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Marine dinoflagellates produce chemically diverse compounds, with a wide range of
biological activity (antimicrobial, anticancer, treatment of neurodegenerative disease
along with use as biomedical research tools). Chemical diversity is highlighted by
their production of molecules such as the saxitoxin family of alkaloids (C10H17N7O4 –
299 g/mol) to the amphipathic maitotoxin (C164H256O68S2Na2 – 3,422 g/mol),
representing one of the largest and most complex secondary metabolites characterized.
Dinoflagellates, are most well-known for the production of red tides which are
frequently toxic, including okadaic acid and related dinophysistoxins, which are tumor
promoters. The mode of action for these phycotoxins, is by specific inhibition of protein
phosphatases, enzymes essential in regulation of many cellular processes. Hence, these
compounds are being used for vital cell regulation studies. However, the availability of
useful amounts of these compounds has restricted research. Chemical synthesis of
some compounds such as okadaic acid has been investigated, but the complexity of
the molecule resulted in many lengthy steps and achieved only a poor yield. The use of
naturally occurring phytoplankton has been investigated as a potential source of these
compounds, but it has been shown to be unreliable and impractical. The most practical
option is large scale culture with down-stream processing/purification which requires
specialist facilities and expertise. This review, describes the biotechnological potential of
these organisms and the challenges to achieve useful yields of high quality phycotoxins
using Prorocentrum spp. as an example to produce okadaic acid.

Keywords: benthic microalgal cultivation, Prorocentrum lima, seawater, nutrient limitation, temperature,
irradiance

INTRODUCTION

Over the past decades, the occurrence of harmful algae blooms (HABs) have increased
worldwide (Luckas et al., 2005; Hallegraeff, 2010; Griffith and Gobler, 2020). Climate change
and anthropogenic pressures are considered responsible for increased frequency, intensity and
broader geographic range. Moreover, increased social and scientific awareness due to their
associated negative socioeconomic effects intensified monitoring HABs (phytoplankton and toxins)
(Anderson et al., 2012; Farabegoli et al., 2018; Brown et al., 2020).

Abbreviations: ASP, amnesic shellfish poisoning; AZA, azaspiracid; AZP, azaspiracid shellfish poisoning; BTX, brevetoxin;
CFP, ciguatera fish poisoning; CTX, ciguatoxin; DA, domoic acid; DSP, diarrhetic shellfish poisoning; DTX, dinophysistoxin;
GYM, gymnodimines; GTX, gonyautoxin; HAB, harmful algae bloom; LED, Light-emitting diode; Mbp, megabase pair;
MTX, maitotoxin; NEO, neosaxitoxin; NSP, neurotoxic shellfish poisoning; OA, okadaic acid; PBR, photobioreactor; PLTX,
palytoxin; PnTX, pinnatoxin; PP1, phosphatase 1; PP2A, phosphatase 2A; PP2B, phosphatase 2B; PSP, paralytic shellfish
poisoning; PTX, pectenotoxin; Qt, toxin quota; SPX, spirolide; STX, saxitoxin; YTX, yessotoxins.
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HABs are typically characterized by rapid proliferation and/or
high biomass often known as “red tides” due to their common
red color but this color can vary depending on the dominant
phytoplankton species involved as well as its concentration
and depth. Many of these bloom-forming microalgae produce
secondary metabolites, which are toxic (phycotoxins). The
purpose of the synthesis of phycotoxins is not clear but it
is believed that they may have a role in increasing survival
in unfavorable environmental conditions and as a defensive
mechanism by inhibiting the growth of co-occurring microalgae
or as anti- grazing (Selander et al., 2006; Ajuzie, 2007; Ianora
et al., 2011; Anderson et al., 2012; Kohli et al., 2016). Recently,
it has also been hypothesized that they could be linked to
another trait or process such as photosynthesis II and nitrogen
and carbon metabolism (Cassell et al., 2015; Glibert et al.,
2016). Nevertheless, the issue arises when phycotoxins bio-
accumulate in aquatic edible organisms such as fish and shellfish,
leading to eventual poisoning of animal and human consumers
(James et al., 2010; Hinder et al., 2011). It is estimated that
marine phycotoxins are responsible for up to 60,000 human
intoxications per year, with an overall mortality of around 1.5%
(Kantiani et al., 2010).

Based on their chemical structure marine phycotoxins are
classified into the following groups: (i) linear and macrocyclic
polyethers (e.g., okadaic acid (OA) and dinophysistoxins
(DTXs)); (ii) ladder-frame polyethers (e.g., ciguatoxins (CTXs)
and brevetoxins (BTXs)); (iii) macrocyclic imines (e.g., spirolides
(SPXs) and gymnodimines (GYMs)); (iv) tetrahydropurines
(e.g., saxitoxins (STXs) and gonyautoxins (GTXs)); and (v) toxic
secondary amines (e.g., domoic acid (DA)). Historically,
marine phycotoxins were categorized according to the
characteristic symptoms they generate in humans after the
consumption of contaminated seafood: diarrhetic shellfish
poisoning (DSP) (e.g., OA, DTXs, pectenotoxins (PTXs)
and yessotoxins (YTXs)), amnesic shellfish poisoning (ASP)
(e.g., DA), paralytic shellfish poisoning (PSP) (e.g., STXs
and analogs), azaspiracid shellfish poisoning (AZP) (e.g.,
azaspiracids (AZAs)), neurotoxic shellfish poisoning (NSP)
(e.g., BTXs) and ciguatera fish poisoning (CFP) (e.g., CTX and
maitotoxin (MTX)).

This review will focus on the dinoflagellate Prorocentrum
spp. as a potential source of phycotoxins and different
biotechnological approaches to enhance their production. We
aim to summarize the studies conducted on Prorocentrum
spp. to enhance the growth rate and DSP toxin production
with special emphasis on the influence of nutritional and
environmental factors published between 1993 and 2020. It
also presents considerations relating to mass cultivation to
attain high phycotoxin yields scaling up photobioreactors from
bench to large scale.

TOXIC BIOACTIVE METABOLITES FROM
DINOFLAGELLATES

Dinoflagellates are a lineage of unicellular eukaryotes of huge
ecological and evolutionary significance (Hoppenrath, 2017;

Cousseau et al., 2020). Approximately half of the dinoflagellate
species are autotrophic possessing chloroplasts for
photosynthesis, but they are also able to grow heterotrophically,
parasitically, mixotrophically or symbiotically (Hoppenrath,
2017; Cousseau et al., 2020). Most dinoflagellates are pelagic
but many are adapted to benthic habitats (Gómez, 2012;
Durán-Riveroll et al., 2019). Dinoflagellates represent around
75% of the toxic species responsible for HABs (Smayda, 1997;
Cembella, 2003).

Dinoflagellates are known to produce an array of bioactive
compounds that are structurally and functionally diverse
with valuable toxicological and biological properties (Garcia-
Camacho et al., 2007). Most of the toxic secondary metabolites
are of polyketide origin, including polycyclic polyketides (e.g.,
YTXs, CTXs, BTXs, MTXs, and palytoxins (PLTXs)), macrolides
(e.g., PTXs and amphidinolides) and linear polyketides
(e.g., DTXs and OA) (Verma et al., 2019); but also cyclic
imines (e.g., SPXs, GYMs and pinnatoxins (PnTXs)) and
alkaloids (e.g., STX, GTX, neosaxitoxin (NEO)). Numerous
pharmacological functions, such as analgesic, anesthetic,
anticancer, antifungal, anticholesterol, cytotoxic, immune-
suppressive and/or neurological disease therapeutics were also
attributed to these compounds (Garcia-Camacho et al., 2007;
Qian et al., 2015; Assunção et al., 2017). Besides their therapeutic
use, they are invaluable tools to study cellular processes but their
toxicity is a barrier to reaching clinical studies (Cruz et al., 2013;
Assunção et al., 2017).

Toxic Bioactive Metabolites From
Prorocentrum spp.
To date, there are approximately 60 species of the dinoflagellate
genera Prorocentrum distributed worldwide, half of them in
benthic marine habitats (Hoppenrath et al., 2013; Durán-Riveroll
et al., 2019). Prorocentrum is known to produce DSP toxins
and OA, a major DSP polyketide toxin, hence they are a
common chemotaxonomic marker of the toxic Prorocentrum
spp. (Fernández et al., 2003; Hoppenrath et al., 2013; Luo et al.,
2017; Pan et al., 2017; Nishimura et al., 2020). For example,
all reported Prorocentrum lima strains produce OA and some
strains also produce DTX1 as a minor toxin (Jackson et al., 1993;
McLachlan et al., 1994; Vanucci et al., 2010; Varkitzi et al., 2010;
Hoppenrath et al., 2013; Wang et al., 2015; Hou et al., 2016;
Lee et al., 2016; Hoppenrath, 2017; Pan et al., 2017; Aquino-
Cruz et al., 2018; Gu et al., 2019). Prorocentrum belizeanum,
caipirignum, concavum, maculosum and hoffmannianum are also
known producers of DSP toxins (Morton et al., 1994; Zhou and
Fritz, 1994; Hoppenrath et al., 2013; López-Rosales et al., 2014;
Luo et al., 2017; Accoroni et al., 2018; Rodríguez et al., 2018; Lim
et al., 2019; Lee et al., 2020).

