
This is the peer reviewed version of the following article: SHI, H., WANG, S., FERNANDEZ, C., YU, C., FAN, Y. 
and CAO, W. 2021. Improved splice-electrochemical circuit polarization modeling and optimized dynamic 
functional multi-innovation least square parameter identification for lithium-ion batteries. International 
journal of energy research [online], 45(10), pages 15323-15337, which has been published in final form at 
https://doi.org/10.1002/er.6807. This article may be used for non-commercial purposes in accordance with 
Wiley Terms and Conditions for Use of Self-Archived Versions 

This document was downloaded from 
https://openair.rgu.ac.uk 

SHI, H., WANG, S., FERNANDEZ, C., YU, C., FAN, Y. and CAO, W. 2021. Improved splice-electrochemical circuit 
polarization modeling and optimized dynamic functional multi-innovation least square parameter identification for 
lithium-ion batteries. International journal of energy research [online], 45(10), pages 15323-15337. Available from: 

https://doi.org/10.1002/er.6807 

Improved splice-electrochemical circuit 
polarization modeling and optimized dynamic 

functional multi-innovation least square 
parameter identification for lithium-ion 

batteries. 

SHI, H., WANG, S., FERNANDEZ, C., YU, C., FAN, Y. and CAO, W. 

2021 

https://doi.org/10.1002/er.6807
https://doi.org/10.1002/er.6807
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html#3


Improved splice-electrochemical circuit polarization 

modeling and optimized dynamic functional multi 

innovation least square parameter identification for lithium-

ion batteries 

Haotian Shi, Shunli Wang, Carlos Fernandez, Chunmei Yu, Yongcun Fan, Wen Cao 

School of Information Engineering, Southwest University of Science and Technology, Mianyang, 

China,                                                                                                                     
School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK 

Correspondence: Shunli Wang, School of Information Engineering, Southwest University of 

Science and Technology, Mianyang 621010, China. Email: wangshunli@swust.edu.cn 

Funding information National Natural Science Foundation of China, Grant/Award Number: 
61801407 

Summary 

The internal nonlinearity of the lithium-ion battery makes its mathematical modeling a big 

challenge. In this paper, a novel lithium-ion battery splice electrochemical circuit polarization (S-

ECP) model is proposed, which integrates the strengths of various lithium-ion battery models and 

refines the ohm and polarization characteristics of the electrochemical Nernst model and the 

differences in charge-discharge internal resistance. Moreover, by applying the one-sided limit to 

the discrete system, a multi-innovation least squares algorithm optimized based on the dynamic 

function (F-MILS) introduced to constrain the original innovation weight is put forward, which 

tackles the problem of large algorithm errors caused by huge changes in the system input. In order 

to evaluate the regulating ability of weight constraint factors, the relevant parameter values in the 

dynamic function are discussed as independent variables. Furthermore, parameters of the S-ECP 

model are identified online by HPPC experimental data combined with the multi-innovation least 

squares(MILS) algorithm ameliorated by the dynamic function, and the convergence speed of 

parameters in the identification process is analyzed. Finally, an urban dynamometer driving 

schedule experiment is carried out on the lithium-ion battery under more complex working 

conditions. It is revealed that the accuracy of F-MILS is 0.5% higher than that of unoptimized 

MILS, further confirming the accuracy of the S-ECP model and the superiority of the F-MILS 

algorithm.
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1 | INTRODUCTION

1.1 | Motivation and challenges 

With the rapid development of electric vehicles in recent years, battery energy storage 

technology has gained increasing concern and demonstrated its great values inpractice.1 
Lithium-ion batteries are widely applied power batteries at present due to the advantages of high 

energy density, long cycle life, high output voltage, and high-rate charge-discharge ability.2 The 

state of charge (SOC) estimation of the battery is the basis of the battery management system 

(BMS), and the estimation accuracy is an important index to measure the quality of the BMS. 

The establishment of a high-fidelity battery model and the result of high-precision parameter 

identification are the prerequisites for obtaining an accurate SOC. Therefore,the construction of 

an accurate battery model and precise parameter identification are the key to the BMS.

