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 

Abstract— Quantifying phenolic compound in peated barley 

malt and discriminating its origin are essential to maintain the 

aroma of high-quality Scottish whisky during the manufacturing 

process. The content of the total phenol varies in peated barley 

malts, which is critical in measuring the associated peatiness level. 

Existing methods for measuring such phenols are destructive 

and/or time consuming. To tackle these issues, we propose in this 

paper a novel nondestructive system for fast and effective 

estimating the phenolic concentrations and discriminating their 

origins with the near-infrared hyperspectral imagery and machine 

learning. First, novel ways of data acquisition and normalization 

are developed for robustness. Then, the principal component 

analysis (PCA) and folded-PCA are fused for extracting the global 

and local spectral features, followed by the support vector machine 

(SVM) based origin discrimination and deep neural network 

based phenolic measurement. In total 27 categories of peated 

barley malts from eight suppliers are utilized to form thousands of 

spectral samples for modelling. A classification accuracy up to 

99.5% and a squared-correlation-coefficient up to 98.57% are 

achieved in our experiments, outperforming a few state-of-the-art. 

These have fully demonstrated the efficacy of our system in 

automated phenolic measurement and origin discrimination to 

benefit the quality monitoring in the whisky industry. 

Index Terms— Phenolic compound measurement; origin 

discrimination; near infrared (NIR) Hyperspectral imagery; 

peated barley malt; machine learning. 

I. INTRODUCTION

yperspectral imaging (HSI), or image spectroscopy,

combines spectroscopy with conventional 2-D imaging to 

take the advantage of spectral characterization of each pixel in 

imaging an object. With the concept first derived in [1], HSI 

aims to identify the surface materials in a form of images. 

Afterwards, HSI has been successfully applied in many remote 

sensing tasks, including precision agriculture [4], land-cover 

analysis [5], military surveillance [6] and mineral exploration 

[7]. Owing to its additional radiance spectrum information for 

each pixel, HSI has become an emerging technique for 

nondestructive inspection and assessment in a wide range of 

lab-based new applications, e.g. food quality control [8], 
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medical diagnosis [9], forensics [10] and artwork authentication 

[11], etc. Moreover, HSI has also been successfully applied in 

other image processing and machine learning tasks, such as 

object detection and material identification [12].  

As a high-quality spirit drink exclusively produced in 

Scotland, Scotch whisky has been exported to 175 countries and 

regions around the world, accounting for nearly a quarter of all 

UK food and drink exports [13]. Due to its high commercial 

value, maintaining high quality standards during production are 

of primary interest to the Scotch whisky industry. Flavor 

character is the key factor, which comes both naturally from 

raw materials and is generated through the production process. 

Peated Scotch whiskies differ from others in terms of smoky 

flavor that depends on the length of time that the malted barley 

is exposed to the smoke during the drying process in a kiln [14]. 

Volatile phenolic compounds in the peat smoke adhere to the 

surface of the malted barley and are carried through the 

production process, resulting in the characteristic smoky taste 

for many whiskies. 

Large parts of the Scottish countryside are covered in peat 

bogs, where dried peat has a long history of utilization as a 

heating fuel. Peat from different regions introduces various 

taste notes and adds additional variety to the rich tastes of 

Scotch whiskies [15]. Depending on the flavor requirements, 

distilleries use peated barley malt from different origins with 

various peated levels. Distillers usually define a  peated level in 

terms of Phenol Parts per Million (ppm), which often measures 

the collective concentration of a range of phenolic compounds 

by traditional chemical analytics methods e.g. spectro-

photometric techniques and high-performance liquid chromate-

graphy (HPLC) [16]. Therefore, the combined total of all 

phenolic compounds is used as a marker to the degree of 

peatiness of the malted barley. However, those existing 

methods don’t measure the phenols on the peated barley malt 

itself. Rather, they rely on a pre-distillation step to extract the 

phenols followed by analyzing the resulting distillate, which is 

destructive and time consuming. For the benefit of the Scotch 

Whisky industry, it is of value to develop a fast, accurate and 

nondestructive technique to determine the phenol levels in the 
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peated barley malt and trace the origin of the peated barley malt. 

In recent years, a wide range of machine learning algorithms 

have been successfully applied for HSI based food quality 

inspection and grading applications. Noviyanto et al. [17] 

proposed a multi-stage model including noisy band elimination, 

spectral normalization and hierarchical classification, to 

classify the honey botanical origin with the k-nearest neighbor 

(KNN) and support vector machine (SVM) classifiers. 

Erkinbaev et al. [18] built an artificial neural network (ANN) to 

predict wheat hardness from HSI data. Han at al. [19] assessed 

the aflatoxin on peanut from HSI with the convolutional neural 

network (CNN). In [20], a random forest model was used to 

classify four types of bruising degrees of an apple. Comparing 

with the conventional chemical analysis, HSI and machine 

learning has two advantages, i.e. fast data acquisition and non-

destructive testing. However, the analytics performance may be 

affected by the way of data acquisition and modelling. 

In the past, HSI has been used to detect the concentration of 

phenolic compounds in skins/stems of grapes [21] and seeds 

[22]. However, applying HSI for nondestructive measurement 

of phenolic compound in peated barley malt has not been fully 

explored. Although some preliminary works [23, 24] have 

shown the potential of using HSI to analyze the peated barley 

malt, they have some major drawbacks, especially the limited 

category number of peated barley malt and impractical 

experimental settings to have both the training and testing data 

from the same hypercube. Moreover, the phenolic compounds 

show few salient features on their rich but noisy spectral 

profiles, which brings a fundamental challenge in this context. 

 To tackle the aforementioned issues, in this study, a novel 

nondestructive HSI-based system is developed for real-time 

origin discrimination and phenolic measurement of peated 

barley malt in accordance with industrial conditions. The 

proposed system has been successfully applied for estimating 

the total phenol levels and distinguishing 27 categories of 

peated barley malt provided by 8 suppliers. To the best of our 

knowledge, this is the first time that the sophisticated data 

acquisition and feature extraction methods are proposed and 

combined for extracting both global and local spectral features, 

followed by various machine learning models for classification 

of the origins and prediction of the phenolic levels. With the 

excellent results produced, the proposed system can be 

potentially applied in real production lines for benefiting the 

quality monitoring in the whisky industry. 

The main contributions of this paper are highlighted below: 

1) We propose a fast, accurate and nondestructive testing

system for phenolic measurement and origin discrimination

of peated barley malt, which is essential for accurate flavor

control and traceability in the Scotch whisky industry;

2) A new way of data acquisition and a new data analysis

framework are proposed for consistently spectral

measurement of phenolic levels. After applying the joint

bilateral filter to reduce the data noise, the principal

component analysis (PCA) and folded PCA are fused to

extract both the global and local spectral features;

3) We have carried out comprehensive experiments on 27

categories of 6750 spectral samples of the peated barley

malt from 8 suppliers, where useful discussions and 

conclusions are achieved. This includes the identified best 

routines i.e. support vector machines (SVM) based origin 

discrimination and deep neural network (DNN) based 

phenolic level prediction. 

The rest of this paper is organized as follows. Section II 

introduces the proposed system. Section III describes the 

experimental settings including data analysis models and 

evaluation criteria.  Section IV presents the experimental results 

and discussions. Finally, some concluding remarks are drawn 

in Section V with some future prospects. 

