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Abstract.  

 

Advancement in technology and the adoption of smart devices in the operation 

of power grid systems have made it imperative to ensure adequate protection for the 

cyber-physical power grid system against cyber-attacks. This is because, contemporary 

cyber-attack landscapes have made devices’ first line of defense (i.e. authentication and 

authorization) hardly enough to withstand the attacks. To detect these attacks, this paper 

proposes a detection methodology based on Machine Learning techniques. The dataset 

used in this experiment was obtained from the synchrophasor measurements of data 

logs from snort, simulated control panels and relays of a smart power grid transmission 

system. After the preprocessing of the dataset, it was then scaled and analyzed before 

the fitting of - Random Forest, Support Vector Machine, Linear Discriminant Analysis 

and K-Nearest Neighbor algorithms. The fitting of the different classifiers was done in 

order to find the algorithm with the best output. Upon the completion of the experiment, 

the results of classifiers were tabulated and the result of the Random Forest model was 

the most effective with an accuracy of 92% and a significantly low rate of 

misclassification. The Random Forest model also shows a high percentage of the true 

positive rate that is critical to the security issue.   
.  

 

Keywords: Cyber-attack Detection, True positive rate and Smart Grid system. 

1 Introduction  

The Purdue model for Industrial Control System (ICS) has bridged the gap 

between Information Technology (IT) and Operation Technology (OT) through the 

deployment of Wireless Sensor Network (WSN) and robots. As a result, the cyber-

physical power grid system which is also known as the smart grid system has witnessed 

a tremendous advancement as Intelligent Electronic Device (IED) and other internet 

enabled devices have been incorporated into its  structure for effective monitoring and 

value addition in its operations [1]. In fact, Cedric et. al., [2] had proposed that “next 

generation of electric power grid system and other critical infrastructures will rely 

mainly on advanced technologies such as: industrial automation control systems, error 

diagnostics, preventive maintenance, automatic safety switching, advance metering 

infrastructure, and synchrophasor systems”. These advancements however, have 

exposed the system to a new vista of cyber-attack landscape which are clearly intended 
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to undermine the smart grid system, cause system misuse and obviate it from the critical 

role it plays in the society.  

 

Cyber-attacks on the smart grid system occur when an unauthorized user 

leverages on the flaws and vulnerabilities of the devices to gain access to the internet 

enabled device. Some of the vulnerabilities include: weak passwords, unpatched 

firmware, weak encryption, insecure web links, etc. [3]. According to Alasdair Gilchrist 

[3], hackers have in recent times resorted to looking for older firmware to perform their 

attacks especially for versions with known vulnerabilities. For example, the power grid 

infrastructure system which were isolated and only run on proprietary softwares are 

now running on Commercial-of-the-Shelf (COTS) components and according to 

reports [4] [5], several cyber-attacks have been targeted against it because the COTS 

are not resilient enough and because the built-in safeguards against cyber-attacks are 

not properly hardened,  maintained or updated [6]. It is also noteworthy that before 

now, most cyber-attacks were restricted to the IT infrastructure of critical organizations; 

however, with the convergence of OT and the IT infrastructure, there has been a 

significant shift in cyber-attacks to OT infrastructures [7] and these breaches often 

results in: reset of the phasor parameters, system shutdown, and disruption of the power 

grid system [6]. Usually, the Operating System (OS) provides the abstraction and 

support mechanism for the protection of hardware and application from misuse [8]; 

however, the cyber-attacks and threats especially, from non-state actors have assumed 

some level of sophistication in recent times. This therefore, makes the effective 

detection and prevention of cyber-attacks on the smart power grid system very 

important [9] [10].  

 

 

1.1 Structure of a smart grid system. 

 

A typical structure of a cyber-physical power grid system is shown in Fig.1 with the 

components. 

   

 

 
 Fig. 1 Structure of a Cyber-physical Power Grid System [11] 
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A typical structure of a power grid system has power generators on both ends 

to supply electricity to the grid. The devices labeled R1, R2, R3 and R4 are Intelligent 

Electronic Devices (IEDs) which are connected to each circuit breaker, BRK1, BRK2 

through BRK4. The role of the IED is to monitor events on the grid and to switch on or 

off the circuit breakers. According to the authors [11],  there are two events that can 

cause the circuit breakers to trip and the events are: (a) an alert within the line (L1 and 

L2) that could initiate the IEDs to cause the breakers to trip (b) the operators manually 

issuing a command to the IED to break the circuit. In both instances, the intelligent 

devices, use a distance protection algorithm which enables the circuit breakers to trip 

irrespective of the cause of the command, i.e. whether it is a valid or invalid cause. 