OA and DTXs cause gastrointestinal distress with diarrhea,
nausea, vomiting and abdominal pain described as the main
symptoms (James et al., 2010). They are potent selective
inhibitors of protein phosphatases 2A (PP2A), 1 (PP1) and 2B
(PP2B) (Bialojan and Takai, 1988; Twiner et al., 2016). It was
previously reported that the diarrheic effect of DSP toxins was
associated to the inhibitory activity on protein phosphatases
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(Cohen et al., 1990) but no links have been found and their
mechanisms of toxicity must be re-evaluated (Munday, 2013).
Recent reports point to modulation of neurotransmitters that
regulate intestinal mobility, along with water and electrolyte
secretion as the cause of DSP syndrome (Valdiglesias et al., 2013;
Louzao et al., 2015). Protein phosphatases modulate cell
signaling pathways so their inhibition by OA and DTXs
renders them as an important tool in medical and physiological
studies (Meštrović and Pavela-Vrančič, 2003; Cruz et al., 2013;
Valdiglesias et al., 2013). In addition, chronic exposure to
OA can induce cytotoxicity, neurotoxicity, immunotoxicity,
embriotoxicity, genotoxicity and cancer promotion as reviewed
by Vilariño et al. (2018) and Fu et al. (2019). The structurally
related compounds, DTXs, share the similar negative effects of
OA (Vilariño et al., 2018).

Besides OA and DTXs, other phycotoxins have been identified
from cultures of Prorocentrum. For example in P. lima cultures,
OA and DTX analogs, as well as formosalides, prorocentrolides
and related macrolides, limaol and other non-characterized
toxins have been reported (Table 1), however, their significance
and biosynthesis have not yet been explored. Prorocentrolides
and related macrolides are minor but unique constituents
of P. lima and they should be considered chemotaxonomic
markers (Torigoe et al., 1988; Lu and Chou, 2002; Lee et al.,
2019; Li et al., 2020). Prorocentrolides are known as “fast-
acting toxins” and have been reported to act on nicotinic
acetylcholine receptors (Molgó et al., 2017; Amar et al., 2018).
Prorocentrolide C exhibited cytotoxicity against cancer cells
in vitro (HCT-116 and Neuro-2a cells) (Lee et al., 2019) as
well as 4-hydroxyprorocentrolide (inhibitory activity against
human colon adenocarcinoma DLD-1 and human malignant
melanoma RP-MI7951) (Lu et al., 2005). Formosalides and
limaol has also shown cytotoxicity activity against tumor
cell lines (hepatocellular carcinoma, colon adenocarcinoma,
neuroblastoma and T-cell acute lymphoblastic leukemia cells) (Lu
et al., 2009; Yang et al., 2017).

BIOTECHNOLOGICAL APPROACHES
FOR PHYCOTOXIN PRODUCTION

Despite the potential biological activity of these high-value
secondary metabolites, only a few have been produced for
research and commercial applications. Currently, commercial
availability of phycotoxin standards is low and the cost prices
are high depending on purity and supplier (e.g.: ≈1000 – 23000
€/mg of OA; ≈36000 – 296000 €/mg of DTX1; ≈75000 –
667000 €/mg of DTX2). Often, the phycotoxin is present in trace
amounts in the producer organism, thus a sustainable supply
from dinoflagellate harvesting is not feasible.

Among the different approaches for sustainable phycotoxin
production are chemical synthesis, harvesting of natural blooms
and large-scale, in situ, in vitro and transgenic cultivation of the
producer organism. The choice of one or another will depend,
among other variables, on the structural complexity of the
phycotoxin, the nature of the source and its abundance and the
biosynthetic pathway.

Chemical Synthesis
Chemical synthesis of some phycotoxins and/or characteristic
fragments from dinoflagellates has been attempted (Forsyth et al.,
1997; Ley et al., 1998; Dounay et al., 1999; Nicolaou et al., 2006;
O’Connor and Brimble, 2007; Crimmins et al., 2009; Fürstner
et al., 2009; Pang et al., 2011; Stivala et al., 2012; Wilde et al., 2012;
Valot et al., 2015). This approach can be unsuitable as it often
involves many steps with low yield, and their extremely complex
structures make synthesis unfeasible (Nicholas and Phillips, 2006;
Wilde et al., 2012). For example, PLTX contains 64 stereogenic
centers and its synthesis involved assembly of seven building
blocks in 39 steps, requiring a total of more than 140 steps
(Armstrong et al., 1989). The synthesis of some phycotoxins,
such as OA, has been pursued within the synthetic community
due to the potential broad range of biological activities that
OA possesses (Isobe et al., 1986; Forsyth et al., 1997; Ley
et al., 1998). Successful total synthesis was also reported for
7-deoxy-okadaic acid (Dounay et al., 1999), DTX2 and 2-epi-
DTX2 (Pang et al., 2011). Chemical synthesis has also supported
the structural elucidation of several complex phycotoxins as
well as help to deduce their mode of action (Usami, 2009;
Wilde et al., 2012).

Genetic Engineering
Genetic manipulation and overexpression of specific genes
associated with the biosynthesis of phycotoxins to enhance
their production within the organism is an attractive approach.
In order to genetically manipulate dinoflagellates to increase
the production of the metabolites of interest it is essential
to understand the biochemical processes occurring within the
cells and a genome-scale metabolic model could help (Verma
et al., 2019). However, the current level of their functional
information is poorly understood which may in part be due
to the long and complex genome sequences of microalgae.
For example dinoflagellates genome (3–250 pg DNA/cell and
3000–215000 megabase pair (Mbp) in 20–325 chromosomes)
is approximately 100 times larger than the human genome
(3.2 pg DNA/cell and 3180 Mbp in 23 pairs of chromosomes)
(Bhaud et al., 2000; McEwan et al., 2008; Verma et al.,
2019). Dinoflagellates genome has a high number of unusual
bases with a high degree of methylation, introns, redundant
repetitive non-coding sequences, chromosomes are organized
into a permanent liquid crystalline form (Rill et al., 1989)
and it lacks recognizable promoter features (Guillebault et al.,
2002) and common eukaryotic transcription factor binding
sites (Bhaud et al., 2000; Moreno Díaz de la Espina et al.,
2005; McEwan et al., 2008; Wisecaver and Hackett, 2011).
Therefore, genetic manipulation methods used for similar or
higher trophic systems cannot be extrapolated to dinoflagellates
and it must be developed almost from the start. In addition, the
identification of toxin-related genes and proteins is complex as
a result of their evolutionary origin (Lin, 2011; Verma et al.,
2019). To date, most of the efforts on genetic engineering have
been driven toward the increase of lipid production in non-
dinoflagellate algae (Lin et al., 2019; Park et al., 2019; Ng et al.,
2020).
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TABLE 1 | High value secondary metabolites produced by Prorocentrum lima.

Bioactive compound Microalgae References

OA P. lima (712); (CCAP 1136/11);
(Hainan Island); (Cuba isolates);
(Paranagua isolates); (Recife
isolates); (Spain isolates); (Tahiti
isolates); (UK isolates); (Mexico
isolates); (New Zealand);
(PL11); (PLV2); (Japan isolates)

Murakami et al., 1982; Hu et al., 1992;
Rhodes and Syhre, 1995; Bravo et al.,
2001; Holmes et al., 2001; Lu and
Chou, 2002; Fernández et al., 2003;
Nascimento et al., 2005; Paz et al.,
2007; Li et al., 2012, 2020; Pan et al.,
2017; Moreira-González et al., 2019;
Camacho-Muñoz et al., 2020;
Nishimura et al., 2020;
Tarazona-Janampa et al., 2020

2-deoxy OA P. lima Schmitz and Yasumoto, 1991

7-deoxy OA P. lima Schmitz and Yasumoto, 1991; Holmes
et al., 2001

C4-diol OA/OA ester (2-hydroxymethyl-allyl okadaate) P. lima (PLV2) Fernández et al., 2003; Paz et al., 2007

C6-diol OA/OA ester (5-hydroxy-2-methylene-pent-3-enyl okadaate) P. lima Suárez-Gómez et al., 2005; Paz et al.,
2007

C7-diol OA/OA ester (5-methylene-6-hydroxy-2-hexen-1-okadaate) P. lima; (GY-H57) Yasumoto et al., 1989; Pan et al., 2017

C8-diol OA/OA ester (7-hydroxy-2-methyl-hepta-2,4-dienyl okadaate) P. lima (712); (Mexico isolates) Hu et al., 1992; Lu and Chou, 2002;
Suárez-Gómez et al., 2005; Paz et al.,
2007; Tarazona-Janampa et al., 2020

C9-diol OA/OA ester (5,7-dihydroxy-2,4-dimethylene-heptyl okadaate) P. lima (GY-H57) Suárez-Gómez et al., 2005; Paz et al.,
2007; Pan et al., 2017

C9-diol OA/OA ester (5-hydroperoxy-7-hydroxy-2,4-dimethylene-heptyl okadaate) P. lima (PLV2) Suárez-Gómez et al., 2005; Paz et al.,
2007

C9-diol OA/OA ester (7-hydroxy-4-methyl-2-methylene-hept-4-enyl okadaate) P. lima (712) Hu et al., 1992; Paz et al., 2007

C9-diol OA/OA ester (7-hydroxy-2,4-dimethyl-hepta-2,4-dienyl okadaate) P. lima Norte et al., 1994; Pan et al., 2017