1.2 | Literature review 

Electrochemical models and equivalent circuit models are extensively used among diverse 

lithium-ion battery models, but both merits and drawbacks of these two models are extreme. For 

improving the accuracy of lithium-ion battery models, a nonlinear model is proposed to 

accurately describe the external properties of lithium-ion batteries; it lays the foundation for the 

accuracy of nonlinear battery SOC estimation, but the calculation of this method is relatively 

complicated.4 The asymptotic reduction and homogenization principles of lithium-ion battery 

electrochemical models are discussed to increase anti-interference ability of the models.5 
Through the modeling of aviation lithium-ion battery pack, a safety prediction method based on 

real-time detection and filtering is proposed, which greatly improves the safety factor of lithium-

ion battery use in the aviation field.6 The fractional order model of lithium-ion batteries was 

investigated and compared with the integer order model in terms of prediction accuracy,which 

improves the SOC estimation accuracy of the nonlinear battery.7,8 The simplified fractional 

equivalent circuit model of lithium-ion battery is analyzed, and the model parameters are 

identified online by adaptive technology, which enhances the adaptability of the BMS system.9 

An unbiased model of battery noise immunity is established, which reduces the common noise 

problem of parameterized models.10 A mixture model taking current,voltage, and temperature as 

input of lithium-ion batteries was provided, which had prospective applications in battery SOC 

estimation under complex working conditions.11 Through Thevenin modeling of liquid metal 
battery, the online parameter identification method under this model is studied, which laid a 

theoretical basis for the development of the application potential of electric energy storage 

systems.12 The model of the lithium iron phosphate battery for pure electric vehicles and the 
strategies for identifying the model parameters are offered, which greatly improves the use 

efficiency of vehicle batteries.13 Using the correlation between the states, cooperative estimation 

strategy and the prediction of the  state of charge based on unscented particle filtering are 
proposed, which greatly improves the estimation accuracy of the battery state.14,15 The charge of 



the comprehensive model constructed in three different states of lithium-ion battery was 

estimated and compared, and a summary review of the state estimation methods commonly used 

in BMS was made.16,17 Although the lithium-ion battery model and adaptive iterative calculation 

method are given, the efficiency of the battery is increased to a certain extent.18,19 But with the 

deepening of the application of lithium-ion batteries,higher requirements are put forward for the 

accuracy and stability of the model, which requires the design of a new model to improve the 

performance of the lithium-ion battery. A lithium-ion battery dynamic model that could well 

simulate the dynamic interaction between battery aging and electric heating is provided for 

electric vehicles.20 The operando 3-omega sensor is employed to identify and characterize the 

internal thermal resistance of lithium-ion batteries, capable of improving the accuracy of the 

battery model.21 The electrochemical impedance and nuclear magnetic resonance spectra are 

analyzed to determine the stability of the electrolyte in lithium-air batteries, which provided 

reference for accurate modeling of lithium-ion batteries.22 A load response model for lithium-ion 

batteries at the charging state was proposed and applied to SOC estimation,23 and lithium-ion 

hybrid capacitors at different temperatures were modeled, which offered guidance for the design 

of the device for estimating succeeding states.24,25 By modeling the series lithium-ion battery 

pack and considering the change of temperature, a model-based battery SOC estimation method 

was proposed, which realizes the accurate estimation of the SOC of lithium-ion batteries under 

complex temperatureconditions.26 In addition, through the establishment of a lithium-ion battery 

nonlinear model and a fractional order model, and applying them to the SOC estimation of 
electric vehicles, the accurate state of the effective state of electric vehicles is improved.27,28 

Taking into account the degree of polarization of the lithium-ion battery,accurate identification 

of the parameters of the battery's charging state and the state of health under complex operating 

conditions is realized.29 By establishing a nonlinear degradation model, the energy storage effect 
and efficiency of lithium-ion batteries have been greatly improved.30 In addition to the above-

mentioned lithium-ion battery model, researchers have established numerous intelligent models 

for the internal nonlinear characteristics of the battery and considering the coupling of internal 

and external factors. And the above model is used to estimate the state of battery health or state 

of charge. It improves the modeling accuracy and ensures the high fidelity between the battery 

and the model, providing a theoretical basis for the subsequent prediction of the battery state.31-38 