II. MATERIAL AND METHODS

A. Imaging system

The hyperspectral data is acquired by an NIR-HSI camera,

InnoSpec RedEye 1.7, which covers a spectral range of 950-

1760 nm with a spectral resolution of 10 nm. The NIR-HSI 

camera operates in the push-broom mode, where the lens of the 

camera faces downwards and scans only a single line at a time. 

The light source is provided by 8 tungsten halogen light sources 

with the exposure time of 2.5ms and 3 watts each, which are 

equally split into two sets and hang on either side of the camera. 

The objects to be scanned are moved with a translational stage 

underneath the camera at an even speed. With a working 

distance of 24cm, the speed of the translational stage is set to 

15mm/s and the length of path is 20cm. There are 320 pixels 

per line, and each pixel contains 256 spectral responses. 36 

noisy bands in the wavelength ranging of 1680-1760nm are 

removed, resulting in 220 bands remained for spectral analysis. 

B. Sample preparation

The peated barley malt grains used in this study are provided

by 8 maltsters and distilleries in Scotland, forming 27 

categories with the range of the total phenolic concentration 

varies from 0 ppm (unpeated) to 189.2 ppm (heavily peated) as 

detailed in Table I.  The concentration of the total phenol, 

including phenol, guaiacol, o-cresol, m/p-cresol, methyl-

guaiacol, ethyl-phenol and ethyl-guaiacol, differs in these 

categories. Although some categories have similar total 

phenols, the individual phenolic flavor compounds may vary 

significantly. As a result, origin discrimination is critical for 

peated barley malts selection and flavor control of Scotch 

whisky. In addition, as distilleries use the total phenol 

concentration as an indicator to the phenol level of the malted 

barley [11], this study focuses on estimating the concentration 

of total phenol rather than individual compounds.  

During kilning, a bed of malted barley is exposed to the 

peated smoke. During this natural process, the amount of 

phenols on the surface of each grain is usually inconsistent. As 

a result, measuring the single spatial point with a plain NIR 

cannot fully represent the concentration of each grain. To this 

end, in our study, grains are spread out in a container to 

maximize their surface, where the average concentration is 

calculated to represent the spectra of the batch.  

For each category, we prepare one container of peated 

barley malts for training dataset acquisition and another for 



testing data acquisition. To mitigate the effects of the ambient 

light and inconsistency between the training and testing dataset, 

each container of peated barley malts is scanned 4 times where 

with the container rotated in 4 different direction (0°, 90°, 180°,

270°) to form four hypercubes. The obtained 4 hypercubes will

be pre-processed and stacked in a pixel-wise manner to produce 

a stacked image data pool for training or testing. The mean 

spectral samples are generated as follows. Let M denote the 

number of pixels in the selected region of interest (ROI), we 

randomly selected one pixel in every s pixels as representative 

spectral samples, for either training or testing. When M=50000 

and s=200, we will have 250 spectral samples extracted from 

the hypercube. For 27 categories of peated barley malts, in total 

6750 spectral samples are collected to form either the training 

or the testing data pool. The selection of s will affect the 

classification results, which is discussed in Section IV. The 

statistics of training and testing dataset used for three machine 

learning models with s=200 is given in Appendix: Table A. 

C. Sample analysis

Fig. 1 shows an example spectrum of one category of the

peated barley malt samples, in which the blue curve denotes the 

mean spectrum of all the valid pixels selected from a ROI in the 

green region of a pseudo-colored image of the peated barley 

malt (top right), and the red fill depicts the standard deviation 

(std). In the bottom-left, a normalized histogram of all pixels at 

a specified wavelength of 1424nm is also given. As seen, the 

standard deviation on all the bands is almost the same, and the 

1 https://spectrabase.com/spectrum/Lqer4LFqcZq 

reflectance value of all pixels in a given band appears nearly a 

Gaussian distribution. As the noise follows a zero-mean normal 

distribution, the sigma of this Gaussian distribution is about 

0.15, indicating a very low signal-to-noise ratio (SNR). 

In addition, the main spectral characteristics of the peated 

barley malts in this study are visualized in Fig. 2 (a), where the 

highlighted important bands are explained according to some 

related studies1,2 [1, 3] as follows. 

In [1], the phenol is shown in three absorption bands close 

to 880nm, 1130nm and 1660nm, with the highest absorptivity 

at 1130nm and lowest at 1660nm (Fig. 3(a)). Although our HSI 

2 https://spectrabase.com/spectrum/CkVWlQpzCOW 

TABLE I 
DESCRIPTION OF 27 CATEGORIES OF MALTED BARLEY IN PPM. 

Category Supplier Phenol Guaiacol m/p-Cresol o-Cresol 
4-Methyl

guaiacol 

4-Ethyl

phenol 

4-Ethyl

guaiacol 

Total 

Phenols 

1 Maltster A 45.6 1.8 20.2 3.9 3.1 8.2 3.0 85.9 

2 Maltster A 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

3 Distillery A 14.7 1.8 6.7 2.5 0.7 3.6 1.6 31.6 

4 Distillery A 33.0 3.3 15.2 5.7 1.2 8.0 4.7 71.0 

5 Distillery A 25.1 2.2 10.7 3.7 1.3 5.4 3.0 51.4 

6 Distillery A 19.6 1.7 7.5 2.8 0.6 3.0 1.4 36.6 

7 Distillery A 16.7 1.5 6.4 2.3 0.4 3.6 2.0 32.9 

8 Distillery A 27.4 2.3 12.4 4.7 0.8 6.1 2.5 56.2 

9 Distillery A 20.6 1.9 8.3 3.1 0.0 3.9 2.1 39.9 

10 Distillery A 24.8 2.3 10.2 3.7 1.0 4.2 1.0 47.2 

11 Distillery A 11.3 0.1 3.2 1.1 6.2 2.4 1.4 25.6 

12 Distillery A 26.3 2.0 11.6 3.6 0.0 5.3 6.2 55.0 

13 Distillery B 18.3 1.5 6.1 1.5 2.2 2.8 0.0 32.4 

14 Distillery B 12.9 0.0 4.4 0.9 0.0 1.4 0.0 19.6 

15 Distillery C 4.7 0.0 0.2 0.0 0.0 0.3 0.0 5.3 

16 Distillery D 37.0 2.9 11.4 3.3 0.0 4.5 1.8 61.0 

17 Distillery D 40.4 4.4 17.7 4.4 3.8 6.9 2.4 80.1 

18 Distillery D 40.7 4.5 19.0 5.1 2.9 9.6 3.5 85.3 

19 Maltster D 51.3 5.2 24.4 6.4 4.4 11.7 7.0 110.4 

20 Maltster D 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.2 

21 Maltster E 0 0 0 0 0 0 0 0.0 

22 Maltster E 66.5 4.6 31.2 8.6 1.4 12.6 5.2 130.0 

23 Maltster F 11.1 0.5 3.3 1.0 0.3 1.4 0.0 17.6 

24 Maltster F 25.2 1.3 8.3 1.7 1.9 3.4 2.1 43.8 

25 Maltster F 60.0 3.7 24.0 5.9 3.0 9.0 5.4 111.1 

26 Maltster F 83.8 6.2 34.1 7.7 6.0 12.7 4.8 155.4 

27 Maltster F 101.3 7.3 42.9 10.2 4.6 15.8 7.0 189.2 

Fig. 1. Spectral profile of ROI with the histogram at certain wavelength 

https://spectrabase.com/spectrum/Lqer4LFqcZq
https://spectrabase.com/spectrum/CkVWlQpzCOW


camera cannot detect the spectral information below 880nm, the 

reflectance intensity drops at about 1131.7nm and 1657.3nm, as 

highlighted in green boxes. As indicated in [3], the O-H groups 

and C-H groups can represent the main characteristics in the 

phenolic compounds. Although our HSI camera cannot see the 

information above 1700nm, the absorption bands of two O-H 

groups, located close to 1200nm and 1459 nm (Fig. 3(b)) as 

highlighted in red boxes, match the findings in [3] (Fig. 2 (a)). 