C9-diol OA/OA ester (7-hydroxy-4-methyl-2-methylene-hept-4-enyl okadaate) P. lima Norte et al., 1994; Paz et al., 2007

C9-diol OA P. lima Yasumoto et al., 1987; Lu and Chou,
2002

C10-diol OA/OA ester (5,7-dihydroxy-2,4-bis(methylene)heptyl okadaate) P. lima (GY-H57); (Hainan
Island)

Pan et al., 2017; Li et al., 2020

Methyl okadaate/OA Methyl ester/Methyl OA P. lima (PL11); (PL2V); (712) Hu et al., 1992; Lu and Chou, 2002;
Fernández et al., 2003; Paz et al.,
2007; Li et al., 2020

Ethyl okadaate/OA Ethyl ester/Ethyl OA P. lima (712) Hu et al., 1992

OA ester P. lima (Spain isolates) Bravo et al., 2001

Norokadanone P. lima (PL2V); (CCAP 1136/11) Fernández et al., 2003; Paz et al.,
2007; Camacho-Muñoz et al., 2020

DTX1 P. lima (CCAP 1136/11); (Cuba
isolates); (Paranagua isolates);
(Spain isolates); (UK isolates);
(Mexico isolates); (PL2V);
(Japan isolates)

Hu et al., 1992; Bravo et al., 2001; Lu
and Chou, 2002; Nascimento et al.,
2005; Paz et al., 2007; Pan et al.,
2017; Moreira-González et al., 2019;
Camacho-Muñoz et al., 2020;
Nishimura et al., 2020;
Tarazona-Janampa et al., 2020

35S-DTX1 P. lima (GY-H57) Pan et al., 2017; Camacho-Muñoz
et al., 2020

DTX1-a P. lima (CCAP 1136/11) Camacho-Muñoz et al., 2020;
Tarazona-Janampa et al., 2020

DTX2 P. lima (Spain isolates) Hu et al., 1992; Bravo et al., 2001; Pan
et al., 2017

DTX4 P. lima (UK isolates) Hu et al., 1995; Nascimento et al., 2005

DTX6 P. lima (PL2V) Suárez-Gómez et al., 2001; Paz et al.,
2007

C8-diol DTX1-a P. lima (Mexico isolates) Tarazona-Janampa et al., 2020

C8-diol DTX1 P. lima (Mexico isolates) Tarazona-Janampa et al., 2020

C9-diol DTX1 P. lima (PL-KNUAL-23) Lee et al., 2015

(Continued)
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TABLE 1 | Continued

Bioactive compound Microalgae References

DTX2 ester P. lima (Spain isolates) Bravo et al., 2001

DTX4 diol ester P. lima (UK isolates) Nascimento et al., 2005

Formosalide A P. lima (PL040104002) Lu et al., 2009

Formosalide B P. lima (PL040104002) Lu et al., 2009

Limaol P. lima (Korea isolates) Yang et al., 2017

Prorocentrin P. lima (PL021117001 clone) Lu et al., 2005

Prorocentrolide P. lima (PL01); (PL11) Lu and Chou, 2002; Li et al., 2020

Procentrolide 30-sulfate P. lima Torigoe, 1990

Prorocentrolide C P. lima (YD-5) Lee et al., 2019

14-O-acetyl-4-hydroxyprorocentrolide P. lima (PL01) Lu and Chou, 2002

3,5-dihydroxy-6,7-megastigmadien-9-one P. lima (PL11) Li et al., 2020

4-hydroxyprorocentrolide P. lima (PL01); (YD-5) Lu and Chou, 2002; Lee et al., 2019

9,51-dihydroprorocentrolide P. lima Torigoe, 1990

Apo-9′-fucoxanthinone P. lima (PL11) Li et al., 2020

Polyketide unidentified P. lima (PL11) Li et al., 2020

Terpenoid unidentified P. lima (PL11) Li et al., 2020

Culture of Dinoflagellates
Dinoflagellates in general grow slower than other protists
such as diatoms, are quite shear-sensitive and relatively
inefficient at nutrient uptake (Smayda and Reynolds, 2003).
It has been speculated that the low chlorophyll a to carbon
ratio is responsible for the slow growth of dinoflagellates
(Tang, 1996) but the chlorophyll a content per unit mass of
dinoflagellates is similar to diatoms (Gallardo-Rodríguez et al.,
2012). Several studies have focused on small-scale cultures
of benthic dinoflagellates to optimize growth rates and toxic
production (Jackson et al., 1993; McLachlan et al., 1994; Morton
et al., 1994; Yang et al., 2008; Zhong et al., 2008; Li et al.,
2009; Vanucci et al., 2010; Varkitzi et al., 2010; López-Rosales
et al., 2014; Wang et al., 2015; Hou et al., 2016; Accoroni et al.,
2018; Aquino-Cruz et al., 2018; Gu et al., 2019; Lee et al.,
2020). In a typical photosynthetic culture the maximum biomass
concentration reached was well below 1 g/L and regarding
phycotoxin production it is of the order of picograms (Gallardo-
Rodríguez et al., 2012). Therefore, to obtain sufficient secondary
metabolites mass culture in large-scale bioreactors is needed
although it has proven challenging (Gallardo Rodríguez et al.,
2010; Wang et al., 2015).

Similar to other phototrophic organisms, dinoflagellates
require energy from light for their biosynthesis processes.
Vertical migration and photo-acclimation allow them to travel
and grow at the bottom and the upper layer of the aquatic system
to gain access to nutrient-rich deeper layers and well-lit surface
waters (Smayda and Reynolds, 2003; Smayda, 2010; Orchard
et al., 2016; Shikata et al., 2020).

Typical dinoflagellate cell cycle involves an initial growth
phase with high cell metabolic activity first (G1 phase), followed
by DNA synthesis (S phase). Then, a second growth phase (G2
phase) in which cells accumulate nutrients needed for the mitosis
(M phase) and cytokinesis (Pan et al., 1999; Bhaud et al., 2000).
The biosynthesis of phycotoxins typically varies during different
growth phases, with the highest production rates during the end

of the exponential phase prior entering the stationary phase (Pan
et al., 1999; Jia et al., 2019; Lee et al., 2020). Circadian rhythms
are also known to influence growth rates and biosynthesis of
secondary metabolites (Jacob-Lopes et al., 2009; Jia et al., 2019).

Dinoflagellate tolerance and acclimatization to different
temperatures are strain specific and may depend on their original
habitat as it was found that dinoflagellates from tropical habitats
have lower tolerance to low temperatures (below 20◦C) than
dinoflagellates from temperate habitats (Jackson et al., 1993;
McLachlan et al., 1994; Accoroni et al., 2018).

OA and DTXs are essentially produced via the polyketide
pathway (Perez et al., 2008; Gallardo-Rodríguez et al., 2012).
Therefore, the interaction between dinoflagellates (i.e.,
Prorocentrum) and their co-existing microbiome encoding the
polyketide synthase gene may influence intracellular phycotoxin
production (Perez et al., 2008; Lee et al., 2016). However, to
date, there is little evidence that supports that extracellular
bacteria influence growth and phycotoxin production (Tarazona-
Janampa et al., 2020). A sound knowledge of cell cycle regulation
and metabolism, synchronization of the cell cycle, use of
optimum nutritional requirements and culture conditions,
awareness of stress factors and optimized configurations of
bioreactors are fundamental to mass culture of dinoflagellates for
phycotoxin production.

CULTURE OF Prorocentrum spp. FOR
PHYCOTOXIN PRODUCTION

The effects of key environmental factors (e.g., nutrients,
temperature, salinity, and light availability) on the phycotoxin
production are species dependent (Vanucci et al., 2010; Varkitzi
et al., 2010; Wang et al., 2015; Aquino-Cruz et al., 2018; Gu
et al., 2019; Lee et al., 2020). Nutrient limitation is the most
common strategy used to boost phycotoxin production, however
as a result of nutrient limitation cell growth usually declines.
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Phycotoxin production was deemed to be a dependent of growth
rate rather than due to the environmental or nutritional stress
applied (Pistocchi et al., 2012). Therefore, a compromise must
be reached between high phycotoxin production and maximum
growth rate, leading generally to two-step culture strategies,
with an initial phase based on biomass accumulation (nutrient
replete conditions) followed by a phase of phycotoxin production
(under deprivation conditions). Alternative strategies include
changes in the light cycle, pH, temperature or salinity to boost
phycotoxin production.