1.3 | Contributions 

Compared with the above equivalent circuit models, electrochemical models based on the 

electrochemical reaction mechanism are described by mathematical relationships inside the 

battery. They are capable of essentially reflecting external battery parameters and the internal 

relationship between the electrochemical reactions, fully characterizing the battery, elevating the 
model prediction accuracy, and estimating the battery state more precisely. However, the 

traditional pure electrochemical model is difficult to simulate the dynamic performance of the 

battery. In this article, taking both accuracy and computational complexity of characterization 

into account, the lithium-ion battery splice-electrochemical circuit polarization model that 

combines electrochemical and equivalent circuits and possesses the merits of different equivalent 

circuit models is built, which has higher accuracy of describing the working status of the lithium-



ion battery. To solve the time-consuming problem and large errors of traditional parameter 

identification approaches as well as the data saturation problem possibly existing in the multi-

innovation least squares algorithm, with the one-sided limit applied in the discrete system, a multi 
innovation least squares algorithm optimized by the dynamic function introduced to constrain the 

original innovation weight is proposed. F-MILS improves the data utilization efficiency and 

accelerates the algorithm convergence. The parameters of the S-ECP model are identified by 

using hybrid pulse power characterization (HPPC) data with the help of the F-MILS. The 

accuracy of F-MILS is verified by the urban dynamometer driving schedule (UDDS) condition 

experiment, which provides data and a theoretical basis for future S-ECP and FMILS-based SOC 

estimation of lithium-ion batteries.

 

2 | THEORETICAL ANALYSIS 

2.1 | The equivalent model 

Typical electrochemical models mainly include Shepherd model, Unnewehr model, Nernst 

model, etc. The empirical equation of the model is constructed by analyzing the physical 

mechanism and electrochemical reactions inside the battery. In order to simplify the computation 

of the battery equivalent model and improve the simulation accuracy, the simplified empirical 

model is widely used. By the exploratory application of empirical equations and parameter 

identification, equivalent characterization of the battery state is achieved. Mathematical 

expressions of typical electrochemical models are presented in Table 1. Due to the transition 

process and polarization reaction in the charging and discharging process of lithium-ion batteries, 

the battery has excellent dynamic performance. The resistance-capacitance (RC) equivalent 

circuit model can simulate the dynamic performance of the battery through the RC parallel 

network, which has strong versatility and scalability. However, the increased RC networks will 

result in large quantities of computation and the over-fitting problem (Table 2). In order to 
balance the calculation and the accuracy of parameter identification, we construct a novel S-ECP 

model based on the first-order RC equivalent circuit model in this paper after refining the ohm 

and polarization characteristics of Nernst model and the differences in charge discharge internal 

resistance of lithium-ion batteries. TheS-ECP model structure is shown in Figure 1. 
In Figure 1, R0 is ohm resistance, Rp is polarization resistance, Cp is polarization capacitance, Rc 

is internal resistance at charging, Rcd is the internal resistance of the battery during charging and 
discharging, in which the internal resistance during discharging is represented by Rd, and the 
internal resistance during charging is represented by Rc. I is charge and discharge current, and the 
discharge direction is set as the positive direction. U is the sum of voltage at both ends of the R0 
and RC parallel circuit. The electrodynamic force of the S-ECP model comes from Nernst 
empirical equation, of which the functional value is used to represent the open circuit voltage Uoc 
of the battery. UL is the port voltage of the lithium-ion battery. The equivalent mechanism of each 
part of the S-ECP model proposed is described as follows:

2.2 | Open-circuit voltage equivalent analysis 

For better accuracy of parameter identification, we optimize the ohm and polarization 

characteristics of Nernst model. In combination with the equivalent circuit model,an S-ECP 

model with the improved Nernst model as the open-circuit voltage is proposed. Experiments 

show that Nernst model performs better in fitting in the whole charging and discharging process. 



In view of the special working condition of lithium-ion batteries, different combination tests suggest 

that K0, K1, and K2 constants selected by the model can well fit the data. An S-ECP model-based open-

circuit voltage function curve is plotted by multivariate function fitting of relevant laboratory data.

2.3 | State space description analysis

Based on S-ECP in Figure 1 and Kirchhoff's circuit law,the relationship of electrical quantities at t is 

given, as shown in Equation (1).

where UL(t) is terminal voltage of the battery at t, and t is the continuous time constant.

The state space equation of the system obtained fromthe S-ECP model is a continuous time 

model, which is not applicable to online parameter identification, so we discretize Equation (1) 

according to the procedures shown in Figure 2.

