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Gŕımur Hjörleifsson Eldjárn,
Andrew Ramsay,

Justin J. J. van der Hooft,
Katherine R. Duncan,

Sylvia Soldatou,
Juho Rousu,
Rónán Daly,
Joe Wandy,

and Simon Rogers

April 28, 2021

1



Appendix A Strain correlation score p-value

Consider the population of strains as a set N , with cardinality #N , and consider the GCF G and molecular family
M as subsets of N . A strain correlation scoring function σ is a function taking as arguments two subsets G,M ⊆ N ,
representing the GCF and the MF respectively, and assigning to the pair a real-valued score s.

The scoring function we use is the scoring function defined in [1], which is defined as

σ(M,G) =α#(M ∩G) + β#(N \ (M ∪G)) + γ#(G \ (M ∩G)) + δ#(M \ (M ∩G)) (1)

=α#(M ∩G) + β(#N −#(M ∪G)) + γ(#G−#(M ∩G)) + δ(#M −#(M ∩G)) (2)

where α = 10, β = −10, γ = 1 and δ = 0. The coefficients α, β, γ and δ correspond to the strain being in both the
GCF and MF sets (α), neither of the sets (β), the GCF set but not the MF set (γ) and the MF set but not the
GCF set (δ).

Given a GCF G and a MF M , and a scoring function σ, we want to be able to calculate the p-value for the
potential link between G and M , i.e. the probability that σ(M,G) > s under the assumption that G and M are
independent. This means that for our purposes, the sizes of M and G, #M and #G, are constants, as well as the
total population size, #N .

Assuming that M and G are independent, we have given only #M and #G, and not #(M ∩G). Therefore, we
have

p(σ(M,G) = s) =
∑
o∈N

p(#(M ∩G) = o)p(σ̂(o) = s) (3)

We can therefore calculate the p-value as

p(σ(M,G) > s) =
∑
s′>s

p(σ(M,G) = s′) (4)

=
∑
s′>s

p(σ(M,G) = s′ | #M,#G,#N) (5)

=
∑
s′>s

∑
o∈N

p(#(M ∩G) = o)p(σ̂(o) = s′) (6)

But since the score is determined completely by #M , #G, #(M ∩G) and #N , the last term is always either 0
or 1. Furthermore,

p(σ̂(#(M ∩G)) = s′) = 1 (7)

precisely for those values of #(M ∩N) where

σ̂(#(M ∩G)) = s′.

Assuming as we are that M and G are independent, the first term, p(#(M ∩ G) = o), can be considered, in
terms of a hypergeometric distribution, as the probability of o “successes” in #M draws from a population of #N ,
with a total of #G marked elements, i.e.

p(#(M ∩G) = o) = p(o | #M,#G,#N)

follows hypergeometric distribution.
The two sums can be taken together as ∑

o|σ̂(o)>s

p(o | #M,#G,#N)

where o = #(M ∩G). As we are assuming that M and G are independent, p(o) follows hypergeometric distribution
and can be calculated by standard means.

In practice, the calculations only need to be carried out for the values of o which are possible given #M , #G
and #N , i.e. the lower bound for o is max(0, (#M + #G)−#N), and the upper bound is min(#M,#G).
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Appendix B The NPLinker Framework

NPLinker http://www.github.com/sdrogers/nplinker is intended to address the significant bottleneck that exists
in the realization of the potential of genome-led metabolite discovery, namely the slow manual matching of pre-
dicted biosynthetic gene clusters (BGCs) with metabolites produced during bacterial culture; linking phenotype to
genotype.

The NPLinker tool and its associated web application implement a new data-centric approach to alleviate this
linking problem by searching for patterns of strain presence and absence between groups of similar spectra (molecular
families; MF) and groups of similar BGCs (gene cluster families; GCF). Searching can be performed based on a
number of available analysis methods that can be employed in isolation or combined as required.

NPLinker is implemented as a standard Python package, appropriate for use in scripting or for interactive
environments such as a Jupyter notebook.

On top of this package, we have developed a Dockerised NPLinker web application which allows users to run it
in a browser and avoid the process of installing and configuring a suitable local Python environment. Interactive
HTML widgets (e.g. buttons, tables, sliders) provide a desktop-like interface while a backend Python process
responds to the events triggered in the browser.

In order to use the web application, all that is required from the user is a suitable dataset. These may be drawn
from the Paired omics Data Platform, from wholly local data, or a combination of the two. In the case of the
Paired omics Data Platform the web application is capable of automated downloading and preprocessing, including
running BiG-SCAPE if necessary. Output from BiG-SCAPE and other potentially lengthy analysis processes is
cached locally to reduce the time required to launch the application after the initial run.