Effect of Culture Media Composition
Media
Natural seawater enriched with nutrients and trace metals is
frequently used as a base for culture medium of dinoflagellates
(Harrison and Berges, 2005). However, its continuous supply may
be inconvenient so synthetic seawater is commonly used instead
when a natural seawater supply is unfeasible (e.g., geographic
limitations). Although composition of synthetic seawater can
be easily controlled and modified, trace organics present in
natural seawater are difficult to reproduce in its artificial
counterpart. L1, L1-Si, f/2, f/4, K medium have been used
to enrich the natural or synthetic seawater for the cultivation
of Prorocentrum spp. (Tables 2–6). All these media contains
similar nutritional elements (nitrogen, phosphorus, sulfates and
trace metals and vitamins) but in different ratios. According
to Guillard and Morton (2003) L1 and f/2 medium are more
suitable for coastal planktonic species, while L2 and K media are
favorable for growing benthic, epiphytic and oceanic planktonic
species. Although the use of artificial seawater is acceptable for
cultivating marine dinoflagellates, its long term replacement for
natural seawater was deemed to lower production of bioactive
metabolites (Hsieh et al., 2001). When P. lima was cultured
in f/2 media prepared in natural seawater, artificial seawater
(Guillard and Morton, 2003), and salt water (NaCl 35 g/l) it
was able to grow in all types of prepared medium. However, the
use of salt water affected the cell integrity in the culture that
was indicated by lack of pigmentation and high levels of OA
in the medium (Praptiwi, 2014). Long-term artificial seawater
cultivation resulted in a substantial reduction of OA production
of almost 70% after the second cycle of sub-culturing (Praptiwi,
2014) suggesting that artificial seawater may lack trace elements
or nutrients present in natural seawater necessary to support
phytotoxin production.

Nitrogen
Microalgae are able to obtain nitrogen from different sources.
Benthic Prorocentrum spp. has been cultured using nitrate,
ammonium and urea (Table 2) (McLachlan et al., 1994; Pan et al.,
1999; Zhong et al., 2008; Li et al., 2009; Varkitzi et al., 2010; Hou
et al., 2016; Accoroni et al., 2018; Gu et al., 2019; Lee et al., 2020).
Whereas some studies suggest that nitrogen concentration is
directly proportional to the maximum cell density but not growth
rate (Zhong et al., 2008; Vanucci et al., 2010; Hou et al., 2016),
others found that it is directly proportional to both (McLachlan
et al., 1994; Li et al., 2009).

Under, routine culture conditions, maximum phycotoxin
levels have been recorded at the end of the exponential growth
phase and start of the stationary phase (McLachlan et al., 1994;
Li et al., 2009; Varkitzi et al., 2010). However, when microalgae
is grown under stress conditions, such as nutrient depletion,
they synthesize multiple secondary metabolites, phycotoxins
among them, to increase the possibility of survival under these
unfavorable conditions. In general, limited nitrogen availability
leads to an increase in phycotoxin production (McLachlan et al.,
1994; Hou et al., 2016; Accoroni et al., 2018; Gu et al., 2019;
Lee et al., 2020). For instance, in a nitrogen-depleted medium,
intracellular concentration of OA in P. hoffmannianum was
3.7 times basal nitrogen level (883 µM) during the stationary
phase (45.38 pg/cell) and 3.4 times this during its maximum
growth (21.38 pg/cell) (Lee et al., 2020) (Table 2). Whereas in a
medium with ten times more nitrogen (8830 µM) intracellular
concentration of OA was similar during the stationary and
the maximum growth phase (both ≈16.38 pg/cell) but the
phycotoxin levels were higher in the maximum growth phase (2.6
times) than in the stationary phase (1.3 times) (Lee et al., 2020).
Vanucci et al. (2010) demonstrated a similar trend of increased
phycotoxin production as the concentration of nitrogen was
decreased. In this case the effect was more noticeable in the
production of DTX1 than in OA, with DTX1 production
increased up to 3.3 times (0.39 pg/cell) and OA production up
to 1.9 times (12.5 pg/cell) in a culture of P. lima when the
concentration of nitrogen was reduced to 17.7 µM (Table 2)
from basal levels. The difference on OA yield observed between
P. hoffmannianum and P. lima when changing N concentrations
could be due to be strain specific or due to the small differences
between the culturing conditions.

In addition, the chemical nature of nitrogen may affect the
phycotoxin production (Table 2). It has been suggested that
ammonia may be a preferred source of nitrogen for benthic
Prorocentrum spp. as it does not need enzymatic fixation
although it does not seem to increase phycotoxin production (Pan
et al., 1999; Zhong et al., 2008; Varkitzi et al., 2010). Gu et al.
(2019) compared OA production of P. lima cultured with nitrate,
urea or ammonium. Maximum cell density (47000 cells/mL)
and OA production (25 pg/cell) were obtained using nitrate as
a source and the lowest with ammonium. Similar effects were
obtained by Varkitzi et al. (2010) when the same concentration of
nitrate or ammonium were used for growing P. lima. Zhong et al.
(2008) also reported the highest OA production using 100 µM
nitrates (OA 338 pg/cell) but no differences were observed
among 100 µM urea (OA 113 pg/cell) and 100 µM ammonium
(OA 100 pg/cell). In the study of Gu et al. (2019) the use of
different nitrogen sources led to different phycotoxin production,
maximum cell densities and growth rates. In general, nitrates gave
the maximum OA production and cell density followed by urea
and finally ammonium.

Phosphorus
Phosphorus is an essential nutrient involved in several metabolic
processes in dinoflagellates including photosynthesis, cell
membrane synthesis, signal transduction and catabolism of
sugars and fatty acids, among others (Lin et al., 2016).
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TABLE 2 | Effect of nitrogen and phosphorus on the growth and toxin content of Prorocentrum spp.

Strain Culture Nitrogen
source

Phosphorus
source

N:P Growth rate
(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. hoffmannianum
(CCMP2804)

L1-Si medium
in seawater;
salinity 30 ppt;
22◦C; 3000 lux;
12/12h
light/dark cycle;
initial cell
density 1000
cells/mL

NO3
− (883 µM) PO4

3− (36.2
µM)

24.4 0.07 40200 (Day 42) OA: 6.31 (Day
28);
12.40 (Day 50)

Lee et al., 2020

NO3
− depleted

L1-S1 medium
PO4

3− (36.2
µM)

0 n.a. 1910 (Day 42) OA: 21.38 (Day
28);
45.38 (Day 50)

NO3
− (8830

µM)
PO4

3− (36.2
µM)

244 n.a. 53100 (Day 42) OA≈16.38 (Day
28);
16.38 (Day 50)

NO3
− (883 µM) PO4

3−

depleted L1-Si
medium

- n.a. 3230 (Day 42) OA: 18.36 (Day
28);
67.03 (Day 50)

NO3
− (883 µM) PO4

3− (362
µM)

521 n.a. 49000 (Day 42) OA: 12.57 (Day
28);
14.74 (Day 50)

P. lima
(CCMP2579)

F/2 medium;
20◦C; 58 µmol
photons/m2/s;
12/12h
light/dark cycle;
initial cell
density 12000
cells/mL (no
seawater)

Control F/2
medium

Control F/2
medium

24.4 ≈0.043a 45000 (Day 50) OA≈12 (Day
20);
≈25 (Day 38);
≈60 (Day 50)

Gu et al., 2019

N-limited
(17.7 µM)

PO4
3− (36.2

µM)
0.49 ≈0.036a 38000 (Day 50) OA≈12c (Day

20);
≈40c (Day 38);
≈38c (Day 50)

NO3
− (883 µM) P-limited

(1.81 µM)
488 ≈0.023a 30000 (Day 50) OA≈8c (Day

20);
≈35c (Day 38);
≈175c (Day 50)

NO3
− (883 µM) PO4

3− (36.2
µM)

24.4 ≈0.039a 47000 (Day 50) OA≈25c (Day
38)

Urea (883 µM) PO4
3− (36.2

µM)
24.4 ≈0.036a 35000 (Day 50) OA≈18c (Day

38)

NH4
+ (883 µM) PO4

3− (36.2
µM)

24.4 no growth 13000 (Day 12) OA≈13c (Day
38)

NO3
− (883 µM) Glycerophosphate

(36.3 µM)
24.3 ≈0.021a 45000 (Day 50) OA≈18c (Day

38)

NO3
− (883 µM) NaH2PO4

(36.3 µM)
24.3 ≈0.052a 45000 (Day 50) OA≈35c (Day

38)

NO3
− (883 µM) ATP (36.3 µM) 24.3 ≈0.032a 49000 (Day 50) OA≈30c (Day

38)

P. hoffmannianum
(PHKL0414;
isolates from
Florida Keys,
United States)

Modified f/4
medium: Si
free, f/4
macronutrients,
Se in seawater
and trace
metals, iron,
vitamins (H, B1
and B12) and
HEPES pH 7.1
at levels of f/2
medium; 27◦C;
90–100 µmol
photons/m2/s;
12/12h
light/dark cycle;
initial cell
density 500
cells/mL

NO3
− (441 µM) PO4

3− (18.1
µM)

24.4 0.28 at 21◦C 2611 (Day 12) OA: 49.57 Accoroni et al.,
20180.19 at 27◦C 5363 (Day 28) OA: 106.91

NO3
− (441 µM) PO4

3− (0.6
µM)

735 0.13 at 21◦C 736 (Day 12) OA: 262.49

0.12 at 27◦C 752 (Day 16) OA: 642.57

NO3
− (14.7

µM)
PO4

3− (18.1
µM)

0.81 0.21 at 21◦C 809 (Day 12) OA: 51.91

0.14 at 27◦C 713 (Day 8) OA: 56.88

(Continued)
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TABLE 2 | Continued

Strain Culture Nitrogen
source

Phosphorus
source

N:P Growth rate
(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. lima
(CCMP2579)

F/2 medium;
20◦C; 58 µmol
photons/m2/s;
12/12h
light/dark cycle;
initial cell
density 12000
cells/mL