Below is a list of events scenarios from the 2 mentioned above that can result in line 

tripping- 

 

(a) Short-circuit fault – this is when there is a short circuit between two lines (two 

or more lines touching each other). This often results in very high voltage that 

could lead to massive damages. 

(b) Line maintenance – this is when the line is intentionally disabled to allow for 

line maintenance.   

(c) Remote tripping command – this is a possible attack in which an attacker 

breaches the device’s defense and sends a command to a relay thereby causing 

a breaker to open. 

(d) Relay setting change – this is another form of attack in which the attacker upon 

penetrating the device’s defense, reconfigures the relay’s setting and disables 

the relay function such that the relay will not trip even for a valid fault or a 

valid command.  

(e) Data Injection – this is another form of attack in which the attacker upon entry, 

initiates a seeming valid fault by changing the phasor values of current, 

voltage, and other parameters just to ensure that the line trips. 

 

It is apparent that from the scenarios highlighted above, successful attacks 

against the power system has the propensity to obliterate and render the power grid 

system incapable of providing efficient power. With these inadequacies and the 

insufficient scalability of the smart power grid system to mitigate the cyber challenges 

[12], there is a need to identify the cyber-attacks and secure the power grid system 

infrastructure.  

 

 

1.2 Objective, Contribution and structure of paper 

 

The objective of this paper is to find an effective cyber-attack detection model 

by fitting different machine learning classifiers on a simulated smart power grid system 

dataset. The results will then be compared and the most effective of the models will be 

tested for effective performance using different metrics. The effectiveness of the 

performance of our model will therefore be our contribution for effective intrusion 

detection of cyber-attacks in the smart power grid system. The rest of this paper is 
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organized as follows. Section II related literatures. Section III discusses data analysis. 

Section IV model fitting and performance evaluation. Section V is conclusion. 

 

 

2 Related literatures 

 

While a lot of research papers have been writing on the subject of intrusion 

detection in the smart grid system, a number of them appears static in their approach to 

intrusion detection especially in looking out for particular anomalous deviant 

behaviors. Considering that contemporary attacks on smart grid system have become 

dynamic, it therefore, requires that approaches should be dynamic and holistic such that 

detection could be effective even in multiclass situations. For example, cyber-attacks 

such as Relay Setting Change are common in smart grid system and they are often 

subtle and obfuscated in order to anonymize the attack. This kind of attack may likely 

not display an anomalous deviant behaviour to enable some of the proposed IDS detect. 

Here are some of the literatures -  

 

 

2.1 Wide Area Monitoring System (WAMS).  
 

This system was adapted through a concerted effort by several organizations to 

widely monitor power grids system in real-time within a “neighboring grids cluster”. 

Basically, WAMS monitors the cyber-physical system parameters such as phasors of 

voltage, current, and the status of the IEDs, relays, circuit breakers etc. [2]. The real-

time data so generated from the multiple remote points are then synchronized by the 

WAMS and then transmitted for measurements by the Phasor Measurement Unit 

(PMU). The PMU is a device used to estimate the magnitude and phase angle of the 

phasor parameters (voltage, current, etc.) in the electricity grid. The monitoring and 

synchronization is done in order to ensure accuracy whilst looking out for deviations 

and malicious values that could lead to down time resulting from attacks[13] [14].  

 

2.2 Specification-based Intrusion Detection System.  

 

Unlike the signature-based and anomaly-based Intrusion Detection Systems, 

the Specification-based IDS is a behavior-rule specification-based technique for 

intrusion detection that was introduced by Ko in 1996. It has its application mostly in 

medical cyber-physical systems, electrical cyber-physical grid system, software 

engineering and in network protocol of some critical infrastructures [2] [15].  In this 

IDS, the rules work by representing the system behavior of the state machine at every 

instance of time. According to Pan et al. [2], the state machine behaviors are represented 

by a sequence of states according to the policies specified. The devices are then 

monitored and tracked for intrusion, changes and anomalous behaviors that could drive 

the system state from safe to unsafe state. Any noticeable sequence of behaviors that 

are outside the predefined specifications are flagged as intrusion. In a nutshell, the 

authors averred that the Specification-based IDS can be likened to a complement of the 

anomaly-based IDS. 
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2.3 Semi-Supervised Anomaly IDS.  