According to the spectra data provided by a public database, 

PubChem 1,2, the main absorption bands of m/p-cresol occur at 

1140nm and 1380-1450nm (Fig. 3(c)), which is highlighted in 

blue boxes with the quick dropping down of the reflectance 

intensity in Fig. 2 (a). 

Moreover, the weight of each band is calculated using the 

‘ReliefF’ analysis with 10 nearest neighbors per class [25]. For 

robustness, we randomly select 10 groups of spectral samples 

for analysis, and the averaged weights are obtained as ranked 

importance of the corresponding bands and shown in Fig. 2 (b). 

As seen in Fig. 2 (b), the important bands have been 

highlighted in different colors, where each of them corresponds 

to a peak in the plotted curve of band weights. Due to lack of 

detailed spectral information of all individual phenolic 

compounds, peaked weights at some bands cannot be fully 

explained. In fact, the chemical characteristics of peated barley 

malt is very complicated, as any band can contribute more or 

less to its chemical properties. Therefore, it is very difficult to 

select one or several representative bands for the purpose. For 

the data from various maltsters and distilleries, there is neither 

strictly linear relationship between the reflectance value and the 

associated phenol concentration nor salient characteristics for 

each category of peated barley malts. To this end, more 

sophisticated features are needed to extract the underlying 

(a) 

 (b) 
Fig. 2. Comparison of spectra of NIR reflectance of 27 categories of peated barley malt (a) and the corresponding band weights generated by ReliefF analysis 

using 10 nearest neighbor per classes (b). 



patterns of the data for characterizing the NIR spectrum of the 

scanned peated barley malt grains. 

D. Multi-stage data processing

In this section, multi-stage data processing is applied in our

proposed framework to extract the representative features for 

analyzing the spectral data. As illustrated in Fig. 4, this process 

includes four main modules, i.e. pre-processing, region of 

interest (ROI) extraction, data selection, feature extraction and 

fusion as detailed below.   

1) Pre-processing

After data acquisition, three pre-processing steps are applied

to the HSI for spectral calibration, spatial denoising and spectral 

correction sequentially as detailed below. 

Spectral calibration: During the data acquisition, the 

lighting conditions may vary slightly within a hypercube or 

apparently between different datasets across the scan lines. To 

tackle such inconsistency and keep the effect of light conditions 

constant, light calibration is utilized by transforming the raw 

radiance spectra s to the reflectance spectra r as follows: 

𝑟 =
𝑠 − 𝑑

𝑤 − 𝑑
(1) 

where the dark reference spectra 𝑑  is acquired by capturing 

without any light exposure to the NIR-HSI camera, which can 

estimate the shot noise of the camera. The white reference 

spectra 𝑤 is acquired by capturing an optimally reflective white 

surface, e.g. Spectralon, aiming to estimate the light sensitivity 

to the current illumination and normalize the signal. 

The spectra of the peated barley malt depends not only on 

the chemical absorption but also the physical light scattering on 

the surface of the objects. As the surface of barley grains is very 

rough, the light exposure of different regions varies. Therefore, 

shadow effects as well as diverse light scattering may appear 

and result in poor results of classification and regression. To 

tackle these issues, joint bilateral filtering (JBF) [2] and 

standard normal variate (SNV) [26] are employed to smooth 

and denoise the data in the spatial domain and also to eliminate 

the scatter distortion in the spectral domain, respectively.  

Spatial denoising: As a non-linear method, bilateral 

filtering smooths images whilst preserving edges by fusing 

domain and range filtering together. In [2], an improved joint 

bilateral filtering (JBF) method is proposed for HSI data, which 

is also used in this paper to spatially smooth the data. Given a 

HSI data D ∈ ℜ𝐼×𝐽×𝐵,  I and J are the spatial size of D and B is

the number of spectral bands. The JBF result of the input data 

D at the location (𝑖, 𝑗) of band b can be obtained by: 

𝐷𝐽𝐵𝐹(𝑖, 𝑗, 𝑏) =
1

𝑘(𝑖, 𝑗)
∑ (𝐺𝜎𝑑

(𝑖 − 𝑝, 𝑗 − 𝑞) ×

(𝑝,𝑞)∈𝑤 (2) 

𝐺𝜎𝑟
(𝐼𝑃𝐶1(𝑖, 𝑗) − 𝐼𝑃𝐶1(𝑝, 𝑞))𝐷(𝑝, 𝑞, 𝑏))

where 𝑤  is a local window centered at (𝑖, 𝑗)  with a size of 

(2𝜎𝑑 + 1) × (2𝜎𝑟 + 1) pixels.

The normalization factor 𝑘 is defined as 

𝑘(𝑖, 𝑗) = ∑ (𝐺𝜎𝑑
(𝑖 − 𝑝, 𝑗 − 𝑞)

(𝑝,𝑞)∈𝑤

× 𝐺𝜎𝑟
(𝐷𝑃𝐶1(𝑖, 𝑗) − 𝐷𝑃𝐶1(𝑝, 𝑞)))

(3) 

where 𝐷𝑃𝐶1  is the first principal components derived from

principal component analysis (PCA) [27], and (𝑝, 𝑞) represents 

the spatial location of a pixel in the local window 𝑤. 

The kernels for domain and range filtering are given by: 

𝐺𝜎𝑑
(𝑖 − 𝑝, 𝑗 − 𝑞) = 𝑒𝑥𝑝 (−

(𝑖 − 𝑝)2 + (𝑗 − 𝑞)2

2σ𝑑
2 ) (4) 

𝐺𝜎𝑟
(𝐷𝑃𝐶1(𝑖, 𝑗) − 𝐷𝑃𝐶1(𝑝, 𝑞))

= 𝑒𝑥𝑝 (−
(𝐷𝑃𝐶1(𝑖, 𝑗) − 𝐷𝑃𝐶1(𝑝, 𝑞))

2

2σ𝑟
2

) 
(5) 

where 𝜎𝑑 and 𝜎𝑟 determine the neighborhood window and the

contributed weights of neighboring pixels, respectively [28]. 