NO3
− (882 µM) PO4

3− (36.3 µM) 24.3 ≈0.097a
≈40000c

≈17.5b,c Hou et al.,
2016

NO3
− (17.7

µM)
PO4

3− (36.3 µM) 0.49 ≈0.103a
≈35454c

≈30.1b,c

NO3
− (882 µM) PO4

3− (1.81 µM) 487 ≈0.021a
≈25909c

≈35.2b,c

P. lima (isolates
from coastal
lagoon of Goro,
Italy)

F/2 medium in
seawater;
salinity 25%;
20◦C; 90 µmol
photons/m2/s;
16/8h light/dark
cycle; initial cell
density
300–400
cells/mL

NO3
− (17.7

µM)
PO4

3− (36.3 µM) 0.49 0.22 7040 OA: 12.5b

DTX1: 0.39b
Vanucci et al.,
2010

NO3
− (44.2

µM)
PO4

3− (36.3 µM) 1.22 0.22 ≈10000c OA≈11b,c

DTX1≈0.25b,c

NO3
− (88.3

µM)
PO4

3− (36.3 µM) 2.43 0.22 ≈14000c OA≈11.74b,c

DTX1≈0.18b,c

NO3
− (294 µM) PO4

3− (36.3 µM) 8.10 0.22 ≈24000c OA≈10.34b,c

DTX1≈ 0.15b,c

NO3
− (882 µM) PO4

3− (36.3 µM) 24.3 0.22 33100–35000 OA: 6.69–6.87b

DTX1: 0.12b

NO3
− (882 µM) PO4

3− (0.73 µM) 1208 0.22 6250 OA: 10.75b

DTX1≈ 0.26b,c

NO3
− (882 µM) PO4

3− (1.81 µM) 487 0.22 ≈11000c OA: 15.80b

DTX1≈ 0.32b,c

NO3
− (882 µM) PO4

3− (3.63 µM) 243 0.22 ≈17000c OA≈11.27b,c

DTX1≈ 0.26b,c

NO3
− (882 µM) PO4

3− (12.1 µM) 72.9 0.22 ≈31000c OA≈9.7b,c

DTX1≈ 0.16b,c

P. lima
(CCAP1136/11)

Modified f/2
medium by
adding H2SeO3

and reducing
the CuSO4

conc. in
seawater;
salinity 38 psu;
20◦C; 35 µmol
photons/m2/s;
16/8h light/dark
cycle; initial cell
density ≈1000c

NO3
− (882 µM) PO4

3− (36.3 µM) 24.3 0.22 20950 ≈6b,c (Day 34) Varkitzi et al.,
2010

NH4
+ (882 µM) PO4

3− (36.3 µM) 24.3 0.21 10790 ≈4.7b,c (Day
20)

NO3
− (300 µM) PO4

3− (72.5 µM) 4.14 0.11 ≈18000c
≈5.0b,c (Day
34)

NO3
− (1450

µM)
PO4

3− (18.1 µM) 80.1 0.2 ≈16000c 11.27b,c (Day
34)

NO3
− (1450

µM)
PO4

3− (18.1 µM) 80.1 0.17 20690 OA: 4.63
DTX1: 0.55

Varkitzi et al.,
2017

P. lima (clone
from Mahone Bay,
Nova Scotia)

F/2 medium
buffered with
Tris in
seawater;
23◦C;
80–90 µmol
photons/m2/s;
16/8h light/dark
cycle; initial cell
density
5000–6000
cells/mL

NO3
− (0 µM) PO4

3− (36.3 µM) 0 ≈0.013a
≈8077c OA + DTX1:

34b

(Day 20)

McLachlan
et al., 1994

NO3
− (300 µM) PO4

3− (36.3 µM) 8.26 ≈0.032a
≈20000c OA + DTX1:

25b

(Day 30)

NO3
− (1000

µM)
PO4

3− (36.3 µM) 27.6 ≈0.033a
≈20833c OA + DTX1: 7b

(Day 30)

P. lima
(CCMP2579)

n.a. NO3
− (88.2

µM)
PO4

3− (36.3 µM) 2.43 ≈0.029a
≈5220c OA: 192.69b Li et al., 2009

NO3
− (882 µM) PO4

3− (36.3 µM) 24.3 ≈0.039a
≈10000c OA: 100.66b

NO3
− (882 µM) PO4

3− (3.63 µM) 243 ≈0.029a
≈3333c OA: 268.68b

NO3
− (882 µM) PO4

3− (36.3 µM) 24.3 ≈0.039a
≈10000c OA: 100.66b

(Continued)
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TABLE 2 | Continued

Strain Culture Nitrogen
source

Phosphorus
source

N:P Growth rate
(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. lima
(CCMP2579)

n.a. NO3
− (12 µM) PO4

3− (36.3 µM) 0.33 0.058 ≈13180c OA≈210b,c Zhong et al., 2008

NO3
− (25 µM) PO4

3− (36.3 µM) 0.69 0.058 ≈13180c OA≈275b,c

NO3
− (50 µM) PO4

3− (36.3 µM) 1.38 0.058 ≈14540c OA≈240b,c

NO3
− (100 µM) PO4

3− (36.3 µM) 2.75 0.058 ≈15000c OA≈338b,c

NH4 (12 µM) PO4
3− (36.3 µM) 0.33 0.059 ≈13210c OA≈85b,c

NH4 (25 µM) PO4
3− (36.3 µM) 0.69 0.059 ≈11740c OA≈68b,c

NH4 (50 µM) PO4
3− (36.3 µM) 1.38 0.059 ≈12500c OA≈85b,c

NH4 (100 µM) PO4
3− (36.3 µM) 2.75 0.059 ≈13620c OA≈100b,c

Urea (12 µM) PO4
3− (36.3 µM) 0.33 0.06 ≈13880c OA≈100b,c

Urea (25 µM) PO4
3− (36.3 µM) 0.69 0.06 ≈13330c OA≈58b,c

Urea (50 µM) PO4
3− (36.3 µM) 1.38 0.06 ≈15550c OA≈55b,c

Urea (100 µM) PO4
3− (36.3 µM) 2.75 0.06 18330 OA≈113b,c

P. lima
(CCMP2579)

n.a. NO3
− (882 µM) PO4

3− (0.5 µM) 1764 0.059 ≈12230c OA≈88b,c Yang et al., 2008

NO3
− (882 µM) PO4

3− (1 µM) 882 0.059 ≈13290c OA≈76b,c

NO3
− (882 µM) PO4

3− (2 µM) 441 0.059 ≈14200c OA≈86b,c

NO3
− (882 µM) PO4

3− (5 µM) 176 0.059 ≈15000c OA≈60b,c

NO3
− (882 µM) PO4

3− (10 µM) 88.2 0.059 ≈16000c OA≈68b,c

NO3
− (882 µM) Gly PO4

3−

(0.5 µM)
1764 0.048 ≈11840c OA≈116b,c

NO3
− (882 µM) Gly PO4

3− (1 µM) 882 0.048 ≈11840c OA≈97b,c

NO3
− (882 µM) Gly PO4

3− (2 µM) 441 0.048 ≈11440c OA≈100b,c

NO3
− (882 µM) Gly PO4

3− (5 µM) 176 0.048 ≈13600c OA≈94b,c

NO3
− (882 µM) Gly PO4

3− (10 µM) 88.2 0.048 ≈16310c OA≈88b,c

NO3
− (882 µM) ATP (0.5 µM) 1764 0.053 ≈13160c OA≈51b,c

NO3
− (882 µM) ATP (1 µM) 882 0.053 ≈13830c OA≈57b,c

NO3
− (882 µM) ATP (2 µM) 441 0.053 ≈17000c OA≈57b,c

NO3
− (882 µM) ATP (5 µM) 176 0.053 ≈18160c OA≈60b,c

NO3
− (882 µM) ATP (10 µM) 88.2 0.053 ≈19160c OA≈57b,c

n.a.: not available; a The specific growth rate is calculated according to the following formula: µ = ((lnN1)-ln(N0))/(t1-t0) where N0 and N1 are the cell density at time t0 and
t1; b The toxin level was determined at stationary phase; c The data were estimated from data in the corresponding publication; OA: okadaic acid; DTX1: dinophysistoxin-1;
N: nitrogen; P: phosphorus.

Limited availability of phosphorus in culture medium has also
proved to hinder the growth of Prorocentrum spp. (Table 2)
(Hou et al., 2016; Accoroni et al., 2018; Gu et al., 2019). Whereas
production of OA and DTX was promoted when dinoflagellates
were grown under P-limitation (Vanucci et al., 2010; Varkitzi
et al., 2010; Hou et al., 2016; Accoroni et al., 2018; Lee et al., 2020).
In general, studies evaluate the effect of P-depletion on the growth
rate, maximum cell density and phycotoxin production but not
the effect of P-augmentation. Lee et al. (2020) observed that
362 µM of P had no great impact on the maximum cell density
(20% increase) and phycotoxin production (1.2 times greater) of
P. hoffmannianum in comparison to the effect of P-depletion had
(maximum cell density was decreased by 92% but phycotoxin
content increased 5.4 times).

The chemical nature of phosphorus also influence growth
rates and cellular phycotoxin levels in P. lima (Gu et al.,
2019; Yang et al., 2008) (Table 2). Maximum cell growth
and OA production (35 pg/cell) was observed using sodium
dihydrogen phosphate (NaH2PO4), followed by ATP (30 pg/cell)
and finally glycerophosphate (18 pg/cell) (Gu et al., 2019).