 

This is another form of behavior-based IDS which was proposed by Park et al 

[16]. Though this model was targeted at the Medical Cyber-Physical devices (MCPD) 

for assisted living environments, it could as well be adopted to detect anomalous 

behavior in the power grid system. Basically, this Semi-Supervised Anomaly IDS 

audits a series of events called, episodes. These episodes are sensor ID, start time and 

duration of events. In using the Hidden Markov Model (HMM) technique, a 

comparative analysis is then done to determine the current state of events and what 

happens thereafter. Based on the noticed behaviour, classification is then done by 

classifying the behaviour as low-level state or high-level state in order to be able to 

infer whether it is an abnormal or normal behavior. 

 

 

2.4 Data-Stream-Based Mining IDS.  

 

Faisal et. al. [17] proposed the use of Data-Stream-Based Mining IDS for the 

monitoring of intrusion in smart grid Advanced Metering Infrastructure (AMI). The 

structure of this IDS is similar to the anomaly-based IDS, but it selects a stream of data 

as against the conventional static mining techniques often observed in the anomaly 

technique. This proposal is, however, very limited in application to the smart meter. 

Therefore, this model is not suitable for intrusion detection of cyber-attacks in the 

cyber-physical smart power grid system.   

 

 

 

3 Data Analysis  

 

3.1 Description of dataset 

  

The dataset used in this paper is the power system dataset [2][18]. It is made 

of 129 variables (128 predictors and 1 response variable of 3-classes). The dataset 

contains the measurement of electric transmission on a smart power grid system. These 

measurements were done using 4 synchrophasors which measures 29 features of the 

events in each Phasor Measurement Unit (PMU) totaling 116 features. The PMU uses 

a common time source to synchronize the various measurements and the features so 

measured were classified as attacks and benign data. The benign data is consisted of 

Normal traffic and NoEvents. These measurements were obtained using: snort, a 

simulated control panel, and relays. The parameters measured are: the voltage phase 

angle (PA1:VH – PA3:VH), the voltage phase magnitude (PM1:V – PM3:V), the 

current phase angle (PA4:IH – PA6:IH) and the current phase magnitude (PM4:I – 

PM6:I). Others are: the zero voltage phase angle (PA7:VH – PA9:VH), zero voltage 

phase magnitude (PM7:V – PM9:V), the zero current phase angle (PA10:VH – 

PA12:VH) as well as the zero current phase magnitude (PM10:V – PM12:V). In 

addition, there were also other parameters that were measured, and they are: frequency 

for relay (F), frequency delta (DF), appearance impedance for relays (PA:Z), 
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appearance impedance angle for relays (PA:ZH) and status flag for relays (S). Other 

descriptions in the dataset are fault location, line maintenance and load condition. The 

entire setup was aimed at measuring both the normal traffic transmission in the grid as 

well as the attacks (cyber intrusion) that could impact the power grid system.  

 

 

 

3.2 Dataset Class distribution.  

 

To enable us visualise the distribution of the instant classes in the response 

variable of our dataset, using RStudio Integrated Development Environment (IDE), we 

plotted a barplot of the values. See the plot in Fig. 2 and the R code in Appendix A. 

 

 

Fig. 2 Barplot showing the distribution of the instances of the response variable 

 

 

A code snippet of the proportional representation of the classes in the response variable 

are as shown in Appendix B. Though the class representation and barplot shows the 

Attack class as the majority class over the benign class, the dataset does not fit into the 

description of an imbalanced dataset in cybersecurity considering the ratio between the 

classes. If we consider the dataset as binary (attacks and benign) then the ratio is 1 : 2. 

