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Summary 
Accurate prediction of the state of health (SOH) of Li‐ion battery has an important role in the 

estimation of battery state of charge (SOC), which can not only improve the efficiency of 

battery usage but also ensure its safety performance. The battery capacity will decrease with 

the increase of charge and discharge times, while the internal resistance will become larger, 

which will affect battery management. The capacity attenuation characteristics of Li‐ion 

batteries are analyzed by aging experiment. Based on the equivalent circuit model and online 

parameter identification, a novel adaptive dual extended Kalman filter algorithm is proposed 

to consider the influence of the battery SOH on the estimation of the battery SOC, and the 

SOC and SOH of the Li‐ion battery are estimated collaboratively. The feasibility and 

accuracy of the model and algorithm are verified by experiments. The results show that the 

algorithm has good convergence and tracking. The maximum error in the estimation of the 

SOC is 2.03%, and the maximum error of the Ohmic resistance is 15.3%. It can better 

evaluate the SOH and SOC of Li‐ion battery and reduce the dependence on experimental 

data, providing a reference for the efficient management of Li‐ion batteries. 

1 INTRODUCTION 
The development of green energy and the protection of the environment occupy an important 

place in the world development plan. The search for new sources of energy to replace 

high‐emitting fuels is a major concern for all countries. Li‐ion batteries have received a lot of 

attention and application in new energy field because of its high energy density, long life, 

high‐output power, and high‐cost‐performance, and has great development prospect. With the 

widespread application of Li‐ion batteries in various industries, the detection of their health 

condition has been paid more and more attention.
1
 Researchers have conducted in‐depth 

studies on battery management, such as Zhang et al.
2
 studied battery heating for lithium‐ion 

batteries based on multistage alternative currents, and Shen et al.
3
 studied battery aging 

assessment for real‐world electric busses based on incremental capacity analysis (ICA) and 

radial basis function neural network. Among them, it is of great significance to accurately 

estimate the state of charge (SOC) and state of health (SOH) of Li‐ion batteries in giving full 

play to the performance of batteries and achieving efficient utilization and safe management 

of Li‐ion batteries.  

As Li‐ion batteries often operate under complex power conditions, their state detection is 

easily affected by environmental noise.
4
 In addition, the internal electrochemical reaction of 

the Li‐ion battery is complicated, often accompanied by polarization effects and ohmic 

effects, combined with variable discharge currents under complex conditions, internal battery 

temperature, self‐discharge of the battery, and repeated use of materials to cause aging.
5, 6

 

Due to the interference of other factors, accurate real‐time estimation of the SOC and SOH of 

Li‐ion batteries is facing greater difficulties.
7, 8

 However, due to the complex internal 



structure of the Li‐ion battery, it often exhibits strong nonlinear characteristics when used 

under complicated conditions, making it difficult for the traditional equivalent model to fully 

and correctly characterize the characteristics of the Li‐ion battery. There are still many 

problems and deficiencies in equivalent modeling and state estimation. Researchers have 

done a lot of research on this.
9-12

 Therefore, how to establish an equivalent model for the 

performance characteristics of Li‐ion batteries and estimate the battery state with the correct 

and appropriate algorithm, real‐time monitoring and safety control of Li‐ion batteries, and 

improve the efficiency of the battery is of great significance.  

As early as the beginning of the 20th century, the global Li‐ion battery industry has reached 

$15.3 billion. Its application range has penetrated into various industries, such as new energy 

vehicles, aviation, and household appliances. In the process of Li‐ion battery state estimation, 

battery equivalent modeling plays an important role. The accurate estimation of the SOC 

depends to a large extent on the degree to which the equivalent model characterizes the 

dynamics of the battery,
13

 and the accurate estimation of SOH depends on the accurate 

estimation of SOC. Common battery models in current applications include electrochemical 

models,
14, 15

 neural network models, and equivalent circuit models.
16-18

 Zhang et al.
19

 used the 

theory of electrochemical impedance spectroscopy to guide and improve the equivalent 

circuit model. Kim et al.
20

 studied an enhanced hybrid battery model. The equivalent circuit 

model shows the complex dynamic characteristics of the battery during use, specifically the 

dynamic response in the circuit loop. Based on the established equivalent circuit, the state 

space equations of the circuit are obtained by applying the knowledge of circuit science to 

study the battery characteristics.  