However, maximum cell density was similar regardless of the
phosphorus source used (Gu et al., 2019). Yang et al. (2008)
observed a similar effect on the growth rate and the maximum cell
density of P. lima after different phosphorus sources were used.
However in this case the phosphorus concentrations evaluated
(0.5 to 10 µM) were below typical culture media (36.3 µM) and
the maximum OA cell content increased as the concentration
decreased (from 10 to 0.5 µM) after using glycerophosphate
(from 88 pg/cell to 116 pg/cell of OA), and NaH2PO4 (from
68 pg/cell to 88 pg/cell) but not after using ATP (from 57
pg/cell to 51 pg/cell).

Trace Metals
In microalgae, trace metals play important roles in numerous
metabolic processes including electron and oxygen transport,
nutrient acquisition, anti-oxidative mechanisms, cell division and
integrity (Bruland et al., 1991; Raven et al., 1999; Sunda, 2012).
Growth and cell morphology may be altered by a deficiency
of trace metals but an excess could induce cell death and cyst
formation (Tian et al., 2018).
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TABLE 3 | Effect of light on the growth and toxin content of Prorocentrum spp.

Strain Culture Light(h)/
dark(h)
cycle

Illuminance Growth
rate

(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. lima
(CCMP 2579)

F/2 medium; salinity 30%;
25◦C; 100 µmol photons/m2/s;
initial cell density 5000 cells/mL

8/16 100 µmol
photons/m2/s

n.a. ≈11000 (Day
35)

OA≈1.5b,c Wang et al., 2015

12/12 100 µmol
photons/m2/s

n.a. ≈25500 (Day
35)

OA≈1.5b,c

16/8 100 µmol
photons/m2/s

n.a. ≈26000 (Day
35)

OA≈1.2b,c

P. belizeanum
(VGO1029),
Isolates from
La Puntilla,
Las Palmas de
Gran Canaria)

L1 medium in seawater;
40 µmol photons/m2/s; initial
cell density 10000 cells/mL

12/12 20 µmol photons/m2/s
at 18◦C

≈0.075a,c
≈60000c (Day

25)
n.a. López-Rosales

et al., 2014

12/12 40 µmol photons/m2/s
at 18◦C

≈0.120a,c
≈120000c (Day

25)
OA≈4.75b,c

12/12 80 µmol photons/m2/s
at 18◦C

≈0.120a,c
≈120000c (Day

25)
n.a.

12/12 120 µmol
photons/m2/s at 18◦C

≈0.105a,c
≈80000c (Day

25)
n.a.

12/12 20 µmol photons/m2/s
at 25◦C

≈0.070a,c
≈35000c (Day

25)
n.a.

12/12 40 µmol photons/m2/s
at 25◦C

≈0.200a,c
≈135000c (Day

20)
OA≈1.1b,c

12/12 80 µmol photons/m2/s
at 25◦C

≈0.170a,c
≈100000c (Day

20)
n.a.

12/12 120 µmol
photons/m2/s at 25◦C

≈0.120a,c
≈60000c (Day

20)
n.a.

12/12 20 µmol photons/m2/s
at 28◦C

≈0.070a,c
≈15000c (Day

15)
n.a.

12/12 40 µmol photons/m2/s
at 28◦C

≈0.120a,c
≈35000c (Day

15)
OA≈2.625b,c

12/12 80 µmol photons/m2/s
at 28◦C

≈0.100a,c
≈35000c (Day

15)
n.a.

12/12 120 µmol
photons/m2/s at 28◦C

no growth - n.a.

P. hoffmannianum
(882a, Isolates
from Little
Lameshur Bay,
St John, US
Virgin Island)

Modified K medium in seawater
(no Tris, Cu and Si); salinity
36%; 27◦C

16/8 2000 lux ≈0.06–0.2c

(max at 27◦C)
n.a. OA≈10–53.8c

(max at 23◦C)
Morton et al., 1994

16/8 3000 lux ≈0.1–0.425c

(max at 29◦C)
n.a. OA≈11.3–38c

(max at 29◦C)

16/8 4000 lux ≈0.07–0.425c

(max at 27◦C)
n.a. OA≈5–45c

(max at 29◦C)

16/8 5000 lux ≈0.08–0.53c

(max at 27◦C)
n.a. OA≈2.5–17.5c

(max at 25 and 31◦C)

n.a.: not available; a The specific growth rate is calculated according to the following formula: µ = ((lnN1)-ln(N0))/(t1-t0) where N0 and N1 are the cell density at time t0 and t1; b The toxin level was determined at
stationary phase; c The data were estimated from data in the corresponding publication.
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TABLE 4 | Effect of salinity on the growth and toxin content of Prorocentrum spp.

Strain Culture Salinity
(%)

Growth rate
(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. lima
(CCMP 2579)

F/2 medium; salinity 30%;
25◦C; 100 µmol photons/m2/s;
initial cell density 5000 cells/mL

15 n.a. ≈11500
(Day 35)

OA≈1.0b,c

DTX1≈4.7b,c
Wang et al.,
2015

30 n.a. ≈25000
(Day 35)

OA≈1.8b,c

DTX1≈11.0b,c

45 n.a. ≈7000
(Day 35)

OA≈3.0b,c

DTX1≈22.5b,c

P. hoffmannianum
(882a, Isolates
from Little
Lameshur Bay,
St John, US
Virgin Island)

Modified K medium in seawater
(no Tris, Cu and Si); salinity
36%; 27◦C; 3000 lux; 16/8h
light/dark cycle

28 ≈0.125c n.a. OA≈7.5c Morton et al.,
199431 ≈0.135c n.a. OA≈4.5c

34 ≈0.220c n.a. OA≈3.2c

37 ≈0.160c n.a. OA≈3.5c

40 ≈0.135c n.a. OA≈4c

n.a.: not available; b The toxin level was determined at stationary phase; c The data were estimated from data in the corresponding publication; OA: okadaic acid; DTX1:
dinophysistoxin-1.

In routine medium recipes, the composition of trace metals
has been formulized to meet the biochemical requirements of
most dinoflagellates culture. Yet, in some cases, modifications
are needed as each Prorocentrum spp. has its own distinctive
growth requirements. Furthermore, trace metal composition may
discourage or promote phycotoxin production by dinoflagellates
(Rhodes et al., 2006; He et al., 2010). For example, Se at pM
level induced an increase of OA ester quota per cell in P. lima
by approximately 50% (Rhodes et al., 2006). Gu et al. (2019)
observed that an increase of Cu concentration (from 40 to 5039
nM) limited the growth of P. lima by 36% but increased the
cellular OA concentration level 1.8 times (27 pg/cell). The effects
of trace metals on dinoflagellate culture and their implications for
mass cultivation and bioactive metabolite production strategies
require further exploration.

Effect of Physical Factors
Other than nutritional factors, physico-chemical factors such as
light, salinity and temperature have been shown to impact on
the growth and the phycotoxin production of dinoflagellates
(Morton et al., 1994; López-Rosales et al., 2014; Tan and
Ransangan, 2015; Wang et al., 2015).

Light
As with other photoautotrophic phytoplankton, growth of
dinoflagellates is directly affected by the availability and
irradiance of light. In general, artificial light is chosen to culture
dinoflagellates as it provides better control of the light spectrum,
irradiance and photoperiod (Table 3) (Morton et al., 1994; López-
Rosales et al., 2014; Wang et al., 2015). Light-emitting diodes
(LEDs) are an excellent alternative as they outperform fluorescent
light. LEDs are adjustable to fit the design of the photobioreactors
(PBRs), provide effective light without generating too much
heat, are low-cost and non-toxic. A few studies have shown the
potential of LEDs to culture dinoflagellates (Schulze et al., 2014;
López-Rosales et al., 2016; Molina-Miras et al., 2018).

Light intensity and photoperiod influence not only the growth
and cell cycle of Prorocentrum spp. but also their cellular

phycotoxin composition (Table 3). In the study of López-Rosales
et al. (2014) excessive light intensity led to the photoinhibition
of P. belizeanum. Maximum growth of P. belizeanum was
found at 40 µmol photons/m2/s regardless of the temperature
(18–28◦C). P. hoffmannianum growth rate increased as the
irradiance increased from 2000 lux (0.20 µ/day) to 5000 lux
(0.53 µ/day). High phycotoxin production has been observed
at low light intensity conditions. Intracellular content of OA
by P. hoffmannianum was higher (53.8 pg/cell) at low light
intensity (2000 lux) in comparison to higher light intensities
(5000 lux; OA: 17.5 pg/cell). The most commonly used light/dark
cycles to study phycotoxin production are 8h/16h, 12h/12h and
16h/8h. Wang et al. (2015) reported that the light duration is
directly proportional to maximum cell density. Maximum cell
density of P. lima increased from 8h (≈11000 cells/mL) to
12h (≈25500 cells/mL) and remained fairly constant after 16h
(≈26000 cells/mL) of light. However, cellular OA content was
lower when the light exposure was increased up to 16h. Little
is known about the relationship between phycotoxin production
and photosynthesis that could be potentially associated to cell
cycles (Pan et al., 1999). OA was suggested to be biosynthesized
in the chloroplast (Zhou and Fritz, 1994) and stored in them
or in peripheral vacuoles of P. lima (Barbier et al., 1999).
Wang et al. (2015) indicated that both photosynthesis and dark
respiration are needed for DSP toxin biosynthesis. Pan et al.
(1999) indicated that DSP production was instigated by light.
DSP toxin amount per cell (OA, OA C8-diol-ester, DTX1 and
DTX4) increased soon after P. lima culture was exposed to
light after a dark synchronization period (no changes during
dark). Different DSP toxins were produced at different phase
of the photocycle. A rise in DTX4 levels (initiated in the G1
to S phases “morning”) preceded an increase in the cellular
content of OA and DTX1 (produced during S and G2 phases
“afternoon”) 3 to 6h later. Based on the sequential pattern in
the biosynthesis of DTX4, OA, OA-C8 diol-ester and DTX1,
DTX4 was considered the precursor toxin in the biosynthetic
cascade through a light-mediated stepwise enzymatic reactions.
In Praptiwi (2014), light and dark cycle at low to medium
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TABLE 5 | Effect of temperature on the growth and toxin content of Prorocentrum spp.