Spectral correction: SNV is commonly used in HSI to 

(a) Reflectance spectrum of phenol [1] 

(b) Reflectance spectrum of O-H groups [3] 

(c) Absorbance of m/p-cresol as in PubChem 1,2 

Fig. 3. Characterized spectra of phenol (a), O-H groups (b) and m/p-cresol (c), 

where the cited images have been modified for improved visual effects. In (b), 
we convert the original wavenumber to wavelength and insert the results as 

texts in red for clarity. 



compensate the scattering distortions, i.e. for spectral correction 

[26]. Here, it is used to reduce the variability between pixels 

due to scattering. For any pixel with a reflectance spectrum 𝑟𝑠

in 𝐷𝐽𝐵𝐹 ∈ ℜ𝐼×𝐽×𝐵  at the location (𝑖, 𝑗) where 𝑖 ∈ 1: 𝐼, 𝑗 ∈ 1: 𝐽 ,

the process of SNV can be defined by: 

𝑟𝑠 = 𝐷𝐽𝐵𝐹(𝑖, 𝑗, 𝑏1:𝐵) (6) 

𝑟𝑠(𝑆𝑁𝑉) =
𝑟𝑠 − 𝜇

𝜎
(7) 

𝜇 =
1

𝐼 × 𝐽
∑ 𝑟𝑠

𝐼∗𝐽

𝑠=1

(8) 

𝜎 = √
1

𝐼 × 𝐽
∑(𝑟𝑠 − 𝜇)2

𝐼∗𝐽

𝑠=1

(9) 

where 𝑏1:𝐵 is a spectral vector at location (𝑖, 𝑗),  𝜇 and 𝜎 are the

mean and standard deviation of all pixels in 𝐷𝐽𝐵𝐹.

2) ROI extraction

In data preparation process, the peated barley malt grains of

each category are spread out in a round container. After data 

acquisition, the HSI data contains the spectra of peated barley 

malt grains (ROI) as well as the background. Fig. 5(a) illustrate 

the 100th band in the captured hypercube data and Fig. 5(b) is 

the 100th band after pre-processing. The background of each 

image data is pretty much the same, which is not helpful for 

classification and regression of peated barley malts. Therefore, 

in this section, we employ a robust circle detection method to 

extract the pixels of peated barley malt grains only, i.e. any 

pixels within the blue mask in Fig. 5(e). This will not only speed 

up the following on feature extraction and fusion but also 

improve the accuracy of classification and regression. 

The process of ROI circle detection is summarized below: 

1) Apply a thresholding on the 100th band image to extract a

binary template. As seen in Fig. 5 (a-b), the grains have a

higher intensity than the background. The threshold is

selected as the first valley of the histogram going from

bright to dark as shown in Fig. 5 (c). Here, the threshold

value is determined as 140;

2) Fill the holes in the binary template for calculating its

centroid using the central moment, i.e. the mean x and y

values of all white pixels;

3) Determine the minimum radius in Fig. 5 (d) from the

centroid to the boundary in eight directions, which is faster

than the Hough transform;

4) Generate the circular mask and remove the outliers, the

results are shown in Fig. 5 (e);

5) Apply the mask on the pre-processed hypercube to extract

the pixels of peated barley malt grains as our extracted

ROIs, see in Fig. 5 (f).

3) Data selection

As the distribution of phenols on the barley surface is

uneven, the spectra of different pixels varies. In addition, the 

mean phenol level of the entire patch is desired in industrial 

applications. To this end, rather than taking individual pixels as 

samples, the average spectra over a subset of s pixels is used for 

analysis. For each acquired hypercube, the number of spectral 

samples depends on the number of the chosen subsets. How the 

number of subsets may affect the performance of classification 

and regression is discussed in Section IV.   

Fig. 5. The workflow of the proposed phenolic measurement and origin discrimination system. 

(a) (b) (c) 

(d) (e) (f) 

Fig. 4. Illustration of ROI processing. (a) 100th Band of HSI; (b) Pre-processed 

result of (a); (c) Step 1, histogram of (b); (d) Step 2-3, red arrow represents 

the minimum radius; (e) Step 4; (f) Step 5. 



4) Feature extraction and fusion

Considering high redundancy between neighboring spectral

bands, feature extraction and data reduction are widely used in 

HSI data analysis [29-31]. PCA, also known as the Karhunen-

Loeve Transform (KLT) [27], is a widely used unsupervised 

method for dimension reduction and feature extraction in HSI. 

By orthogonal projection and truncation of the transformed 

(feature) data, correlations among the data can be removed, 

resulting in a lower dimension of data as the global structure 

features of the hypercube. Given N spectral vectors 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑁}, 𝑋 ∈ ℜ𝑁×𝐵, we can have 𝑃𝐶𝐴(𝑋) ∈ ℜ𝑁×𝑞𝑃𝐶𝐴 as

the extracted first 𝑞𝑃𝐶𝐴 principal components.

As a modified version of PCA, Folded-PCA (FPCA) is 

proposed to extract mainly local structures in the spectral 

domain [32]. For a given spectral vector 𝑥𝑛, conventional PCA

extracts the principal components from all the bands. In Folded-

PCA, the spectral vector 𝑥𝑛  is divided into 𝐻  groups, each

containing 𝑊 bands, where 𝐻 × 𝑊 = 𝐵. When 𝐻 = 1, FPCA 

degrades to the PCA. The covariance matrix of FPCA is 

summed by 𝐻  groups with a size of  𝑊 × 𝑊  in the main 

diagonal of the original covariance matrix. After calculating the 

covariance matrix, Eigen problem and data projection will be 

solved. Given N spectral vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} ∈ ℜ𝑁×𝐵,

and 𝑞𝐹𝑃𝐶𝐴 principal components will be extracted. We can have

𝐹𝑃𝐶𝐴(𝑋) ∈ ℜ𝑁×𝑞𝐹𝑃𝐶𝐴 . The major difference between 𝑃𝐶𝐴
and 𝐹𝑃𝐶𝐴 is the way for calculation of the covariance matrix.  

PCA can extract the global spectral features as a small 

number of low-order principal components, whilst FPCA can 

preserve local spectral features. To this end, PCA and FPCA 

features are quite supplementary to each other, which motivates 

us to fuse them together in the proposed approach. For a pixel 

𝑥𝑛, the fused feature can be given by:

𝑥𝑛(𝐹𝐹) = [𝑃𝐶𝐴𝑥𝑛(1), 𝑃𝐶𝐴𝑥𝑛(2), … , 𝑃𝐶𝐴𝑥𝑛(𝑞𝑃𝐶𝐴),

𝐹𝑃𝐶𝐴𝑥𝑛(1), 𝐹𝑃𝐶𝐴𝑥𝑛(2), … , 𝐹𝑃𝐶𝐴𝑥𝑛(𝑞𝐹𝑃𝐶𝐴)]𝑇  

∈ ℜ(𝑞𝑃𝐶𝐴+𝑞𝐹𝑃𝐶𝐴)×1

(10)

The fused feature has a smaller dimension (𝑞𝑃𝐶𝐴 +
𝑞𝐹𝑃𝐶𝐴) < 𝐵, and more representative than the raw data.

III. EXPERIMENTAL SETTINGS

To discriminate the origin of each category of peated barley 

malts, we consider it as a classification task, where the Support 

Vector Machine (SVM) is employed as it has been successfully 

applied in many HSI classification applications [33-35]. In this 

work, the SVM model is used to identify the 27 categories of 

peated barley malts provided by 8 suppliers.  

To accurately measure the phenol concentration of the 

peated barley malts, we consider it as a regression task, where 

three machine learning tools i.e. Support Vector Regression 

(SVR) [36], Random Forest (RF) [37] and Deep Neural 

Network (DNN) are employed to train the prediction models. 