The commonly used methods in the estimation of Li‐ion battery SOC are open‐circuit voltage 

method, Ampere‐hour (Ah) integral method,
21

 equivalent model‐based methods, and 

data‐driven methods. The equivalent model‐based methods are mainly Kalman filter (KF) 

method, extended Kalman filter (EKF) method.
22-25

 The data‐driven methods mainly include 

the artificial neural network method.
26

 Sun et al.
27

 proposed an intelligent adaptive extended 

KF method that can detect the moment of distribution change of EIS by the maximum 

likelihood function. Li et al.
28

 proposed two recursive neural network with gated recursive 

units combined with the Coulomb counting method to estimate SOC. Ayob et al.
29

 used two 

popular neural network algorithms to estimate the SOC. The open‐circuit voltage method 

uses the functional relationship between the open‐circuit voltage and the SOC to obtain the 

SOC value by obtaining the open‐circuit voltage value of the battery to achieve the purpose 

of estimation.
30, 31

 The Ah integration method starts from the definition and calculates the 

SOC by integrating the current in time, which is a more traditional method. The KF method 

obtains the optimal solution in the sense of minimum variance through continuous iterative 

operations.
32

 Due to the complex electrochemical reaction inside the battery, it often exhibits 

strong nonlinear characteristics. Coupled with some defects of the traditional algorithms, the 

above methods often cannot accurately estimate the SOC of Li‐ion batteries when dealing 

with nonlinear systems. Therefore, in recent years, researchers have proposed some improved 

algorithms on the basis of the above algorithms for the problem of accurate estimation of the 

SOC of Li‐ion batteries.
33-39

 

The current methods for estimating battery SOH mainly include empirical model‐based 

methods,
40

 equivalent circuit model‐based methods, data‐driven estimation methods
41

 and 

ICA method.
42

 The empirical model obtains the change of battery performance state through 

the analysis of large experimental data, and summarizes the change law of the battery SOH. It 

has the advantages of low‐modeling difficulty and wide application range, but the physical 

meaning of the empirical model is not clear, relying on experimental data, and lacks precision 

and accuracy in evaluating the results. The method based on the equivalent circuit model 



simulates the relationship between the external parameters of the battery and the internal state 

quantity through the circuit. On the basis of the equivalent circuit model, the filter is used to 

realize the SOH estimation. The filter algorithms mainly include KF,
43, 44

 Particle filter (PF), 

and least square (LS).
45

 Data‐driven methods include autoregressive models, artificial neural 

networks,
46

 support vector machines (SVMs)
47

 and Gaussian process regression.
48, 49

 Tan et 

al
50

 establish a support vector regression algorithm for online SOH estimation. Richardson et 

al
51

 proposed a gaussian process regression for in situ capacity estimation, which uses voltage 

measurement to estimate battery capacity in a short period of time during the constant current 

operation. These methods have received more and more attention because they do not involve 

complex physical models. However, the effectiveness of these methods largely depends on 

the quality and quantity of the test data, and the derived models usually require a lot of 

computational intensity. In order to avoid dependence on data, an iterative algorithm based 

on the equivalent circuit model is selected to estimate the battery SOH. Since the state 

estimation relies heavily on the equivalent model, the model selection and construction are 

important.
52

 Therefore, the equivalent circuit modeling and state estimation of batteries under 

various complex operating conditions need to be further developed.  

The equivalent circuit models include the internal resistance model, Thevenin model, and 

PNGV model
53

. The internal resistance model only takes into account the simple operating 

characteristics of the battery and the structure is relatively simple. On this basis, the Thevenin 

model simulates the dynamic characteristics of the battery to a certain extent by introducing 

resistance and capacitance (RC) parallel circuit to describe the polarization effect within the 

battery. Compared with the complex structure of the PNGV model, the Thevenin model is a 

nonlinear low‐order model with lower computational complexity and the required accuracy. 

Based on the consideration of computational complexity and characterization effect, the 

Thevenin equivalent circuit model is established to characterize the dynamic characteristics 

of the battery. The results show that the characterization effect is good.  