Strain Culture Temperature
(◦C)

Growth rate
(µ/day)

Maximum
cell density
(cells/mL)

Toxin content
(pg/cell)

References

P. lima (isolates
from Moonfleet on
the Fleet Lagoon,
United Kingdom)

F/2 medium in seawater
(NO3

−
+ NO2

−: 928–1000 µM;
PO4

3−: 32–40 µM)
; 50 ± 15 µmol photons/m2/s; 12/12h
light/dark cycle;

5 0.05 600 OA free: 0.99–1.78e

OA total: 2.05–4.52e

DTX1 free: 0.94–2.60e

DTX1 total: 0.82–1.99e

Aquino-Cruz
et al., 2018

10 0.13 10500 OA free: 1.51–5.12e

OA total: 3.77–10.99e

DTX1 free: 1.31–5.61e

DTX1 total: 2.07–5.96e

15 0.18 11500 OA free: 1.41–6.04e

OA total: 2.78–10.69e

DTX1 free: 1.18–4.92e

DTX1 total: 1.43–5.32e

20 0.14 9600 OA free: 1.30–2.20e

OA total: 2.62–7.50e

DTX1 free: 0.97–2.97e

DTX1 total: 0.97–3.16e

25 0.17 10100 OA free: 1.16–3.11e

OA total: 2.68–6.71e

DTX1 free: 0.82–2.60e

DTX1 total: 0.95–2.66e

30 0.14 4100 OA free: 0.98–4.09e

OA total: 2.2–10.54e

DTX1 free: 0.88–3.58e

DTX1 total: 0.84–3.31e

P. lima (CCMP
2579)

F/2 medium; salinity 30%; 100 µmol
photons/m2/s; 12/12h light/dark cycle;
initial cell density 5000 cells/mL

15 ≈0.048a
≈16000 (Day

35)
OA≈5.5b,c

DTX1≈14.1b,c
Wang et al.,
2015

20 ≈0.050a
≈25000 (Day

25)
OA≈1.5b,c

DTX1≈11b,c

25 ≈0.056a
≈25000 (Day

25)
OA≈1b,c

DTX1≈4.7b,c

30 ≈0.036a
≈8200 (Day 7) OA: 12.371b,c

DTX1: 16.587b,c

P. belizeanum
(VGO1029,
isolates from
La Puntilla,
Las Palmas de
Gran Canaria)

L1 medium in seawater; 40 µmol
photons/m2/s; 12/12h light/dark cycle;
initial cell density 10000 cells/mL

18 ≈0.120a,c
≈120000c

(Day 25)
≈4.75b,c López-

Rosales
et al., 201425 ≈0.200a,c

≈135000c

(Day 20)
≈1.1b,c

28 ≈0.120a,c
≈35000c

(Day 15)
n.a.

P. lima (isolates
from Nova Scotia,
Canada)

n/a 5 ≈0.000a
≈1000 (Day 28) OA: 8 (Day 28) Jackson

et al., 1993
10 ≈0.073a

≈7800 (Day 28) OA: 2.5 (Day 28)

15 ≈0.150a
≈11000 (Day

16)
OA: 4.4 (Day 16)

20 ≈0.198a
≈23800 (Day

16)
OA: 2.5 (Day 16)

25 ≈0.229a
≈39000 (Day

16)
OA: 1.4 (Day 16)

P. hoffmannianum
(PHKL0414;
isolates from
Florida Keys,
United States)

Modified f/4 medium: Si free, f/4
macronutrients, Se in filtered seawater
and trace metals, iron, vitamines (H, B1
and B12) and HEPES pH 7.1 at levels
of f/2 medium; 27◦C; 90–100 µmol
photons/m2/s; 12/12h light/dark cycle;
initial cell density 500 cells/mL

21 0.28 2611 (Day 12) OA: 49.57 Accoroni
et al., 201827 0.19 5363 (Day 28) OA: 106.91

n.a.: not available; a The specific growth rate is calculated according to the following formula: µ = ((lnN1)-ln(N0))/(t1-t0) where N0 and N1 are the cell density at time t0 and
t1; b The toxin level was determined at stationary phase; c The data were estimated from data in the corresponding publication; e Ranges consider lag, exponential and
stationary growth phases; OA: okadaic acid; DTX1: dinophysistoxin-1.
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light intensities (25 and 50 µmol/m2/s) were proved to have
no substantial effect to the total yield of OA and DTX-1, when
compared to cultures with continuous light exposure. It did,
however, improved the low yield gained in cultures exposed to
high light intensity (95 µmol/m2/s), with approximately 36%
increase for OA and 66% increase for DTX-1 when using
12 hours light and dark cycles compared to continuous cycle.
Despite this, the study (Praptiwi, 2014) further found that
these improvements in yields are still significantly lower than
those obtained from cultures exposed to low and medium light
intensities (25 and 50 µmol/m2/s) at both continuous light and
12 hours light/dark cycles.

Salinity
Salinity influences biochemical processes in the cell such as
nutrient uptake and transportation system inside cell (Hsieh
et al., 2001). Variations in ion strength and ionic composition
induces distinctive responses on the growth of dinoflagellates
due to osmoregulation (Stefels, 2000). Growth tolerance under a
range of salinities content appears to be different for each species
and is attributed to its geographic origin (D’Ors et al., 2016;
Monti-Birkenmeier et al., 2019).

In principle, changes in salinity could affect phycotoxin
production and content, either by direct effect on the biosynthetic
pathways, or indirectly, by modulating cell growth which
in turn indirectly affect cellular phycotoxin content (Parkhill
and Cembella, 1999; Aguilera-Belmonte et al., 2013). This is
supported by evidence that despite the same salinity, phycotoxin
production appeared to be variable throughout the growth phase;
with a constant level during the exponential growth phase
which starts to increase at early stationary phase (Parkhill and
Cembella, 1999). However, it was argued by Lim et al. (2011)
that phycotoxin production is not a result of salinity-dependent-
growth rate, but rather governed by cell osmoregulation and
utilization of amino acid. Lim et al. (2011) further explained that
evidence of this was shown in their results of toxin quota (Qt)
obtained from the two lowest growth cultures at 5 and 35 psu,
where much lower Qt observed in 5 psu than 35 psu.

Very few studies (Table 4) have dealt with the effect of salinity
on growth rate and phycotoxin production by Prorocentrum
spp. and they show contradictory results. In general growth rate
decreased with salinity (0.125 µ/day at 28% and 0.105 µ/day
at 37%; at 40% there was 0.120 µ/day) (Morton et al., 1994).
The maximum cell density during the stationary phase also
declined with increasing salinity (Wang et al., 2015). The cellular
phycotoxin content in P. lima increased with increasing salinity.
The Qt of OA increased from ≈1.0 pg/cell to ≈3.0 pg/cell and
DTX1 from ≈4.7 pg/cell to ≈22.5 pg/cell when the salinity
was increased from 15 psu to 45 psu (Wang et al., 2015). On
the other hand, cellular content of OA in P. hoffmannianum
was inversely proportional to salinity content and growth rate
(Morton et al., 1994). The maximum cellular OA level (≈7.5
pg/cell) was reached at 28 psu and the lowest (≈3.2 pg/cell) was
found at 34 psu which coincided with the highest growth rate
(≈0.22 µ). As the salinity was increased up to 40 psu the growth
rate declined (≈0.135 µ) and the OA cellular content slightly
increased up to≈4.0 pg/cell).
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Temperature
Effects of temperature on growth and phycotoxin production of
dinoflagellates appear to be similar to salinity, where each species
has a different temperature range that enables optimum growth
and bioactive compound production, which is a dependent
on its original habitat (Koike et al., 1998; Aguilera-Belmonte
et al., 2013). Benthic Prorocentrum spp. grow in tropical regions
(≈30◦C), whereas epiphytic strains grow in colder waters.
Hence, Prorocentrum spp. are able to adapt to a broad range
of temperatures (Table 5). For instance P. lima isolated from
temperate areas (Canada) can grow between 10 and 25◦C
(Jackson et al., 1993), whereas if it is a strain isolated from
tropical regions (United States) it grows between 21 and 27◦C
(Accoroni et al., 2018). In particular, 25◦C is the optimal growth
temperature for P. lima and P. belizeanum (Jackson et al., 1993;
López-Rosales et al., 2014; Wang et al., 2015; Aquino-Cruz et al.,
2018). Morton et al. (1994) observed that P. hoffmannianum can
tolerate temperatures between 21 and 36◦C, and gave 27◦C as the
optimal temperature.