For attack to Natural it is 1 : 3 and for attack to NoEvent it is 1 : 11. In typical intrusion 

dataset, a ratio of 1 : 10 and above for a majority to minority class is expected before a 

dataset could be classified as an imbalanced dataset. More importantly, since our target 

class is the attack class, and it is a majority class, we elected to proceed with the dataset 

but with a view to ensuring that a higher recall rate is achieved and that the Area Under 

the Curve (AUC) for the ROC curves is high. 



7 

 

 

3.3 Data pre-processing.   
 

Data cleaning and pre-processing is a way of preparing the dataset for eventual 

use and to also ensure that all the data points contribute to the model without bias. It 

involves outlier removal, feature selection and data normalisation. However, in our 

experiment, we only performed outlier removal and data normalisation using the 

scaling function. 

 

Outlier removal. While summarising and visualizing the dataset, we observed that the 

dataset was fraught with outliers that needs to be removed. However, further 

introspection into the dataset shows that the anomaly was caused by fault of 10% - 19% 

on the relay of Line 1 which results in “Inf” values. The same outliers were found in 

Line 2, and relays number 3 and 4 of the power line. In addition, our observation also 

gave credence to the fact that these outliers may have been as a result of either the 

disabling of a single relay for line maintenance, remote tripping command of a single 

relay or a fault. In all the cases, the percentage of the disabling function lies between 

10 – 29%. In view of these and the need to visualise the data points that clearly deviate 

from the others, we decided to use boxplot package of RStudio to visualise the outliers 

in the dataset [19]. From the plot (Fig. 3), data points that were discovered to 

significantly deviate from the rest of the points were identified and removed. As could 

be seen in the figure, the outliers are “Inf” and they were found in the following 

variables: “R1.PA.Z”, “R2.PA.Z”, “R3.PA.Z”, and “R4.PA.Z”.  

 

 
Fig. 3. Boxplot representation of values and outliers 

 

 

Data Normalization. Data normalization during multivariate analysis is to enable each 

variable to contribute equally to the analysis. Therefore, the normalization method we 
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used was scaling, and we scaled from the first to the 128th variable leaving out the 

response variable which is a factor variable. Upon completion of the scaling, we then 

appended the response variable before we commenced the application of the classifier 

for modeling. See Appendix C for the code snippet on data scaling. 

 

 

 

4. Model Fitting and Performance Evaluation  

 

At this stage of our experiment, using a Windows 10 computing machine with 

intel core i5 processors and RStudio IDE, we applied some machine learning algorithms 

on the dataset. The essence was to fit several models and then compare the results of 

the models in order to determine which of them has the best accuracy, sensitivity and 

specificity. Also, our reason for using both linear and non-linear classifiers to fit the 

models was because, we observed that a few of the classifiers are highly likely to be 

biased toward the majority class in their output. However, before we applied the 

classifiers, we ensured that the dataset was clean of all factors that might affect our 

output. At this point, the total number of observations and variables after data pre-

processing was, 52,885 – observations, and 129 - variables. We then partitioned the 

dataset into training and testing data and assigned 37,000 of the observations which 

constitute about 70% to training of the classifier. The remainder of the dataset which 

constitutes 30% of the observations was then used for validation. After the splitting, we 

went on to fit the model using the different classifiers. 

  

 

4.1 Linear Discriminant Analysis (LDA).  

 

The LDA [20] was the first classifier we used. It is a linear classifier that is 

robust and good at performing dimension reduction in the course of its application on 

datasets. It mostly works by dividing the data space into N number of disjoint regions 

such that probability densities are calculated with the assumption that the data is 

Gaussian with each attribute having same variance close to the mean. This classifier 

produced an accuracy of 71% with a high percentage of misclassification rate. Table 1 

contains the values of the sensitivity and specificity of this classifier. Also find the R-

code snippet for the model in Appendix D. 

 

 

4.2 Support Vector Machine (SVM).  

 

Support Vector Machine (SVM) [21] is a non-linear classifier that is used for 

both regression and classification problems. SVM produces significant accuracy with 

less computation power. To maximize the output and margin, SVM uses decision 

boundaries to classify data points that are closer to the hyperplane. These data points 

then influence the number of data points closed to the hyperplane, position and the 

orientation of the hyperplane. Our accuracy while using this classifier to fit our model 

was 72%. This model also showed a high percentage of misclassification rate hence our 
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desire to tune the kernel parameters in order to ensure improved performance. See 

Appendix E for the R-code and Table 1 for the value of sensitivity and specificity. 