In combination with Figure 2, we have the difference equation of the discretized system as 

Equation (2).

where T is the sampling period and k is the discrete time constant. The matrices of coefficients and

parameter to be identified can be obtained by the difference equation. Equation (3) expresses the 

matrices

where θ and η are the matrices of coefficients and parameter to be identified of the discrete system 

model, respectively. Rnom is a direct measurement of the normal mixed resistance value after being 

completely put aside. By making the difference between the measured value of Rnom and the 

identification value of R0 under different SOC values, the Rcd value of the battery under different SOC 

values can be easily identified.

Then, the autoregressive exogenous (ARX) model for online parameter identification of 

lithium-ion batteries is achieved, as shown in Equation (4).



where β, y(k), and I(k) are the data vector, output, and input of the discrete system model, 
respectively. The coefficient matrix θ of the discrete system model is identified by MILS. 
According to Equation (4), all the parameters to be identified in the S-ECP model are acquired by 
recursion.

2.4 | Parameter identification method analysis

To solve the problem of data saturation in parameter identification of the recursive least squares 
algorithm and large errors of MILS caused by huge system input variations, we propose an F-MILS 
based on the dynamic function introduced to modify the matrix innovation of MILS. F-MILS can 
dynamically adjust the system with the preset function when the input differs greatly, capable of 
improving the data utilization efficiency and accelerating algorithm convergence.

2.4.1 | MILS algorithm model derivation 

MILS identification algorithm extends the scalar innovation to vector innovation and a data vector 
to an information matrix on the basis of the traditional RLS identification algorithm. It identifies 
system parameters by online iteration. The model that is applicable to this algorithm is derived in 
Figure 3.
According to Figure 3, if we assume the ARX modelas Equation (5):

where y(k) is the output sequence of the system, u(k) is the input sequence of the system, e(k) is 
the Gaussian white noise with zero mean, A(z-1) and B(z-1) are delay operator polynomials of order 
na and order nb, respectively, and they are expressed as:

The discrete transfer function of the system is: 

Then, we transform the discrete transfer function into a difference equation:

Taking θ as the coefficient matrix of the model, the expression is shown in Equation (9).



Then, the scalar innovation of the system is described as Equation (10).

where βT(k) is the data vector of the current moment, and θ(k-1) is the estimated value of the 
coefficient matrix at the previous moment.

After expanding the scalar innovation, the resulting matrix innovation is expressed by Equation 
(11).

where np is the length of innovation. 
Then, we obtain the model applicable to MILS, as represented in Equation (12).

where Y(np，k) is the system output vector after innovation modification.

2.4.2 | Dynamic function improvement 

The simulation results under complex dynamic conditions show that the parameter identification 
of the SECP model by MILS has big errors when the input current change rate is large. Besides, a 
sudden change of the system state will lead to an unsatisfactory tracking effect of terminal 
voltage of the model during the online parameter identification of MILS, thereby further reducing 
the accuracy of parameter identification and the subsequent SOC estimation precision. To tackle 
the above-mentioned problems, we propose an F-MILS based on the dynamic function 
introduced to constrain the original and innovation weight by optimizing the innovation of MILS. 
F-MILS tremendously improves the tracking effect of terminal voltage at a large input current
change rate. The specific improvement principle of F-MILS is shown below.

The one-sided limit of the input current of the system is defined as Equation (13):



where f I_(t) is the one-sided change rate of current in wo consecutive steps.

If the system current change rate is high and meets the following constraints:

The optimized innovation matrix is:

where γ is the constant factor in the dynamic function, α is the base factor in the dynamic 
function, which takes the value of αϹ  (0, 1), g(I) is the weight constraint factor, which takes the 
value of g(I) Ϲ (1, 2) to prevent the occurrence of soft regulation and over regulation, and 1/(|Ik-
Ik-1|) is the reciprocal of the current change rate, which takes the value of 1/(|Ik-Ik-1|) Ϲ 0,1 in 
the case of abrupt change of current.

Then, the model applicable to F-MILS is represented as Equation (16).

where Vimp(np, k) is the improved innovation matrix.

2.4.3 | Parameter identification based onF-MILS

To enhance the tracking effect of terminal voltage at a large input current change rate, we apply 
the one-sided limit to the discrete system and design an F-MILS based on the dynamic function 
introduced to constrain the original and innovation weight. F-MILS enables the innovation to 
adaptively match the system input change rate and further generates different weight constraints 
on the innovation, thus notably elevating the innovation utilization efficiency, speeding up the 
algorithm convergence and increasing the parameter identification accuracy. According to the 
last section, we can derive the recursive process of F-MILS, as shown in Figure 5.