Aiming at the goal of accurately describing the SOH and the SOC of ternary Li‐ion battery, 

joint estimation is considered, and the adaptive dual extended Kalman filter (ADEKF) 

algorithm is used to collaboratively estimate the SOC and the SOH of Li‐ion battery, and to 

estimate both states simultaneously and improve the accuracy of the estimation results. This 

algorithm avoids dependence on experimental data and reduces computational complexity in 

practical applications. 

2 MATHEMATICAL ANALYSIS 

2.1 Equivalent circuit modeling 

The accurate estimation of SOC depends largely on the representation of the dynamic 

characteristics of the battery by the equivalent model. The Thevenin model consists of a Rint 

model connected to parallel with a RC loop. The basic idea is to use an RC parallel circuit to 

characterize the polarization effect of the battery during use, which to makes up for the 

shortcomings of the Rint model that cannot characterize the dynamic characteristics of Li‐ion 

battery as shown in Figure 1.  

In Figure 1, Uoc represents the open‐circuit voltage, UL represents the terminal voltage, Ro is 

the ohmic internal resistance, and UR is the ohmic voltage. The RC parallel circuit consists of 

a polarization resistor R1 and a polarization capacitor C1 to characterize the polarization effect 

of the Li‐ion battery, wherein U1 is a polarization voltage.  

The expressions for the voltage and current of the equivalent circuit are obtained as shown in 

Equation (1) by analyzing the Thevenin equivalent circuit model through Kirchhoff law.  



(1)where the open‐circuit voltage is a nonlinear function of SOC, and the open‐circuit voltage 

can be calculated from the SOC value.  

2.2 Online parameter identification 

In order to better observe the prediction of internal resistance, the online parameter 

identification method is used to identify the battery model parameters. The identification 

method is the recursive least square (RLS) method. First, according to the equivalent circuit 

model in Figure 1, the output equation of the circuit is shown in Equation (2).  

(2)The direction of the current in Equation (2) is opposite to that in Figure 1. Substituting s = 

2(1‐z
−1

)/T(1 + z
−1

) into the above equation, Equation (3) can be obtained.  

(3)In the formula, E(s) = UL(s)‐Uoc(s). According to the principle of RLSs, let:  

(4)Combining Equation (3) and (4), we can get the equation that needs to be identified as 

shown in Equation (5).  

(5)The RLSs method can be used to estimate the values of θ1, θ2, and θ3, and then according 

to Equation (3), the parameters in the circuit can be calculated as shown in Equation (6).  

(6)  

2.3 Adaptive dual extended KF 

When the battery capacity is less than 80%, the battery is considered to be completely aged. 

The SOH can be defined by increasing internal resistance, which is calculated as shown in 

Equation (7).  

(7)In this equation, Rn is the rated internal resistance of the new battery, Re is the internal 

resistance corresponding to the decommissioned state of the battery, and Ro is the present 

internal resistance of the battery. It is measured that the internal resistance of the battery used 

is 3.545 mΩ when it is completely aging. The definition of SOC is shown in Equation (8).  

(8)The extended KF is an improvement of the KF algorithm. The KF method itself is an 

estimation method for linear systems. When the estimated system is a nonlinear system, the 

system needs to be linearized first, and the extended KF method introduces the linearization 

process of nonlinear systems. The dual extended Kalman is two extended Kalman algorithms 

used to estimate SOC and SOH, respectively. The schematic diagram of the adaptive dual 

extended Kalman algorithm is shown in Figure 2  

The adaptive extended KF estimates SOC by taking it as state variable and battery internal 

resistance as algorithm input. The extended KF estimates the battery internal resistance Ro by 

taking SOC as the input value and battery internal resistance as the state variable, and 

obtaining the current SOH by predicting the battery internal resistance.  

First, the state space equation is established according to the equivalent circuit model, and the 

state space equation is as shown in Equation (9).  

(9)  

The first and second equations are respectively the state equations for estimating SOC and 

SOH, and the third equation is the observation equation of the system. Since the internal 

resistance of the battery changes slowly, an external noise r is added to the state equation for 

estimating internal resistance to simulate the change in the internal resistance of the battery, 

where, wk, rk, and vk are Gaussian white noises with zero mean value.  

According to the equation of state, the coefficient matrix can be obtained as shown in 

Equation (10).  