 

SVM Tuning.  

 

Since the accuracy of our SVM model was not very high especially 

considering the high rate of misclassification, we decided to tune our SVM kernel 

parameters in order to improve the accuracy as well as reduce the Cost Matrix [21]. 

Usually, the SVM kernels takes data points as inputs and outputs similarity score that 

affects the class boundaries. The measure of the closeness on both sides of the 

hyperplane is the similarity and the nearer the data points are to the hyperplane, the 

higher the similarity score. We knew that to achieve a better SVM classifier output, it 

would require a better measure of closeness which can only be achieved through the 

right values of the kernel parameters. At this point, we then proceeded to try several 

values for gamma and cost with a view to having an optimal value that will yield a better 

accuracy and recall rate. We also applied the different kinds of kernel: Radial kernel, 

Polynomial kernel, Sigmoid kernel and Linear kernel. In the end, we were able to obtain 

a gamma value of 0.1 and cost parameter value of 20 in the radial kernel. With these 

values, we were able to tune the kernel parameters and obtained a better accuracy and a 

little reduction in the misclassification rate. With this tuning, we were able to improve 

the accuracy from 72% to 77%. However, we observed that the misclassification rate 

was still high hence the need for us to further apply some other non-linear classifiers. 

The sensitivity and specificity values have been provided in Table 1 and the R-code 

snippets are in Appendix F.  

 

 

4.3 K – Nearest Neighbour (KNN)  

 

The K-Nearest Neighbor (KNN) [22] is another non-linear classifier that we 

also used to model our work. KNN uses Euclidean distance to measure the distance 

between one data point and its neighbor. Based on the size of our dataset, we calculated 

the value of K as 192 and 193 (nearest neighbour), we then fit in the model and 

computed the confusion Matrix. The accuracy of the KNN model when it was fitted 

was 71% with a very high misclassification rate as the sensitivity and specificity were 

very low. See Table 1 for the values and Appendix G for code. 

  

 

4.4 Random Forest  
 

Random Forest (RF) [23] uses decision trees that are randomly created from 

selected data samples to make its predictions on each tree and then selects the best 

solution by means of voting. Usually, the more trees the classifier can create, the more 

robust the forest is. Its method of data splitting is an ensemble approach based on divide 

and conquer method. Individual trees are usually generated by the classifier using an 

attribute selection indicator. The application of Random Forest classifier to fit the 

model improved the accuracy of the model to 92% at 95% CI. Also, the model detection 

rate of the true positives (sensitivity) and specificity also improved. The improved 
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accuracy makes the model quite relevant for the detection of instances of attacks in a 

multiclass dataset as the one we are using. Furthermore, the balanced accuracy across 

the three instances were also very high which is an indication of suitability of the 

classifier for our experiment. It is also worthwhile to add that with a Kappa value of 

82%, the model could be said to have performed very well in the identification and 

detection of the attack classes. See Table 1 for more on the detected values and 

Appendix H for a snippet of the code. 

 

 

4.5 Experimental result comparison   
 

We computed the Confusion Matrix of each of the classifiers and tabulated the 

values of the classes in Table 1. For the purpose of this experiment, we restricted the 

values to the computed Accuracy, Sensitivity and Specificity. 

 

Table 1. Outputs of the confusion matrix of each of the models 

  

 

Accuracy 

 

 

Sensitivity 

 

Specificity 

  

Attack 

 

Natural 

 

NoEvent 

 

Attack 

 

Natural 

 

NoEvent 

 

LDA 

 

71% 

 

99% 

 

1% 

 

6% 

 

3% 

 

99% 

 

99% 

 

SVM 

 

71% 

 

99% 

 

0 

 

4% 

 

1% 

 

99% 

 

99% 

 

Tuned SVM 

 

77% 

 

94% 

 

28% 

 

70% 

 

39% 

 

65% 

 

98% 

 

KNN 

 

71% 

 

100% 

 

0 

 

0 

 

0 

 

100% 

 

100% 

 

RF 

 

92% 

 

98% 

 

68% 

 

91% 

 

73% 

 

98% 

 

99% 

 

 

 

4.6 Confusion Matrix of best model 

 

From the comparison of the values in Table 1, the output of the Random Forest 

model gave the best result of all the classifiers. In addition, the RF model also gave the 

lowest misclassification rate of all the models hence the confusion matrix in Table 2.  