As DNN draws much attention recently and achieves very good 

results [38], a simple yet effective DNN model is introduced in 

our work. For efficient implementation, the cost and gamma of 

the Gaussian kernel in SVM are set to 1024 and 0.125, 

respectively. The number of decision trees is set to 100 in RF. 

For the DNN, the back-propagation feedforward neural 

network (BP-FFNN) is widely used [8], where the number of 

hidden layers varies from one  [39, 40] to 2-3 [41] [18], or even 

more [42, 43]. The number of neurons in the input layer is 

determined by the number of (spectral) features as input. For 

the output layer, the number of neurons will be one for 

regression analysis of the predicted phenol concentration, or 

more for classification of the concentration into multiple levels 

or classifying the origins of the input samples. The number of 

neurons in the hidden layer is usually decided through 

comprehensive trial and errors, though it is often suggested to 

be less than that of the input layer. In our designed DNN, BP-

FFNN is used as the training model, where the numbers of 

hidden layers and neurons are empirically determined based on 

the minimized errors of the trained models. By taking the fused 

features as input, the DNN model is capable of predicting the 

total phenol level of 27 barley categories. Detailed comparison 

of the parameters and functions used in these three models is 

presented in Table II. The statistics of the dataset used for 

training and testing is tabulated in Appendix: Table A. 

For quantitative performance evaluation, several commonly 

used metrics were adopted in our experiments, which include 

the overall accuracy (OA)[44], Kappa coefficient (KP) [23], 

root mean squared error (RMSE) [45], mean absolute error 

(MAE) [46] and correlation coefficient (𝑟2) [47]. The OA is the

percentage of overall classification accuracy and defined by  

𝑂𝐴 =
1

𝑁
∗ ∑ 𝐶𝑖

𝑇

𝑖

∗ 100% (11) 

The Kappa coefficient below is used to measure the inter-

rater reliability of data classification: 

𝐾𝑎𝑝𝑝𝑎 = (𝑃0 − 𝑃𝑒)/(1 − 𝑃𝑒) (12)

TABLE II 

PARAMETERS AND FUNCTIONS OF THREE MACHINE LEARNING MODELS. 

Machine 

learning models 
Training/learning parameters 

SVM 

No. of support vectors 1875 

Kernel function Gaussian 

Cost 1024 

Gamma 0.125 

RF No. of decision trees 100 

DNN 

Neural network model Feedforward 

Training algorithm 
Scaled Conjugate Gradient 

backpropagation 

Performance function Cross-Entropy 

Total number of layers 5 

Hidden layer neurons 64,32,16 

Input layer nodes 120 

Output layer nodes 1 

Hidden layer transfer 

function 
Tansig 

Output layer transfer 

function 
Logsig 

Data division random 

Maximum no..of 

epochs 
1000 

Validation check 

iterations 
6 

Regularization 0.001 

Minimum performance 

gradient 
1e-7 

Maximum mu 1e10 



𝑃0 = 𝑂𝐴, 𝑃𝑒 =
1

𝑁2
∑ (∑ 𝐶𝑖𝑗

𝑇

𝑗=1

∗ ∑ 𝐶𝑗𝑖

𝑇

𝑗=1

)

𝑇

𝑖=1

 (13) 

where N, T and 𝐶𝑖 denote respectively the number of spectral

samples, classes, and correctly classified spectral samples in 

class i. 𝐶𝑖𝑗 is the row element and 𝐶𝑗𝑖 is the column element in

the confusion matrix. 

The RMSE, MAE and 𝑟2  are three popular metrics for

evaluation the regression results. For N spectral samples, their 

definitions are given by: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∗ ∑ (𝑦𝑖 − 𝑦𝑖

′)2
𝑁

𝑖=1

(14) 

𝑀𝐴𝐸 =
1

𝑁
∗ ∑(|𝑦𝑖 − 𝑦𝑖

′|)

𝑁

𝑖=1

(15) 

𝑟2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖
′′)2𝑁

𝑖=1

(16)

where 𝑦𝑖 and 𝑦𝑖
′ represent the actual value and predicted value

of the ith Sample, respectively; 𝑦𝑖
′′ is the mean of all 𝑦𝑖  values.

The smaller the value of RMSE and MAE is, the higher the 

prediction accuracy of the model is. The range of 𝑟2 is within

[0,1], with 1 indicating 100% prediction accuracy.  

IV. RESULTS AND DISCUSSION

In this section, comprehensive experiments are carried out 

for assessment of the phenolic level in peated barley malts. For 

robustness, data selection stage was repeated 10 times to 

randomly generate 10 groups of spectral samples for training 

and testing, and the averaged testing results are reported for 

evaluation. Detailed experimental results are presented below.  

A. Results of classification

1) Data acquisition analysis

In the proposed work, each phenol level has one training

data pool and one testing data pool. In our experiments, it is 

found that different rotation angles of the container may affect 

the classification results. As shown in Table III, with the size of 

pixel subsets s=200 using only the raw data, the classification 

results under various rotation angles vary, where the maximum 

difference between 270°  and 90°  is 10.31%. There are two

possible reasons: 1) inconsistent ambient light and 2) uneven 

phenol distribution on the peated barley malts’ surface in each 

container. To reduce these two negative factors, two major 

improvements have been introduced in this work. First, each 

container is scanned 4 times at 4 different rotation angles (i.e. 

0° , 90° , 180° , 270° ), resulting in 4 hypercubes. These

hypercubes are stacked together to form the training dataset or 

the testing dataset. As shown in Table III, the classification 

accuracy has been much improved with the introduced stacking 

process, validating the value of our data acquisition strategy.  

2) Key parameters setting

In our experiments, the selection of 𝑞𝑃𝐶𝐴  and 𝑞𝐹𝑃𝐶𝐴  are

determined by varying them within the range of 10 to 100 with 

a step of 10. The optimal values for them are found to both be 

30. The selection of pixel subsets s are evaluated and see how

𝑠 affects the classification results. The average over 50, 100,

200, 400, 600, 800, 1000, 2000 pixels is taken to generate

spectral samples for classification, resulting in 27100, 13552,

6750, 3383, 2256, 1693, 1350, 675 spectral samples 

respectively for training or testing. 

In Table IV, the overall classification accuracy (OA) with 

the standard deviation of our system with the two different 

settings (i.e. RAW and PRE+FF) is presented. As can be seen, 

a smaller 𝑠 leads to a lower classification accuracy, which fits 

to some parts of our previous findings [23]. As the phenol 

distribution on the barley surface is not a constant, taking the 

mean spectrum over a number of subsets tends to represent the 

average concentration and introduce sufficient statistic of the 

whole batch of peated barley malts. In general, larger subsets 

are highly likely to represent more sufficient statistics and more 

precise the overall concentration of the patch and result in better 

classification. However, the accuracy of our previous method 

[23] starts to decrease when the number of subsets is larger than

200, due possibly to two main reasons. The first is different

experimental settings, as we choose the training and testing

spectral samples from two hypercubes rather than one. The

second is lack of effective feature extraction, as the proposed

fusion strategy can help to extract more representative features

for better data classification.

In our system, when the number of subsets is too large (𝑠 =
2000), the classification accuracy with two settings also drops. 