According to Figure 4, the recursive process of parameter identification based on F-MILS is 
described in Table 3.

3| EXPERIMENT ANALYSIS

 3.1 | Experimental platform and battery parameters 

This study takes a ternary polymer lithium-ion battery with a nominal capacity of 50 Ah as the 
subject. To verify the accuracy of the S-ECP model and the superiority of F-MILS, we use the 
existing equipment in the laboratory to build a small-scale test platform. Figure 5 delineates the 
structure of the experimental device.



As shown in Figure 5, the structure of the experimental device includes: (a) temperature cycle test 
chamber (BTKS5-150C), whose temperature range is 40~ 150˚C; (b) power battery module test 
system (BTS750-200-100-4); (c) simulated high-altitude low-voltage test chamber (BE8104); and 
(d) BMS performance test system (CCS-5V600Aand BMS-HIL-1005).

3.2 | Feasible region of weight constraint factors

To deal with the parameter identification error caused by a large input current change rate of the 
discrete system, an F-MILS based on the dynamic function introduced to constrain the original 
and innovation weight is proposed, which improves the tracking effect of terminal voltage in the 
condition that the input current change rate is large. In order to evaluate the regulating ability of 
weight constraint factors, the parameter values in the dynamic function are discussed with α and 
1/|Ik-Ik-1| as independent variables. In this way, the best regulating effect of weight constraint 
factors is achieved while avoiding the over regulation. The discussion results are shown in Figure 
6.
In Figure 6, x represents 1/|Ik-Ik-1|, y stands for α, and z denotes g(I). As indicated in the figure, 
weight constraint factors are all less than 1 when γ < 1, resulting in soft regulation. Under a large 
system input current change rate, weight constraint factors less than 1 leads to big system errors, 
rather than regulates the system. Therefore, soft regulation should be prevented. When γ > 1, 
weight constraint factors are all greater than 1, causing over regulation and enlarging the system 
error. When γ = 1, the overall range of weight constraint factors is g(I)  (1.0, 2.0) (Figure 7C), 
which can help prevent soft regulation and over regulation. The reason is that in this range, the 
weight constraint factors change adaptively with the system current input and thus are suitable for 
the research on online parameter identification of lithium-ion batteries. Therefore, γ = 1 is 
selected for the following F-MLIS-based online parameter identification studies.

3.3 | Parameter identification results 

We conduct an intermittent charge-discharge experiment on the battery to examine the accuracy 
of the S-ECP model and the superiority of F-MILS, with a capacity of 5% at each time. After the 
battery is put aside for 2 h, the battery resistance is measured by a high-precision battery internal 
resistance tester. The average Rnom when charging the battery is 3.9443 m ω, and the average 
Rnom when discharging is 5.4631 m ω. Since the R0 of the battery is relatively stable during 
charging and discharging, this study assumes that the R0 of the battery during charging is the 
same as the R0 during charging. On this basis, according to the parameter identification results of 
FMILS, the Rc and Rd of the S-ECP model can be calculated. Additionally, the terminal voltage 
of the battery after standing is detected using a voltage tester during each intermittent charge-
discharge experiment. Based on experimental data, the parameters of the improved Nernst model 
are identified. Table 4 describes the identification results and errors.
The S-ECP model-based OCV-SOC curve is plotted based on the identification results in Table 4. 
The data obtained by the standard HPPC experiment identify parameters and validate the S-ECP 
model. The HPPC experiment steps are given in Table 5. 
The charge-discharge tests of the lithium-ion battery are conducted following the above test steps 
to afford the current, terminal voltage, and SOC waveforms in the HPPC test. Then, the 
parameters of the S-ECP model are identified online by F-MILS. The results are shown in Figure 
7.