The numbers along the diagonal represent the correct decisions made, and the numbers 

on the left and right of the diagonal represent the errors otherwise known as 

misclassification of the various classes. The confusion matrix code is in Appendix I. 
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Table 2. The Confusion Matrix of the Random Forest classifier 

 P
R

E
D

IC
T

E
D

 V
A

L
U

E
S

 

 

ACTUAL VALUES 

  

Attacks 

 

Natural 

 

NoEvents 

 

Attacks 

 

11202 

 

984 

 

56 

 

Natural 

 

142 

 

2592 

 

6 

 

NoEvents 

 

9 

 

4 

 

890 

  

 

Recall and Precision. The recall otherwise known as Hit Rate or sensitivity is one of 

the metrics of measurement of the performance of a model. It is the number or proportion 

of the correctly predicted positive values divided by the total number of positive values 

(TP / (TP + FP)). False positives are values that our model incorrectly classified as 

positives but are actually negative values. 

 

Attack - from the confusion matrix, from first column / row is 

  Recall = 
11202

11202+142+9
 = 98% 

               

                     Precision = 
11202

11202+984+56
 = 92% 

 

Natural - from the confusion matrix, from second column / row is 

  Recall = 
2592

2592+984+4
 = 72% 

 

                     Precision = 
2592

2592+142+6
 = 95% 

 

NoEvent - from the confusion matrix, from third column / row is  

  Recall = 
890

890+56+6
 = 94% 

 

                            Precision = 
890

890+9+4
 = 99% 

 

To further explain the value of our recall and precision - given all the predicted 

labeled class called Attack, the number of instances that were correctly predicted has 

a precision = 0.92 (92%). Also, a recall = 0.98 shows that for all instances that should 

have label Attack, our model correctly captured 98%.  

 

F – Measure. F- Measure also known as F-score or F1 is another metric for the 

measurement of the accuracy of a classifier especially a dataset whose distribution of 

classes in the dataset is slightly skewed towards the majority class. Our dataset fits into 

this category hence our desire to also compute the F-score of our model. It is described 
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as the harmonic mean of the precision and recall as it is the most common metric that 

is used on an uneven or imbalanced classification problem. 
 

                                              𝐹 = 2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

 

                                              𝐹 = 2𝑋
92∗98

92+98
= 2𝑋47.45 = 94.9 ≈ 95% 

 

An F-score value of 1 indicates that the variance among the class mean is 

exactly what is expected given the within-classes variance and not by chance. 

Therefore, with our model’s F-score tending to 1 (F1≈1), we can infer that the RF model 

was able to classify and detect the attacks. Also, considering our Confidence Interval 

of 95% with a significance of 0.05, the value of our computed P-value (see Appendix 

I) is less than the significance level (0.05) therefore, we can also infer that the value is 

statistically significant and supports the adoption of the RF model as suitable for 

detection of attacks.  

 

 

4.7 Cutoff value, Receiver Operating Characteristics (ROC) and AUC 
 

Cut-off value - The ROC curve is used to determine the optimum cut-off value 

especially as it shows the trade-off between the true positives and the false positive at 

different cut-off marks. Basically, it evaluates the hit rate and false alarm rate at varying 

thresholds (Figure 4) [24].. 

 

 
Figure 4.  A plot showing the overall Accuracy values against several Cutoff values of 

the RF model. 

 

https://en.wikipedia.org/wiki/Harmonic_mean
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From Figure 4, it can be observed that the accuracy of our model tends to increase with 

an increase in the cutoff values. However, at a maximum threshold value before the 

default cutoff (0.5), the model was able to achieve the maximum accuracy. The code 

snippet is in Appendix J.  

 

ROC Curve – The ROC curve is a veritable tool for visualizing and evaluating 

classifiers performance accuracy and it is independent of the class distribution. ROC 

curve’s ability to tend to the top-left corner of the graph indicates a better performance. 

Our RF model ROC from the graph (Figure 5) tends to the top left corner of the graph 

which is a pointer to the ability of the model to predict the true positive rates more 

correctly.  