The possible reason is that a larger 𝑠 may lead to less spectral 

samples, which may cause the SVM classifier under-trained. As 

a result, the OA becomes lower. In addition, when 𝑠 is 600, 800 

or 1000, the OA of PRE+FF is not as consistently increasing as 

that of RAW[23]. This is because the accuracy has already 

reached the peak with 𝑠 = 600, hence the fluctuation at 𝑠 =
800 or s=1000 is caused by random factor in SVM.  

3) Key stage analysis

As the proposed data processing framework of phenolic

TABLE III  

RESULTS FROM RAW DATA IN DIFFERENT WAYS OF DATA ACQUISITION. 

Data strategy 0° 90° 180° 270° Stacking 

OA (%) 83.35±1.41 85.33±1.08 80.63±1.03 75.40±1.14 90.35+1.07 

Kappa (%) 82.71±1.47 84.76±1.12 79.88±1.07 74.45±1.18 89.97±1.12 

TABLE IV 
OA (%) OF PROPOSED FRAMEWORK WITH TWO SETTINGS. RAW, PRE AND 

FF DENOTES THE RAW DATA, PRE-PROCESSED DATA AND FEATURE 

FUSION. THE ABBREVIATION WILL BE USED IN THE REST TABLES. 

Number of subsets (s) RAW PRE+FF 

50 85.68±0.44 92.52±0.86 

100 89.44±0.76 95.96±0.59 

200 90.35±1.07 98.32±0.55 

400 89.46±0.86 98.72±0.65 

600 89.58±1.02 99.50± 0.62 

800 89.12±1.64 99.16±0.66 

1000 88.47±1.45 99.20±0.69 

2000 87.19±1.53 96.29±2.05 



level measurement is a multi-stage approach, the contributions 

of the five major stages are assessed as follows. These will 

include the analysis of 8 different settings, i.e. raw imaged data 

with SNV (RAW) [23], pre-processed data (PRE), individual 

PCA feature extracted from raw data (RAW+PCA), individual 

FPCA feature extracted from raw data (RAW+FPCA), and 

feature fusion for raw data (RAW+FF), individual PCA feature 

extracted from pre-processed data (PRE+PCA), individual 

FPCA feature extracted from pre-processed data (PRE+FPCA), 

and feature fusion for pre-processed data (PRE+FF). For the 

RAW setting, it is also the same as the one in [23].  

Table V shows the OA and Kappa with standard deviation 

obtained from eight settings with 𝑠 = 200. For the raw data, the 

results with OA at 90.35% seems undesirable. After applying 

PCA or FPCA directly on the raw data, the OA improves by 

2.98% and 1.87%, and reaches 93.33% and 92.22% 

respectively. By further feature fusion of PCA and FPCA, the 

OA can be increased to 93.59%. As seen, feature fusion 

𝑋(𝐹𝐹) ∈ ℜ𝑛×(𝑞𝑃𝐶𝐴+𝑞𝐹𝑃𝐶𝐴)  gives better classification

performance than using either PCA or FPCA individually, 

because fusing 𝑋(𝑃𝐶𝐴)  and 𝑋(𝐹𝑃𝐶𝐴)  together enables 

extraction of both global and local spectral features for more 

effective data modelling and prediction. When applying the pre-

processing for the raw data, the gain on OA varies. For PRE, 

PRE+PCA, PRE+FPCA and PRE+FF, the gains are 0.96%, 

3.22%, 4.10%, and 4.73% more than RAW, RAW+PCA, 

RAW+FPCA, RAW+FF, respectively. This has validated the 

TABLE V 

CLASSIFICATION RESULTS OF THE PROPOSED FRAMEWORK WITH 

VARIOUS SETTINGS. 

Stages OA (%) Kappa (%) 

RAW 90.35±1.07 89.97±1.11 

PRE 91.31±1.10 90.97±1.14 

RAW+PCA 93.33±0.99 93.07±1.03 

RAW+FPCA 92.22±0.64 91.92±0.66 

RAW+FF 93.59±0.82 93.35±0.75 

PRE+PCA 96.55±0.68 96.42±0.71 

PRE+FPCA 96.32±0.60 96.18±0.62 

PRE+FF 98.32±0.55 98.26±0.57 

Fig. 6. Confusion matrix of classification results with s=200 and the stage of PRE+FF. 



importance of our pre-process. Finally, with 𝑠 = 200 , the 

classification accuracy can reach 98.32% with a standard 

deviation of 0.55%, i.e. an additional gain of 7.97% (0.53%) 

against the raw data. To this end, the contribution of each key 

stages has been clearly demonstrated.  

To gain a more detailed insight, Fig. 6 shows the confusion 

matrix of the classification results at the stage of PRE+FF with 

s=200. The percentage of correctly classified pixels are listed 

on the anti-diagonal, and all other values indicate misclassified 

pixels. As shown in Table I, the categories of 2, 20 and 21 are 

from three suppliers, but their total phenol levels are very 

similar to each other, although they are different in terms of the 

concentrations of individual phenolic compounds. As seen in 

Fig. 6, the classification results of these three categories can 

reach 100%, i.e. no misclassification, which means our model 

can well distinguish the peated barley malts from different 

suppliers, which can be very useful for more accurate flavour 

control in the whisky industry. Similarly, the categories 1 and 

18 are from Maltster A and Distillery D respectively. The 

difference of their total concentration is only 0.6ppm, but the 

differences of their 7 individual measurements are 4.9, 2.7, 1.3, 

1.3, 0.2, 1.4, 0.5 ppm, respectively. Therefore, they have very 

unique peat flavour. For the category 1, it can be well classified 

with an accuracy of 100%. For the category 18, the 

classification accuracy is 94.12%, where 5.88% of the pixels 

are misclassified into the category 17, which is the same 

Distillery D. This has indicated that different categories of 

peated barley malts from the same supplier may have been mis-

classified each other. However, these will not affect the results 

of origin discrimination, which can be also observed for 

classifications of the categories 23-27 from Maltster F and the 

categories 5-7 from Distillery A et al.  

In summary, our model can accurately discriminate the 

origins or suppliers of the peated barley malts despite of the 

very similar levels of the total phenols. Although there are 

misclassified cases, they are tended to be from the same 

supplier. To this end, the request of origin discrimination can 

still be fully satisfied. 

4) Extended experiment on background analysis

In this section, we further investigate how the background

may affect the classification of the peated barley malts in 

various phenolic concentrations from different suppliers. Here, 

the background is treated as another class rather than being 

eliminated from the scene. Followed by the same procedure of 

data selection, in total 24000 background samples and 6750 

barley samples are generated in the training and testing dataset 

with s=200. In addition, three conventional and four deep 

learning models are used for benchmarking, including PCA 

[27], Folded PCA (FPCA) [32], 1-D Singular Spectrum 

Analysis (1DSSA) [48], Deep convolutional neural network 

(CNN) [49], Stacked auto-encoder (SAE) [50], Deep recurrent 

neural network (RNN) [51], and Auto-CNN [52]. These state-

of-the-art approaches are selected for two main reasons, i.e. 

highly related to our proposed method, and/or widely cited 

spectral feature extraction approaches. For the four deep 

learning models, we fine-tune the model on our data. For PCA 

and FPCA, the number of principal components is set to 30. For 

the rest parameters, the suggested default settings are used. 

From the results presented in Table VI, three important 

findings can be highlighted below.  

