81.28 84.74  77.7 76.58 76.17
1.6 81.48 84.74 7789 76.5 76.14
1.7 82.09 84.74 77.89 T77.36 76.29
1.8 82.13 84.76  78.77 77.39 75.91
1.9 829 84.7 79.08 77.39 76.07
2 83.88 84.76 793 77.39 76.1
2.1 83.88 84.76  79.3 77.39 76.08
2.2 83.88 84.76  79.3 77.39 76.13
2.3 83.88 84.76  79.3 77.39 76.46
2.4 83.88 84.76  79.3 77.39 76.21
2.5 83.88 84.76  79.3 77.39 76.22
2.6 83.88 84.76  79.3 77.39 76.32
2.7 83.88 84.76  79.3 77.39 76.37
2.8 83.88 84.76  79.3 77.39 76.39
2.9 83.88 84.76  79.3 77.39 76.71
3 83.88 84.76 793 77.39 76.84

Two key evaluations can be drawn from the experimentation results using
BD-SCR; the classification accuracy of the “No-Change” detector and how its
effectiveness has been reduced, and the how the sensitivity of 7" has an impact
on performance in conjunction with statistical drift detectors.

Firstly the classification accuracy of the “No-Change” detector can be com-
pared. As observed in Tables 1 and 2, the “No-Change” detector has been previ-
ously found to outperform state-of-the-art statistical classifiers due to the effect
of over-resetting with temporal dependence. BD-SCR, however, severely impacts
performance of “No-Change” with as much as a 10% reduction in classification
accuracy with the Electricity dataset, and as much as 22% with Forest Covertype.
This degradation in performance is positive for BD-SCR; since the “No-Change”
detector performs no statistical evaluation of its own, it shouldn’t outperform
other statistical detectors. BD-SCR effectively reduces the performance of the
“No-Change” detector and by association provides a novel method for handling
concept drift in the presence of temporal dependence.

Since BD-SCR restricts the resetting of the base classifier in certain situa-
tions, it follows logically that there may be an inherent risk of reduced classifier
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Fig. 2. Graphical Results for Electricity Dataset

accuracy. Base classifiers are traditionally reset upon detected drifts to prevent
classifiers becoming outdated and irrelevant as stream distributions shift. With-
out resetting in these circumstances, classifier performance can deteriorate and
under perform. This trade off in performance is directly related to the sensitivity
of T" and underpins the importance of the applying the correct parameter value
for T. As T increases so does the number of permitted classifier resets, and as
such it is expected that classifier performance will improve with increased val-
ues of T'. It may also be the case that classifier performance plateaus at certain
values of T'. This will occur when the value of T" allows B < T to always be true
and therefore the the base classifier will be always be reset for a detected drift.

For the Electricity dataset results in Table 3 it can be observed that for the
smaller values of T" there are corresponding small deteriorations in performance
when compared to those reported by Bifet (2017) in Table 1. For CUSUM there
is a small accuracy decrease of no more than 2% until it plateaus at T = 2 with
an overall performance increase of 0.1%. Page Hinckley has a similar decrease in
performance for values of T' < 1.7, from which it plateaus with a slight decrease
of 0.65%. DDM suffers from varying decreases in performance for all values of T
below 2.0, with the most severe decrease being 4.64% at T'= 1.1. However, DDM
does plateau at T = 2 with an improvement of 2.7%. EDDM follows a similar
pattern to that of DDM with fairly considerable decreases in performance for
early values of T', but plateaus much earlier at T' = 1.4 with an overall perfor-
mance decrease of 0.07%. EDDM does have a very small gain in performance of
0.02% between T' = 1.4 and T = 1.8, but the improvement is so menial that this
evaluation considers the plateau to occur at T = 1.4.

The Forest CoverType dataset, however, illustrates a more complex situation
in regards to the sensitivity of 7. As can be observed from Table 4, there is
a much less obvious plateau of performance for increasing values of T, but a
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Table 4. Results for Forest CoverType Dataset