The user interface is shown in Fig A. From left to right the tables contain MFs, spectra, BGCs, and GCFs.
The content is determined by an initial run of a standardised correlation scoring on the entire dataset with a user-
configurable threshold. This is intended to remove the large number of original objects that are very unlikely to
have any significant links. Subsequently when the user makes a selection of one or more objects from any table, all
objects that are not linked to the selected object(s) are hidden. For example, selection of a MF will filter out all
spectra not contained in that family. This in turn filters out all BGCs that do not share strains with those spectra.
Finally, all GCFs that do not contain the BGCs are removed. The filtering operates similarly when other object
types are selected as a starting point. This makes it possible for the user to rapidly look up and explore interesting
objects in a dataset before running other scoring methods on the filtered results. At any point the user can also
click a button to export a CSV file containing the current data displayed in any of the 4 tables for external analysis.

NPLinker contains all functionality described in the paper, as well as an additional scoring system named
“Rosetta scoring”. This uses a hand-curated translation table between a small subset of GNPS library spectra, and
their BGCs as stored in MiBIG. Putative links between a BGC and a spectrum in a data set can be highlighted
where the spectrum shows similarity with a GNPS library spectrum in the Rosetta set and the BGC has homology
to the corresponding MiBIG entry.
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Figure A: Web application workflow. The user selects an MF from the table on the left, triggering filtering of
spectra, BGCs, and GCFs in turn. The button above the spectra table is then clicked to generate results from the
enabled scoring methods. The results are then displayed underneath the tables.
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Appendix C NPLinker documentation

All Python source code for NPLinker is hosted on GitHub at https://github.com/sdrogers/nplinker.
An associated wiki at https://github.com/sdrogers/nplinker/wiki contains detailed instructions for installing

and running the web application described above. The NPLinker web application Docker image is hosted on
DockerHub.

API documentation for the NPLinker framework underlying the web application can be viewed at nplinker.readthedocs.io
and is automatically updated when the source code changes. The GitHub repository also contains a heavily-
commented Jupyter notebook which walks through the process of loading a dataset and using the NPLinker API
to explore it and search for links.
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Appendix D Matching predicted spectra to influential peaks

Appendix D.1 Rationale

To further validate the IOKR approach we investigated if it was possible, for high-scoring pairs of MS2 spectra
and metabolites, to manually match relevant peaks in MS2 spectra to possible fragments of the metabolites. Full
validation would require additional wet lab analysis, which is not possible with these publicly available datasets.

If a link is genuine, it ought to be possible to match MS2 peaks in the spectra to substructures of the relevant
chemical structures. If we can, it ought to be the case that these fragment peaks are particularly important in the
IOKR model. Below, we provide some examples to show that this is indeed the case.

Appendix D.2 Dataset

To illustrate this process, we took validated links in the Crusemann data set (see Section 2.8.2 and Table 4), as well
as two high-scoring potential links chosen as their ranking had a strong contribution from the IOKR score.

Appendix D.3 Methodology

To match MS2 peaks to chemical substructures we made use of the MetFrag web interface [2]. For a given metabolite
and spectrum, using the compound name search function within the NPAtlas database [3], we found the accurate
mass for the metabolite. This was used as a search criterion on the neutral mass in the NPAtlas_Aug2019 database
in MetFrag [2], to ensure that the relevant metabolite was in the candidate set. Because we wanted to match
measured peaks in an actual MS2 spectrum to the predicted peaks for a particular metabolite, ideally, the MetFrag
candidate set should have one member. Where more than one result was returned, only the result where the
candidate metabolite name matched the given metabolite was used, except in the case of griseochelin, which was
considered equivalent to zincophorin as it has been by others in literature [4].

The relevant spectral data was extracted from the Metabolomics Spectrum Resolver [5] and the MetFrag in-silico
fragmentation algorithm (with default settings) was used. Peaks that did match were then checked to see how their
exclusion from the MS2 spectrum influenced the ranking of the metabolite, among the set of all metabolites, to
that spectrum.

The images for the spectra were generated by the Metabolomics Spectrum Resolver [5] while the images for the
metabolites were genreated by MetFrag [5], with the identified substructure highlighted in green.
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Appendix D.4 Results

Example (validated link) For rosamicin, NPAtlas reported an accurate mass of 581.3564 which had a unique
hit in the NPAtlas database in MetFrag. Of the 31 peaks in spectrum 93193, 12 were matched to the hypothetical
spectrum, with a raw score of 67.1248. One of those, the peak at m/z 158.117004, matched the predicted peak at
158.11762 Da. Removing this peak changed the (0-based) rank of the metabolite against that spectrum from 16 to
163.