1) Although deep learning models may have better

classification performance on some public HSI datasets,

they show inferior results than conventional models in our

experiments. In addition, deep learning models usually

reply on heavy computation source and long training time,

which seem inefficient for our specific problem. This may

also explain why many food inspection works [17, 18, 20-

22] prefer to use conventional machine learning models

rather than deep learning.

2) After introducing the background as another class per your

constructive suggestion, more misclassification cases occur

inevitably, leading to degraded OA, KP and average

accuracy (AA) of our proposed method which are reduced

from 98.32%, 98.26% and 98.32% to 97.32%, 95.86% and

93.73%, respectively. Due to a larger number of spectral

samples in the background, i.e. unbalanced pixels in

different classes, the misclassification causes few negative

effects to the OA but a much reduced AA, resulting in poor

performance of origin discrimination. This also explains the

necessity of eliminating the background from the acquired

data through extraction of the ROIs.

3) Comparing with three conventional classification models,

our proposed model has the best classification performance,

which validates the effectiveness of our model even without

removing the background.

B. Predicted Results of Phenolic Level from Regression

For the benefit of the whisky industry, it is always interested

to estimate the actual phenol level of peated barley malts from 

different maltsters/distilleries. Therefore, the performance of 

regression is also assessed on the same data. Likewise, with 𝑠 =
200, the result of SVR and key stage analysis is performed first, 

followed by analysis of the results of DNN and RF as follows. 

TABLE VII  
PERFORMANCE OF DIFFERENT DATA ACQUISITION STRATEGY USING RAW 

DATA ONLY. 

Data  

strategy 
0° 90° 180° 270° Stacking 

𝒓𝟐 (%) 89.02±0.55 90.79±0.33 83.79±1.33 82.65±1.62 91.98±0.10 

MAE/ppm 6.56±0.17 5.99±0.11 6.70±0.13 7.04±0.17 5.64±0.04 

RMSE/ppm 8.17±0.20 7.48±0.13 9.98±0.41 10.30±0.47 6.99±0.04 

TABLE VI  

CLASSIFICATION RESULTS OF OUR METHOD AND SEVEN BENCHMARKING 

APPROACHES BY TAKING THE BACKGROUND AS A NEW CLASS 

Methods AA (%) OA (%) KP (%) 

PCA 90.68± 0.60 96.02± 0.26 93.85± 0.40 
FPCA 90.26± 0.30 95.86± 0.13 93.61± 0.20 

1DSSA 89.37± 0.45 95.48± 0.19 93.02± 0.30 

CNN 54.11±10.89 80.47±4.65 69.84±7.18 
SAE 56.96±1.26 81.68±0.54 71.70±0.84 

RNN 82.76±1.50 92.67±0.63 88.67±0.98 

Auto-CNN 78.49±11.04 90.85±4.72 85.87±7.29 
Proposed 93.73± 0.88 97.32± 0.37 95.86± 0.58 



1) Data acquisition analysis

When only using the raw data, the stacked hypercubes show

better performance than individual hypercube (Table VII), 

indicating that stacked hypercubes can help to mitigate the 

issues of inconsistent ambient light and uneven phenol 

distribution to some extent, leading to a higher 𝒓𝟐 and lower

MAE and RMSE. Meanwhile, the standard deviation of each 

criteria is also reduced, which validates again the robustness of 

proposed data acquisition method.  

2) Key stage analysis

For the two key parameters 𝑞𝑃𝐶𝐴  and 𝑞𝐹𝑃𝐶𝐴 , they are

experimentally determined in [10,100] with a step of 10. 

Eventually, the optimal values are found to be 60 for both of 

them, where SVR can produce the best prediction results.  

In Table VIII, the contribution of each stage in the proposed 

framework to regression is compared. As seen, pre-processing 

and feature extraction both bring the benefit to the estimated 

phenol level. By fusion of PCA and FPCA [32] (𝑞𝑃𝐶𝐴 = 60 and

𝑞𝑭𝑃𝐶𝐴 = 60), the best regression in terms of 𝒓𝟐 , MAE and

RMSE can reach 95.32%, 4.51ppm and 5.57ppm, respectively. 

It is worth noting that, the standard deviation of each stage is 

very low, showing the robustness of the process in each stage.   

To further explore the best regression results, two more 

regression methods, i.e. deep neural network (DNN) and 

random forest (RF), are employed in this study. In addition, the 

selection of 𝑞  within PCA and FPCA for these regression 

methods is also investigated. There are three hidden layers in 

DNN where the number of each layer is set to 64, 32 and 16. 

The number of nodes in RF is set to 100. As seen in Fig. 7, the 

SVR is not the best regression model in this study. Compared 

with SVR, RF has a less MAE but also a lower 𝑟2. SVR and RF

have a quite comparable RMSE, though it varies with the 

selected 𝑞𝑃𝐶𝐴  and 𝑞𝐹𝑃𝐶𝐴  in FF. For DNN, it significantly

outperforms the other two regressors regardless of parameter 

settings. As also shown in Fig. 8, the predicted ppm value of 

from DNN is better than those of SVM and RF. The best-

performed DNN is the 5th combination, which has a 𝒓𝟐 value

of 98.57%, a RMSE of 2.89ppm and a MAE of 1.57ppm. 

Furthermore, the spatial map of different phenolic levels is 

shown in a compact manner (Fig. 9). We cropped 27 regions of 

various predicted phenolic levels in Fig. 9 (a) and stack them 

together along the Y-axis in Fig. 9 (b). As there are certain gaps 

between the pieces of peated barley malt, we use the black color 

to represents these gaps. As can be seen, different phenolic 

levels in the testing data can be well predicted. 

C. Computational complexity

In the proposed NIR-HSI phenolic measurement and origin

discrimination system, spectral-spatial fusion based feature 

extraction and prediction is actually the key. In the pre-

𝑅2(%) 𝑀𝐴𝐸(ppm) 𝑅𝑀𝑆𝐸(ppm) 

1. 𝑞𝑃𝐶𝐴 = 50, 𝑞𝐹𝑃𝐶𝐴 = 50 

2. 𝑞𝑃𝐶𝐴 = 50, 𝑞𝐹𝑃𝐶𝐴 = 60 

3. 𝑞𝑃𝐶𝐴 = 50, 𝑞𝐹𝑃𝐶𝐴 = 70 

4. 𝑞𝑃𝐶𝐴 = 60, 𝑞𝐹𝑃𝐶𝐴 = 50

5. 𝑞𝑃𝐶𝐴 = 60, 𝑞𝐹𝑃𝐶𝐴 = 60

6. 𝑞𝑃𝐶𝐴 = 60, 𝑞𝐹𝑃𝐶𝐴 = 70

7. 𝑞𝑃𝐶𝐴 = 70, 𝑞𝐹𝑃𝐶𝐴 = 50 

8. 𝑞𝑃𝐶𝐴 = 70, 𝑞𝐹𝑃𝐶𝐴 = 60 

9. 𝑞𝑃𝐶𝐴 = 70, 𝑞𝐹𝑃𝐶𝐴 = 70 

Fig. 8. Comparison of the selection of 𝑞𝑃𝐶𝐴 and 𝑞𝑭𝑃𝐶𝐴 in FF for three regressors.