 

 
            Figure 5: Showing ROC graph of sensitivity against 1-specificity and the area 

under the curve.  

 

AUC - The area of ROC graph is 1 and its scale ranges from points 0.0 – 1.0. To 

measure the predictive accuracy of a model, the AUC of the curve needs to be computed 

as it is the probability that a given randomly chosen value is a positive instance of higher 

rank. An AUC of 0.5 indicates that the ROC curve lies on the baseline (the diagonal) 

where FPR = TPR which indicates that the predictive value of the AUC in the ROC 

curve is less accurate or at best the detection could only happen by chance. However, 

with our model AUC= 0.978, it is indicative that our RF model has a higher chance of 

detecting high positives.  
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5. Conclusion 

 

In dealing with the growing integration and complexity of cyber-physical 

smart grid system, there is a necessity to explore an effective approach to detection, 

monitoring, optimizing, and more importantly, securing the smart power grid system. 

This paper has proposed an effective anomaly detection method against cyber-attacks 

in a smart grid system. Because the dataset we used has multiclass response variable, 

our focus was more on how to correctly classify and detect the true positive rate 

(Attacks) with a commensurate value of accuracy. The methodology we adopted to 

achieve this objective involved the application of several machine learning classifiers 

that will be able to provide a high accuracy as well as a high detection rate of the true 

positive rate. The classifiers we applied after necessary data cleaning and preparation 

were: Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor and 

Random Forest. Of all the classifiers, the Random forest model gave us the highest 

accuracy, a better detection rate of the true positives and also the specificity. We then 

went further to evaluate the performance of our model using metrics like precision, 

recall rate, F-score, ROC and Area Under the Curve. It is interesting to point out that 

all the metrics supported our model with very high probability for the detection of 

anomaly in a smart grid system.  

 

 

6. Future work 

 

The smart power grid system is experiencing a number of domain specific 

forms of cyber-attacks. These attacks include: data injection, remote tripping command 

injection, relay reset and others. Future works should look at identifying and classifying 

these forms of cyber-attack against the smart grid system infrastructure. 

  

 

7. References  

 
 

[1] C. Escudero, F. Sicard, and E. Zamai, “Process-Aware Model based IDSs for 

Industrial Control Systems Cybersecurity: Approaches, Limits and Further 

Research,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, vol. 2018-

Septe, pp. 605–612, 2018, doi: 10.1109/ETFA.2018.8502585. 

[2] S. Pan, T. Morris, and U. Adhikari, “A specification-based intrusion detection 

framework for cyber-physical environment in electric power system,” Int. J. 

Netw. Secur., vol. 17, no. 2, pp. 174–188, 2015. 

[3] A. Gilchrist, IoT security issues. Walter de Gruyter GmbH & Co KG, 2017. 

[4] G. Dondossola, J. Szanto, M. Masera, and I. N. Fovino, “Effects of intentional 

threats to power substation control systems,” Int. J. Crit. Infrastructures, vol. 

4, no. 1–2, pp. 129–143, 2008, doi: 10.1504/IJCIS.2008.016096. 



15 

 

[5] T. Morris et al., “Cybersecurity risk testing of substation phasor measurement 

units and phasor data concentrators,” ACM Int. Conf. Proceeding Ser., 2011, 

doi: 10.1145/2179298.2179324. 

[6] M. J. Haber and M. J. Haber, Privileged Attack Vectors. 2020. 

[7] L. A. Maglaras et al., “Cyber security of critical infrastructures.pdf,” Elsevier, 

vol. ICT Expres, pp. 42–45, 2018, doi: 

https://doi.org/10.1016/j.icte.2018.02.001. 

[8] K. Mollus, D. Westhoff, and T. Markmann, “Curtailing privilege escalation 

attacks over asynchronous channels on Android,” 14th Int. Conf. Innov. 

Community Serv. “Technologies Everyone”, I4CS 2014 - Conf. Proc., pp. 87–

94, 2014, doi: 10.1109/I4CS.2014.6860558. 

[9] T. Wilhelm, “Chapter 10 - Privilege Escalation _ Elsevier Enhanced 

Reader.pdf,” in Professional Penetration Testing, Elsevier, 2013, pp. 271–306. 