Temperature has been found to influence growth, enzymatic
activities and phycotoxin production in Prorocentrum spp.
(López-Rosales et al., 2014; Lee et al., 2016).

Stress caused by changes in temperature promote phycotoxin
production in Prorocentrum spp. Several studies have shown that
maximum growth and cell density of Prorocentrum spp. obtained
at specific temperatures were disassociated from maximum
cellular phycotoxin levels (Jackson et al., 1993; López-Rosales
et al., 2014; Wang et al., 2015; Aquino-Cruz et al., 2018)
(Table 5). Disagreement on the influence that temperatures
have above or below the optimal growth temperature to obtain
the highest OA production have been published. For instance,
temperatures above the optimal growth temperature of P. lima
led to an increase of up to 12 times of the cellular OA level
and up to 3.5 times of DTX1 (Wang et al., 2015) and up
to 2.2 times of OA in P. hoffmannianum (Accoroni et al.,
2018). In contrast, lower temperatures led to an increase of
the cellular phycotoxin content of OA and DTX1 in P. lima
and P. belizeanum (Jackson et al., 1993; López-Rosales et al.,
2014; Aquino-Cruz et al., 2018). Extreme temperatures led to
an increase of the cellular phycotoxin content although the
relationship between temperature and phycotoxin production is
not clear (Lee et al., 2016).

MASS CULTIVATION OF
DINOFLAGELLATES

Early studies on secondary metabolites from dinoflagellates
mostly attempted to understand how environmental and
nutritional parameters affect the production of phycotoxins as
a control strategy for HABs and their related health impacts.
Nevertheless, the potential applications of these phycotoxins had
shifted the interest to optimize their production at large scale.

For example, various attempts were carried out to find the
most efficient way of producing OA for commercial demands.
Total synthesis of OA was successfully demonstrated by a study
(Ley et al., 1998) which assembled three chemical fragments

in a convergent manner but this method is somewhat time-
consuming, requires many steps with low final yield, and may be
impractical for a large-scale production. Another approach was
to extract OA from natural blooms of microalgae in seawater by a
large-scale pumping method, as shown in a study by Rundberget
et al. (2007). Nevertheless, considering the small quantity of
purified phycotoxin obtained (2.7 mg OA and 1.3 mg DTX2 from
≈10250 L of seawater containing≈2× 104 cells/L of Dinophysis
acuta), this method can be unsustainable as it consumes a lot
of energy. The limitations of these approaches highlight the
convenience and practicality of culturing organisms that produce
OA and other bioactive compounds.

One of the biggest challenges in microalgae mass cultivation
is to design and operate a cost-effective production system
that allow the control over the growth rate and product
yield. To address low product yields and upscaling the main
parameters to control are nutritional and environmental factors,
light availability and mass and heat transfer as well and
efficient PBR design.

Traditionally, microalgae have been cultivated in shallow open
PBRs using a raceway design and basic mixing. Unfortunately,
they are not suitable for toxic microalgae as they pose
a considerable risk for the ecosystem and are prone to
contamination (Gallardo-Rodríguez et al., 2012). Conversely,
closed PBRs allow more control over operating conditions and
less chance of contamination. Various configurations of closed
PBRs have been used for culturing dinoflagellates including
carboys, stirred-tanks, airlift, bubble column and flat-panel type,
with the last two the most typically used (Wang et al., 2015;
López-Rosales et al., 2016; Molina-Miras et al., 2018). Selection
of closed PBRs will depend on the characteristics of the culture
organism, the desired product and other parameters such as
capital and maintenance costs. The culture can be operated
as batch, fed-batch, continuous, or semi-continuous modes.
Continuous systems are attractive due to the possibility of
maintain optimum growth and automatization however, they
need constant supply of fresh media, and they are complex
to install and run as well as being more expensive. In semi-
continuous mode fresh media is introduced as required, at
interval periods, using much less volume of media than the
continuous system. However, to date only a few studies described
the cultivation of P. lima to produce OA and all of them operate
in batch mode (Table 6).

Light is one of the key parameters to enhance the productivity
of phototropic microalgae. Light should be provided at the
appropriate intensity, wavelength and duration (Carvalho et al.,
2011). Light attenuation and/or mutual shading effects should
be limited to ensure culture efficiency and lower energy
consumption. It is necessary to design a PBR that has a high
surface to volume ratio, and relatively low culture thickness
(López-Rosales et al., 2014). Wang et al. (2015) designed a
vertical flat bioreactor with an illumination system arranged
at the bottom of the PBR. This design promoted the light
energy absorption and utilization of benthic microalgae (Wang
et al., 2015). Light and dark cycles allow the cells to perform
photosynthesis during the light regime and respiration during
the dark regime. An alternative to continuous light availability is
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intermittent and “flashing” light which have proven to efficiently
promote photosynthesis rate (Acién Fernández et al., 2013)
and increase the productivity of secondary metabolites from
microalgae (Carvalho et al., 2011). LEDs have been satisfactory
used in pilot-scale bubble column PBRs for dinoflagellate
culturing (Schulze et al., 2014; López-Rosales et al., 2016;
Molina-Miras et al., 2018).

Phototrophic microalgae produce oxygen and uptake carbon
dioxide during photosynthesis altering the culture medium and
the pH. Therefore, it is essential to remove the produced oxygen
from the medium and to supply enough CO2 as the carbon source
(Posten, 2009). In addition, as benthic microalgae grow, they
form lumps that attach to the bottom of the bioreactor forming
dense mats and some strains (e.g., P. belizeanum) produce
extracellular mucus that can cover the bottom of the reactor
forming a thin layer (López-Rosales et al., 2014). Gas injection is
essential to increase mass transfer but designing a suitable culture
system for dinoflagellate production can be particularly difficult
in ensuring that the cell viability is maintained. Dinoflagellates
are extremely sensitive to fluid turbulence in the culture media
(García Camacho et al., 2007) and most of them do not readily
grow in closed PBRs due to this (Gallardo-Rodríguez et al.,
2009, 2012). Small-scale turbulence may affect growth rate and
morphology and excessive turbulence may result in flagella
impairment due to physical damage (Berdalet et al., 2007; García
Camacho et al., 2007; Wang and Lan, 2018). Not only the
intensity of shear force should be taken into account but also
its period and interval (Gibson and Thomas, 1995). Detrimental
effects of shear stress include growth inhibition; increased time
for recovery, reduced photosynthetic activity, disturbed cell
cycles, production of reactive oxygen species (ROS), changes in
the fluidity of the cell membrane and even cell lysis (García
Camacho et al., 2007; Gallardo-Rodríguez et al., 2009; Gallardo
Rodríguez et al., 2010). No adverse effects were observed when
the specific energy dissipation rate was below 1 cm2/s3 (Berdalet
et al., 2007). The mechanism of shear-induced damage on cells
has been hypothesized in previous studies. It has been suggested
that damage is linked to their enormous genomes packed in
relatively small volumes, to the alteration of metabolic processes
that induce the production of intracellular ROS, to the reduction
of time-integrated light exposure of individual cells or to direct
impact on the integrity of cellular organelles (Juhl et al., 2001;
Garcia-Camacho et al., 2007; Gallardo-Rodríguez et al., 2009).
Antioxidant agents and additives to alter the fluidity of the media
have been proven useful at low concentrations to protect the
cells against shear stress (Gallardo-Rodríguez et al., 2009, 2012;
Gallardo Rodríguez et al., 2010). Despite this, fluid turbulence
is an important aspect in a bioreactor to maintain mass transfer
within the system. It ensures good mixing of nutrients and gas
exchange, and prevents deposition of cells at the bottom of the
reactor, as well as forcing the cells to move between light and dark

zones of the PBR. Overall, selecting the cultivation system should
reflect on a design that is able to provide sufficient mass transfer
whilst maintaining cell viability of the culture.

CONCLUSION

Despite the negative impact of phycotoxins from dinoflagellates
on human health, they have shown valuable pharmacological
and biotechnological potential. OA and its derivatives are needed
for research studies mainly due to their activity as selective
protein phosphatases inhibitors. Besides OA, DTXs and analogs,
Prorocentrum spp. produce many other secondary metabolites
such as prorocentrolides and formosalides with interesting
bioactive potential that remain neglected. Limited quantities in
the producer organism as well as the variability of these high value
secondary metabolites content urge a suitable production method
to ensure adequate and consistent supply. As chemical synthesis,
harvesting of natural blooms and genetic engineering strategies
currently have considerable limiting factors (e.g., complex, low
yield, expensive and scalability issues) culturing has proven
to be the most suitable process to obtain high quantities of
phycotoxins. Considerable efforts have been made into culturing
to enhance phycotoxin production by Prorocentrum spp. at lab
scale but just a few studies have demonstrated significant increase
in yields. Discrepancies observed among performance highlight
the absence of generic culturing protocols (e.g., age, cell density
of inoculum) to maximize the growth rate of Prorocentrum spp.
and the production of valuable secondary metabolites. Some
advances have been made on the design of PBRs, in terms of
nutritional and operational factors, however a few technological
limitations still need to be addressed to grow this extremely shear
sensitive organisms.
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