The predicted peak at 158.11762, highlighted in green in the image below, represents a biological subunit
(aminosugar) of the metabolite.
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Example (potential link) For griseochelin, NPAtlas reported accurate mass of 568.4339, which yielded two
candidates in the NPAtlas database in MetFrag. Curiously, when matching the spectra, only one result line showed
up in MetFrag. This line was annotated as zincophorin, which is another name for griseochelin. Of the 18 peaks
in spectrum 51165, 2 were matched to the hypothetical spectrum, with a raw score of 2.9841. One of those, the
peak at m/z 95.086998, matched the predicted peak at 95.08558 Da, highlighted in green in the image below, and
removing this peak changed the (0-based) rank of the metabolite against that spectrum from 0 to 3.
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Example (validated link) For staurosporine, NPAtlas reported accurate mass of 466.2005, which yielded seven
candidates from the NPAtlas database in MetFrag. Only one was annotated as staurosporine, and that was used
for the analysis. Of the 22 peaks in spectrum 44982, 7 are matched to the hypothetical spectrum, with a raw score
of 159.7769. One of those, the peak at m/z 56.049999, matched the predicted peak at 56.0495 Da, highlighted
in green in the image below, and removing this peak changed the (0-based) rank of the metabolite against that
spectrum from 1 to 67.
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Table A Product types of validated links

Gross size (nt) type no. genes
BGC0000632 16122 Terpene, Saccharide 13
BGC0001381 210303 Polyketide 102
BGC0001842 42814 NRP (other lipopeptide) 7
BGC0000463 43207 NRP (other lipopeptide) 4
BGC0001116 57999 NRP, Polyketide 18
BGC0000399 47020 NRP (cyclic depsipeptide) 17
BGC0000296 66086 NRP 28
BGC0001298 41001 Polyketide 9

Leão size (nt) type no. genes
BGC0001165 87427 NRP, Polyketide (other) 14
BGC0000962 40156 NRP, Polyketide (other) 12
BGC0001000 41964 NRP (Other lipopeptide), Polyketide (other) 8
BGC0001001 69900 NRP, Polyketide (other) 26
BGC0001560 28792 NRP, Polyketide 12

Crüsemann size (nt) type no. genes
BGC0000827 24300 Alkaloid 17
BGC0000333 47477 NRP 23
BGC0000940 7328 Other 6
BGC0000241 62231 Polyketide (Other), Saccharide (hybrid/tailoring) 58
BGC0001228 37781 NRP (Cyclic depsipeptide) 23
BGC0000137 91573 Polyketide 39
BGC0001830 64171 Polyketide 23

Table B Sizes of data sets

Sizes of the data sets, including how many BGCs could be structurally annotated for IOKR scoring using similarity
to MIBiG entries. MIBiG entries are associated with BGCs by running antiSMASH in known cluster blast mode,
and any homology detected by antiSMASH is considered valid.

Crüsemann Leão Gross
Total BGCs 3316 147 131
BGCs with assigned structure 2242 57 83
Total spectra 6246 173 9593

Table C Comparison of score distributions

Comparison of mean scores for all links vs. validated links for the various data sets. The p-value is for the null
hypothesis that the distributions have identical means.

Crüsemann Mean score all Mean score valid p-value
Raw correlation 83.5144 14.6667 0.0001
Standardised correlation -0.0060 3.6717 6.8302e-64
IOKR 0.0105 0.0364 1.7968e-9

Leão Mean score all Mean score valid p-value
Raw correlation -1.9843 12.625 0.0001
Standardised correlation -0.0218 1.4962 1.1887e-05
IOKR 0.0014 0.0038 0.3922

Gross Mean score all Mean score valid p-value
Raw correlation -0.7386 0.6 0.7929
Standardised correlation 0.0092 1.6149 6.0056e-06
IOKR 0.02721 0.037020 0.5155
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Table D Number of validated links in higher percentiles

Number of links (validated vs. total) for the different scoring functions and data sets. The first two columns
describe the unfiltered data, while the others only count links scoring over 95th percentile on either or both scores.

all > 95% IOKR > 95% correlation > 95% both
verified total verified total verified total verified total

Gross 5 501886 1 25095 2 35333 0 1537
Leão 8 9342 1 437 6 1560 1 77
Crüsemann 15 999362 6 49970 10 50224 4 2517
all 28 1510590 8 75502 18 87117 5 4131

all > 90% IOKR > 90% correlation > 90% both
verified total verified total verified total verified total

Gross 5 501886 1 50189 4 52014 1 5313
Leão 8 9342 1 935 6 1560 1 147
Crüsemann 15 999362 6 99937 13 100494 5 10836
all 28 1510590 8 151061 23 154068 7 16296
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