In Figure 7A-D show the current curve, the voltage curve, and the SOC curve of the HPPC test, 
respectively. Figure 7E,G,I illustrate the parameter identification results of the S-ECP model. 
Figure 7F,H,J are the convergence rates of parameters during F-MILS-based identification. 
Figure 7K,L are the terminal voltage comparison curve and the terminal voltage error comparison 
curve of the HPPC test, respectively. In the two figures, U1, U2,and U3 denote the actual 
terminal voltage, the terminal voltage obtained by MILS, and the terminal voltage obtained by F-
MILS, respectively. It can be seen from Figure 7E,G,I that at the initial stage of discharging, R0 
is small (about 1.4 mΩ), Rp is larger (about 0.5 mΩ), and Cp is small (about 600F). In the middle 
and later stages of discharging, R0 and Cp increase while Rp decreases. At the end of 
discharging, Cp declines slightly. According to Figures 7F,H,J, F-MILS has a slow convergence 
speed and the curve fluctuates greatly at the initial stage of discharging. However, as the 
experiment continues, the convergence of each parameter is accelerated, the curve fluctuates 
slightly, and the parameter identification gets more precise. As shown in Figure 7K,L, the 
maximum errors of MILS and F-MILS are 4.7% and 1.6%, respectively, in the whole HPPC test. 
That is to say, the accuracy of F-MILS is 3.1% higher than that of the unmodified MILS. 
Moreover, the terminal voltage obtained by F-MILS can better track the actual terminal voltage. 
The HPPC experiment not only confirms the feasibility of S-ECP model but also preliminarily 
demonstrated the superiority of F-MILS.

3.4 | F-MILS algorithm verification

To further prove the superiority of F-MILS and the correction effectiveness of weight adjustment 
factors at a large current change rate, we carry out UDDS experiment on the lithium-ion battery 
under more complex working conditions and compare the terminal voltage tracking error 
measured by MILS with the MILS results. The current, voltage, and SOC curves of the UDDS 
experiment are shown in Figure 8. In Figure 8A-D the current curve, the voltage curve, and the 
SOC curve of the UDDS test, respectively. Figure 8E,F show the terminal voltage comparison 
curve and the terminal voltage error comparison curve of the HPPC test, respectively. In these 
two figures, U1, U2, and U3 represent the actual terminal voltage, the terminal voltage obtained 
by MILS, and the terminal voltage obtained by F-MILS, respectively. It can be seen from Figure 
8A that the current changes more frequently under UDDS conditions although the change rate 
under such conditions is not as high as that of the HPPC experiment. Meanwhile, the current 
change rates at adjacent moments vary, indicating that the UDDS test is more applicable to the 
verification of the regulating ability of weight constraint factors. According to Figure 8E,F, F-
MILS has a big error at the initial stage of the experiment, and the maximum error is 0.2%, 
which is 0.5% smaller than that of MILS (0.7%). As the experiment keeps going on, the terminal 
voltage errors of MILS and F-MILS decrease to 0.35% and 0.14%, respectively. F-MILS is still 
more accurate than MILS. In addition, the maximum error of parameter identification by S-ECP 
model combined with F-MILS algorithm is 11 mV, 0.3% higher than that by Reference 39 (the 
maximum error is 25 mV) and 0.2% higher than that by Reference 40 (the maximum error is 20 
mV). Taken together, under the working environment of high current density and current rate of 
change, the S-ECP model and F-MILS algorithm proposed in this paper are better than the 
traditional ECMs and MILS algorithms.



4 | CONCLUSION 

This paper aims to precisely describe the working status of lithium-ion batteries and improve the 
identification efficiency of lithium-ion parameters. Combining the advantages of different 
lithium-ion battery models and considering the model's characterization accuracy and the 
computational complexity of parameter identification, an S-ECP model that can more accurately 
describe the working status of lithium-ion batteries is proposed. To tackle the possible data 
saturation problem of MILS and the slow convergence problem caused by huge changes in the 
system input, we apply one-sided limit to the discrete system and put forward an F-MILS based 
on the dynamic function introduced to constrain the original and innovation weight and 
considers the influence of noise on identification accuracy. F-MILS can dynamically adjust the 
system with the preset function when a huge input change occurs, capable of improving the data 
utilization efficiency and accelerating the algorithm convergence. HPPC and UDDS experiments 
show that the maximum errors of the F-MILS and MILS algorithms at the initial stage of battery 
discharge are 0.2%and 0.7, respectively, and the maximum errors of the FMILS and MILS 
algorithms at the later stage of the battery discharge are 0.35% and 0.14%, respectively. The 
accuracy of the S-EP model and the superiority of the FMILS algorithm are verified. Future work 
will focus on SOC estimation based on the S-ECP model and F-MILS.
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