T DDM EDDM CUSUM PH NO-CHANGE

1 65.17 65.21 64.77 64.07 65.2
1.1 65.21 65.21 64.77 64.07 65.31
1.2 65.22 65.22 64.77 64.07 65.32
1.3 65.22 65.24 64.77 64.07 65.34
1.4 65.2 65.26 64.77 64.07 65.39
1.5 65.2 65.29 64.77 64.07 65.43
1.6 65.2 653 64.77 64.07 65.51
1.7 65.22 65.36 64.77 64.07 65.6
1.8 65.24 65.44 64.83 68.08 65.63
1.9 68.89 67.31 69.58 71.15 66.06
2 T1.67 71.23 70.98 77.09 71.69
2.1 75.58 72.9 73.2  77.09 73.44
2.2 7854 7551 7726 T77.17 76.36
2.3 81.02 79.54 79.33 77.35 80.44
2.4 81.46 80.58 79.35 77.35 81.88
2.5 81.01 80.74 79.35 77.35 81.99
2.6 82.05 82.51 80.76 79.36 83.55
2.7 83.68 82.74 81.15 79.43 84.16
2.8 83.67 82.85 81.15 79.43 84.24
2.9 84 8287 81.17 79.43 84.33
3 84.23 84.47 81.17 79.43 84.42

clear plateau for lower values. This is caused by a much higher rate of temporal
dependence in this dataset in comparison to that of Electricity. In this case, T
values below 1.9 provide only a clear degradation in performance. This is caused
by much higher values of B during detected drifts such that for lower values of
T, B < T is almost never true. It is not until much higher values of T', typically
2.6 or 2.7 in this case, that performance can be seen to begin to achieve close
to the benchmark results in Table 1. It is also worth noting that as T" increases,
so does the performance of “No-Change” since the base classifier is not being
prevented from resetting. As such, it is important to identify the correct value
T which allows for high statistical performance but restricts the performance
of “No-Change””. Specifically, values of T higher than 3.0 could be tested to
determine where results begin to plateau.

Table 5 compares the Kappa Temporal values for both datasets using a Naive-
bayes classifier in conjunction with each of the previously mentioned state-of-
the-art drift detectors. This clearly identifies the stark contrast in the levels of
temporal dependence in both datasets.

The differences in severity of temporal drift between the two datasets af-
fects the sensitivity of the T parameter in BD-SCR.. As previously discussed, the
Electricity dataset results in Table 3 indicate clear preferred values for T where
the “No-Change” detector performance is reduced but the drift detector perfor-
mance achieves classification accuracy in line with previously published results.
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Table 5. Comparison of Kappa Temporal Values

T DDM EDDM CUSUM PH

Electricity ~ -0.2831 -0.0342 -0.4172 -0.4968
Forest Covertype -1.4245 -1.8181 -2.7364 -3.0375

In contrast, optimal 7" values are obscured for the Forest Covertype dataset as
highlighted in Table 4. By comparing this observation with the Kappa Tempo-
ral values given in Table 5, the affect of the severity of temporal dependence
upon the sensitivty of 7' becomes obvious. The Kappa Temporal values for the
Electricity dataset are negative, indicating that the base classifier is performing
worse than the persistent classifier,. However in comparison to the Kappa Tem-
poral values of the Forest Covertype dataset it is trivial to notice the difference
in severity of temporal dependence between the two datasets.

Results across both datasets show that BD-SCR does provide a novel ap-
proach for coping with temporal dependence when using concept drift detectors.
Results show a clear deterioration in classifier accuracy for the “No-Change”
detector when using BD-SCR, which clearly portrays that the selective resetting
approach does aid in the problem of over-resetting. Any decrease in performance
using statistical drift detectors is minimal, and in some cases performance is ac-
tually improved. However performance is directly related to the user defined
parameter T, and calculating its optimal value to maximise statistical detector
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performance but minimising performance of the “No-Change” detector may be
challenging.

5 Conclusion

This research presents BD-SCR. as a novel approach to classifier resetting during
concept drift detection in the presence of temporal dependence. Using a short
term and long term average statistical event detection method, BD-SCR, analy-
ses the severity of temporal dependence to make an informed decision to reset
the base classifier. Experimental results show that BD-SCR is effective at over-
coming the problem of over-resetting during periods of temporal dependence by
selectively resetting the classifier, and that there is minimal performance impact
when choosing not to reset.

However, the sensitivity of the threshold parameter 7" means finding the
optimal balance between statistical detectors and “No-Change” is difficult and
unclear. In simulated scenarios where static datasets are streamed, such as the
Electricity and Forest Covertype datasets used in this research, it is fairly trivial
to analyse the results and determine the optimal values for 7. In a real-time
situation, however, this is much more complex. Furthermore, the severity of the
temporal dependence in the data has a direct affect on the sensitivity of the T'
parameter. As shown through the results of the Electricity dataset in comparison
to that of the Forest Covertype dataset, it is easier to identify optimal T" values
in datasets with less temporal severity.

BD-SCR challenges the current architectural approach to drift detection to
accommodate for other stream related anomalies. Future work in this field should
look to improve BD-SCR by expanding the algorithm to automatically determine
the optimal value for T'. Additionally the proposed structure of BD-SCR could
be used to develop more sophisticated ways of handling temporal dependence in
temporally dependent concept drift streaming scenarios.
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