TABLE VIII  

REGRESSION RESULTS OF THE PROPOSED FRAMEWORK WITH VARIOUS 

SETTINGS. 

Stages 𝒓𝟐 (%) MAE (ppm) RMSE (ppm) 

RAW 91.98±0.10 5.64±0.04 6.99±0.04 

PRE 93.72±0.09 5.14±0.03 6.19±0.04 

RAW+PCA 91.79±0.06 5.68±0.04 7.07±0.03 

RAW+FPCA 92.42±0.06 5.43±0.02 6.80±0.03 

RAW+FF 92.88±0.08 5.60±0.04 6.99±0.04 

PRE+PCA 94.06±0.07 4.94±0.04 6.03±0.04 

PRE+FPCA 94.34±0.05 4.79±0.03 5.88±0.03 

PRE+FF 95.32±0.06 4.51±0.06 5.57±0.06 

Fig. 7. Scatter plot of actual vs. predicted phenol level. 



processing stage, the acquired data is rectified in both spectral 

and spatial domains using SNV and JBF, respectively. In the 

feature extraction stage, FPCA and PCA has helped to extract 

both the local and global spectral features, respectively. In this 

subsection, we briefly analyze the computational complexity of 

these approaches in Table IX, where I, J and B represent 

respectively the spatial width, height and number of bands of 

the hypercube, respectively. As seen, the most time-consuming 

part is the JBF, and the least part is SNV. The latency caused 

by the computation may affect the real-time response speed of 

the system. Nevertheless, our proposed system can still be 

considered to be near real-time, as the processing time is much 

less than the operation time of data acquisition especially with 

a push-broom HSI imaging system.   

V. CONCLUSION

In this paper, we have developed a workable solution for 

origin discrimination and phenolic measurement of the peated 

barley malts using NIR hyperspectral imagery and machine 

learning. In total, 27 categories of peated barley malt from 8 

suppliers covering a concentration range of 0 to 189.2 ppm are 

used for testing. As the original spectra features cannot explain 

the concentration of peated barley malt, we proposed a multi-

stage data processing framework to project the whole spectral 

profile into the PCA and folded-PCA domains to extract the 

local and global spectral features, followed by various machine 

learning models for classification of the origins of the barley 

samples and prediction of the phenolic levels. The proposed 

new way of data acquisition is found to effectively overcome 

the inconsistency caused by varying lighting conditions and 

uneven phenol distributions on the peated barley malt surface. 

In addition, the fusion of PCA and folded-PCA has significantly 

improved the efficacy of feature extraction and data analysis, 

where the classification accuracy has been dramatically 

improved with a much reduced regression error. Specifically, 

the overall classification accuracy is up to 99.50% and the 𝒓𝟐

value of regression analysis has achieved 98.57% with a RMSE 

of 2.89ppm and MAE of 1.57ppm. With these promising 

results, the proposed system can be applied for traceability and 

quality control of peated barley malt and further benefit the 

Scotch whisky as the experiments are designed in accordance 

with real industrial conditions.  

There are still some challenges and limitations of the 

proposed system as summarized below, which will be the focus 

of our future work. First, the sample selection process will 

affect the performance of our system. As seen in Table IV, a 

smaller number of subsets can yield sufficient number of 

TABLE IX  
COMPUTATIONAL COMPLEXITY OF DIFFERENT APPROACHES 

Stage 
Computational 

complexity 

Detailed description 

Note: I,J and B denote the spatial width, 

height and spectral bands of the 

hypercube, respectively. 

JBF 𝐼𝐽𝐵2 + B3 + 2𝐼𝐽B 
Derived from fast implementation of 

Bilateral filter and PCA [2] 

SNV 𝐼𝐽 Pixel-wise normalization 

PCA 
𝑁𝐵2 + B3

+ 𝑁B𝑞𝑃𝐶𝐴

PCA on N selected samples, where 

N<<IJ. 𝑞𝑃𝐶𝐴 is the number of principal 

components in PCA 

FPCA 
𝑁𝐵𝑊 + 𝑊3

+ 𝑁𝑊𝑞𝑃𝐶𝐴

FPCA on N selected samples, where 

N<<IJ. 𝑞𝐹𝑃𝐶𝐴 is the number of principal 

components in FPCA, W is the number of 

bands in H groups, where 𝐻 × 𝑊 = 𝐵 

(a) 

Real Phenolic 

level (ppm) 

Spatial map of predicted phenols 

189.2 

(b) 

155.4 

130 

111.1 

110.4 

85.9 

85.3 

80.1 

71 

61 

56.2 

55 

51.4 

47.2 

43.8 

39.9 

36.6 

32.9 

32.4 

31.6 

25.6 

19.6 

17.6 

5.3 

0.2 

0.1 

0 

Fig. 9. Illustration of phenolic spatial map 



sampled pixels, but they can potentially fail to fully represent 

the spectral information of the peated barley malt. A larger 

number of subsets can extract the global spectral information, 

resulting in insufficient spectral samples though. Both these two 

situations will cause inferior performance. To address this 

limitation, some state-of-the-art data argumentation techniques 

[53] can be used to enhance the quantity and quality of the data

and further improve the anti-overfitting ability, stability and

robustness of the system. Some deep-learning-based feature

extraction methods [54] can also be employed to extract the

deep spectral features for improved performance. Second,

accurately predicting of unseen categories of peated barley malt

is needed in Whisky industry, which is crucial for practical

deployment. Due to the limited data quantity and uneven

distribution of the phenol concentrations, this challenge cannot

be fully addressed without expanding the data samples. Two

possible solutions can be applied to tackle this particular issue,

one is to enrich the phenol concentrations of the collected barley

samples, and the other is to further refine the developed

machine learning models, such as the incremental learning [55,

56], for more robust modelling and prediction even with new

categories of data.
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APPENDIX 

TABLE A 

STATISTICS OF THE DATASET USED FOR TRAINING AND TESTING. 

Category 

DNN SVM/RF 

Testing 

Total  

Phenols 

(ppm) 
Training Validation Training 

1 194 49 243 255 85.9 

2 203 51 254 251 0.1 

3 189 47 236 247 31.6 

4 197 49 246 248 71.0 

5 198 49 247 252 51.4 

6 202 50 252 250 36.6 

7 197 49 246 245 32.9 

8 196 49 245 255 56.2 

9 197 49 246 248 39.9 

10 202 50 252 254 47.2 

11 202 51 253 250 25.6 

12 198 50 248 244 55.0 

13 204 51 255 245 32.4 

14 201 50 251 250 19.6 

15 203 51 254 255 5.3 

16 195 49 244 249 61.0 

17 201 50 251 251 80.1 

18 204 51 255 250 85.3 

19 201 50 251 244 110.4 

20 196 49 245 250 0.2 

21 204 51 255 252 0.0 

22 202 51 253 263 130.0 

23 207 52 259 251 17.6 

24 203 51 254 256 43.8 

25 202 51 253 251 111.1 

26 201 50 251 249 155.4 

27 203 51 254 256 189.2 

Mean 200 50 250 250 58.3 

Median 201 50 251 250 49.3 

1st Qu 197 49 246 248 28.6 

3st Qu 203 51 254 253 82.7 

Min 189 47 236 244 0.0 

Max 207 52 259 263 189.2 

StdDev 3.9 1.0 4.9 4.2 47.1 
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