(10)A, B, and C are the coefficient matrices of the state equation and the observation 

equation, respectively.  

The specific estimation process of ADEKF is as follows: First, the state and covariance are 

initialized as shown in Equation (11).  

(11)  

The iterative process is divided into the time update process and the measurement update 

process. The time update process is the prediction of state and covariance, as shown in 

Equation (12).  

(12)The measurement update process includes Kalman gain, state, and covariance update, as 

shown in Equation (13).  

(13)Through continuous update iterations to correct the predicted value, accurate SOC and 

SOH estimates can be obtained.  

3 EXPERIMENTAL ANALYSIS 

3.1 Test equipment and platform 

The new ternary lithium‐ion battery is selected for testing, and the battery has a rated capacity 

of 45 Ah. The equipment used in the experiment include the power cell large‐rate charge and 

discharge tester, and a three‐layer independent temperature control high and low‐temperature 

test chamber (BTT‐331C), as shown in Figure 3. As the parameters of the battery are affected 

by temperature, the experiment is conducted at a constant temperature of 25°C, and 

parameters change need to be considered at different temperatures.
54, 55

 

 

The battery will age due to cyclic use and other reasons, and the actual discharge capacity of 

the battery will have a large deviation from deviated from the rated capacity. The true 

discharge capacity of the battery is important for the estimation of the SOC of the Li‐ion 

battery. Therefore, the capacity calibration experiment of the Li‐ion battery should be 

conducted first. In this research, in order to better observe the change of resistance, the online 

parameter identification method is adopted. 

3.2 Parameter identification 

The new Li‐ion battery capacity is first tested, and the battery actual discharge capacity is 

measured as 45 Ah at 25°C. The pulse discharge test is conducted to Li‐ion battery, and the 

experimental flow chart is shown in Figure 4.  

The curves of the current and terminal voltage of the pulse discharge test are shown in Figure 

5. During the experiment, the direction of the charging current is positive.  

In this figure, I represents current and U represents terminal voltage. Obviously, the battery 

voltage will gradually stabilize after a long period of shelving at the end of discharge, which 

indicates that its internal chemical reactions and thermal effects have basically reached 

equilibrium. The battery voltage at this time is its open‐circuit voltage, and the relationship 

between the open‐circuit voltage and the SOC can be obtained as shown in Equation (14).  

(14)According to the RLS online parameter identification principle, various parameters of the 

model can be obtained. In order to verify the effectiveness of the constructed Thevenin 

equivalent circuit model in characterizing the battery in real operating conditions, the voltage 

and current data under the condition of cyclic discharge are imported into the equivalent 

battery model constructed in MATLAB/Simulink, and the online parameter identification 

results and the model are verified.  



The model output voltage is compared with the actual terminal voltage values and the errors 

are analyzed, as shown in Figures 6 and 7.  

Figure 6 shows the comparison between the model estimated value and the actual value of the 

battery terminal voltage under the condition of the cyclic discharge shelving experimental 

condition. The UL2 line is the simulated value of the voltage output from the constructed 

model, while UL1 is the real battery terminal voltage. Figure 7 shows the error curve of both. 

From the figure, it can be seen that the simulated value tracks the actual value well, with an 

average estimated error of about 0.03 V, which can basically characterize the battery in actual 

operation. The large initial error is due to the initial value error of the parameters in the online 

parameter identification, and the error decreases after the parameters converge. Through the 

analysis of the two voltages' comparison result and the error, it is found that the voltage 

estimation error will increase after the battery is discharged. Because the battery voltage 

changes drastically at the end of the discharge, the model estimation value lags behind the 

effect, leading to larger estimation errors.  

3.3 Aging test analysis 

The new Li‐ion battery is charged and discharged for several months at a rate of 1C under a 

normal temperature environment until the Li‐ion battery has aged to its discharge capacity of 

80% of the initial capacity, which is regarded as the end of its life as a Li‐ion battery. During 

the cycle of discharge, the capacity test is performed every 100 times, and the aging 

characteristic curve as shown in Figure 8 is obtained.  