[10] D. N. Y. Conteh and M. D. Royer, “The Rise in Cybercrime and the Dynamics 

of Exploiting the Human Vulnerability Factor,” Int. J. Comput., vol. 20, no. 1, 

pp. 1–12, 2016, [Online]. Available: 

http://www.ijcjournal.org/index.php/InternationalJournalOfComputer/article/

view/518/374. 

[11] N. Events et al., “Power System Attack Datasets - Mississippi State University 

and Oak Ridge National Laboratory - 4 / 15 / 2014,” no. 8, pp. 1–3, 2014. 

[12] Y. Mo et al., “Cyber-physical security of a smart grid infrastructure,” Proc. 

IEEE, vol. 100, no. 1, pp. 195–209, 2012, doi: 10.1109/JPROC.2011.2161428. 

[13] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C. Zweigle, 

“Smart generation and transmission with coherent, real-time data,” Proc. IEEE, 

vol. 99, no. 6, pp. 928–951, 2011, doi: 10.1109/JPROC.2011.2116110. 

[14] W. Liu, Z. Lin, F. Wen, G. Ledwich, and S. Member, “A Wide Area Monitoring 

System Based Load Restoration Method,” IEEE Xplore, vol. 28, no. 2, pp. 

2025–2034, 2013, doi: 10.1109/TPWRS.2013.2249595. 

[15] R. Mitchell and I. R. Chen, “Behavior rule specification-based intrusion 

detection for safety critical medical cyber physical systems,” IEEE Trans. 

Dependable Secur. Comput., vol. 12, no. 1, pp. 16–30, 2015, doi: 

10.1109/TDSC.2014.2312327. 

[16] K. Park, Y. Lin, V. Metsis, Z. Le, and F. Makedon, “Abnormal human 

behavioral pattern detection in assisted living environments,” ACM Int. Conf. 

Proceeding Ser., 2010, doi: 10.1145/1839294.1839305. 



16 

 

[17] M. A. Faisal, Z. Aung, J. R. Williams, and A. Sanchez, “Data-stream-based 

intrusion detection system for advanced metering infrastructure in smart grid: 

A feasibility study,” IEEE Syst. J., vol. 9, no. 1, pp. 31–44, 2015, doi: 

10.1109/JSYST.2013.2294120. 

[18] S. Pan, T. Morris, and U. Adhikari, “Developing a Hybrid Intrusion Detection 

System Using Data Mining for Power Systems,” IEEE Trans. Smart Grid, vol. 

6, no. 6, pp. 3104–3113, 2015, doi: 10.1109/TSG.2015.2409775. 

[19] C. C. Aggarwal, Outlier analysis, Second Edi., vol. 9781461463. Springer 

International Publishing, 2017. 

[20] T. Gaber, A. Tharwat, A. Ibrahim, and A. Hassanien, “Linear Discriminant 

Analysis : A Detailed Tutorial,” Univ. Salford, Manchester, pp. 0–22, 2017, 

doi: http://dx.doi.org/10.3233/AIC-170729. 

[21] B. Schlkopf, A. J. Smola, and F. Bach, Learning with Kernels: Support Vector 

Machines, Regularization, Optimization, and Beyond. The MIT Press, 2018. 

[22] P. Thanh Noi and M. Kappas, “Comparison of random forest, k-nearest 

neighbor, and support vector machine classifiers for land cover classification 

using Sentinel-2 imagery,” Sensors, vol. 18, no. 1, p. 18, 2018. 

[23] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a 

random forest classifier: Multi-core, GP-GPU, or FPGA?,” in 2012 IEEE 20th 

International Symposium on Field-Programmable Custom Computing 

Machines, 2012, pp. 232–239. 

[24] T. Fawcett, “An Introduction to ROC Graphs,” pp. 861–874, 2005, doi: 

10.1016/j.patrec.2005.10.010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

Appendix 

 
A.  

 

 
 

B.  

 
 

C.  

 

 
 

 

D.  

 

 
 

E.  

 
 

 

 

 

 



18 

 

F.  

 
 

 

G.  

 
 

 

 

H.  

 
 

 

 



19 

 

I.  

 
 

 

J.  

 


	coversheet_template
	OTOKWALA 2021 Effective detection of cyber (AAM)