As can be seen from Figure 8, the battery capacity has decayed to 80% of its rated capacity 

after 460 cycles of charge and discharge, and the battery has completely aged. With the 

continuous decrease of the capacity, the shorter the time for the battery to reach the charging 

and discharging cut‐off voltage, the battery capacity will further decrease.  

3.4 Complex condition experiment 

In order to verify the estimation effect of the algorithm, experimental analysis is conducted 

with the Beijing Bus Dynamic Stress Test (BBDST) condition. 

The BBDST condition is obtained by processing the data collected from the starting, 

acceleration, sliding, braking, rapid acceleration, and stopping of the Beijing bus. According 

to the actual situation, the power of each step is reduced to simulate the BBDST condition. 

The specific working steps are shown in Table 1.  

TABLE 1. BBDST condition  

Pb/kW  Pc/W  t/s T/s Status 

37.5 37.5 21 21 Starting 

72.5 72.5 12 33 Acceleration 

4.5 4.5 16 49 Sliding 

−15 −15 6 55 Braking 

37.5 37.5 21 76 Acceleration 

4.5 4.5 16 92 Sliding 

−15 −15 6 98 Braking 



72.5 72.5 9 107 Acceleration 

92.5 92.5 6 113 Rapid acceleration 

37.5 37.5 21 134 Acceleration 

4.5 4.5 16 150 Sliding 

−15 ‐15 6 156 Braking 

72.5 72.5 9 165 Acceleration 

92.5 92.5 6 171 Rapid acceleration 

37.5 37.5 21 192 Acceleration 

4.5 4.5 16 208 Sliding 

−35 −35 9 217 Braking 

−15 −15 6 229 Braking 

4.5 4.5 71 300 Stopping 

In Table 1, Pb is the battery output power under the real bus starting, acceleration, and 

skidding conditions. Pc is the actual power of the experiment on the Li‐ion battery, t 

represents the duration of each condition, and T represents the cumulative duration. The 

experimental data of BBDST are shown in Figures 9 and 10.  

The BBDST condition data are substituted into the algorithm to obtain the estimation results. 

The estimation of SOC is shown in Figure 11.  

In Figure 11, S1 is the SOC estimated by the ADEKF algorithm, and S2 is the SOC estimated 

by dual extended KF algorithm, and S3 is the true SOC. Err1 is the error of the ADEKF 

algorithm to estimate SOC, and Err2 is the error of dual extended KF algorithm. Under the 

BBDST condition, ADEKF tracks the SOC of the battery better than the dual extended KF 

algorithm, and the estimation error is within 0.0203, so it can track the SOC of the battery 

well under this condition.  

  

In Figure 12, Ro1 is the estimated internal resistance by the ADEKF algorithm, and Ro2 is the 

estimated internal resistance by the dual extended KF algorithm, and Ro3 is the measuring 

internal resistance. Err1 is the error of the ADEKF algorithm to estimate the internal 

resistance and Err2 is the error of the dual extended KF algorithm. It can be seen that ADEKF 

has good convergence in estimating internal resistance, and the internal resistance can be 

estimated. After convergence, the error is kept within 15.3%. Compared with the dual 

extended KF algorithm, ADEKF can better estimate the internal resistance without major 

fluctuations. However, SOH can be estimated by calculating the estimated value of ohmic 

resistance as shown in Figure 13.  

In Figure 13, SOH1 is the real SOH and SOH2 is the SOH estimated by the ADEKF 

algorithm. To sum up, compared with the ADEKF algorithm, this algorithm has a smaller 

error and no divergence occurs at the end of the estimation.  



4 CONCLUSIONS 
The accurate estimation of SOC and SOH provides an important guarantee for the safety 

management of Li‐ion. The aging characteristics of Li‐ion batteries are analyzed. Based on 

Thevenin equivalent circuit model and online parameter identification method, an ADEKF is 

proposed that estimates SOC and SOH simultaneously. The results show that the algorithm 

can simultaneously estimate the SOC and SOH. The error of estimating SOC is within 

2.03%, and the error of estimating the SOH characterization parameter ohmic internal 

resistance is within 15.3%. The algorithm has good convergence and can give a good 

reference to the battery management system, avoiding the reliance on experimental data and 

reducing the computational complexity in practical application. It is more effective to ensure 

the safety of battery use and provide a basis for the estimation of remaining useful life. 
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