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Abstract—Maze navigation is a recurring challenge in robotics
competitions, where the aim is to design a strategy for one
or several entities to traverse the optimal path in a fast and
efficient way. To do so, numerous alternatives exist, relying on
different sensing systems. Recently, camera-based approaches
are becoming increasingly popular to address this scenario due
to their reliability and given the possibility of migrating the
resulting technologies to other application areas, mostly related
to human-robot interaction. The aim of this paper is to present
a pipeline methodology towards enabling a robot solving maze
autonomously, by means of computer vision and path planning.
Afterwards, the robot is capable of communicating the learned
experience to a second robot, which then will solve the same
challenge considering its own mechanical characteristics which
may differ from the first robot. The pipeline is divided into
four steps: (1) camera calibration (2) maze mapping (3) path
planning and (4) communication. Experimental validation shows
the efficiency of each step towards building this pipeline.

Index Terms—Robot navigation, computer vision, camera cal-
ibration, mapping, path planning, communication, NAO robot,
educational innovation, higher education.

I. INTRODUCTION

In robot navigation, an autonomous system has the ability to
take real-time decisions based on the problem that is presented
to it. Typically, by means of different sensing options and
data processing algorithms, the robot is made aware of its
environment. Nonetheless, most recent approaches rely solely
on the images obtained from the robot’s camera. This has been
the most widely used choice in competitions and practical
applications [1], not only since the robot is not limited by the
characteristics other sensors (e.g. infrared, light) which derive
on conditional programming scenarios (i.e. an issue which
derives on technical limitations of robot components and the
integrated sensors which are different for each platform), but
also due to the capability to transfer these methods towards

other real-life applications, such as education, industry 4.0,
healthcare, among others.

In this paper, we present a pipeline framework that enables
a NAO robot1 to traverse a maze in an autonomous way.
To achieve this, we focused in the integration of four main
stages: (1) camera calibration, which is useful for adjusting
camera parameters on different platforms; (2) mapping, which
includes vision algorithms to process images and generate
an internal map; (3) path planning, to navigate the maze
and make decisions about the optimal way out; and (4)
communication, to transmit knowledge and make it possible
for a second robot to solve the maze faster and considering
its own characteristics.

NAO are humanoid robots developed in 2008 by Softbank
Robotics. They can be programmed using a multi-platform
application called Choregraphe or programming languages
such as C++ or Python. Furthermore, the robots have a
wide variety of sensors, including seven touch sensors, omni-
directional microphones, ultrasonic sensors, and 2D cameras
that allow them to interact with their surroundings2. NAO
robots are now in their 6th version and have become a staple
in education and research alike.

II. RELATED WORK

Computer vision has several implementations in robotics.
For instance, Respall et al. [2] applied it in quadcopters. This
project was focused on tracking an unmanned ground vehicle
(UGV) platform by getting color information of the image.
Base on the data the position of the UGV platform was
determined and the quadcopter would follow it. This article
proposes to use vision algorithms to reconstruct a path or

1https://www.softbankrobotics.com/emea/en/nao
2http://doc.aldebaran.com/2-1/family/index.html



maze as the robot moves through it. This will allow to use
path planning algorithms so that the robot can make the best
decision while navigating.

Cortés et al. [1] presented a system where a trio of robots
guided a crowd through the corridors of an airport. This system
used the cameras to estimate the pose of all entities, so that
the robots could create a formation that ensured that all partic-
ipants where enclosed within and did not get lost. In addition,
the system allows a human to perform minor corrections on the
automated mappings to further enhance the pose estimation.
The method proved to be effective when the robots work at the
same time and with the same characteristics but does not offer
the possibility of transferring the knowledge between entities
or to consider different mechanical characteristics.

Kumar et al. [3] worked with path planning and avoiding
obstacles algorithms to solve certain routes. By using a linear
regression method, a NAO robot was trained whit 500 different
scenarios. In a second part of the work was involved a second
robot with the same algorithm. The main purpose was that both
robots to cross without any collision. The obstacles consisted
in cylinders and the robot had to follow a establish path, so
it just had to get off one corner to the other, with a known
trajectory to be adjust depending of physical obstructions.

Schranz et al. [4] this article mention advantage of use com-
munication between robot for certain activities as navigation.
The communication architecture used are called swarm, which
is a non centralized communication. Proposal that this type of
communication is used for systems that need to adapt to their
environment.

III. METHODOLOGY

Each of the steps in the pipeline were developed separately;
however, the flow chart in Figure 1 shows their interconnec-
tion. In this section, we describe the technologies used for
each stage.

Fig. 1: Pipeline of the proposed system.

A. Camera calibration

Firstly, the camera must be calibrated so that the captured
images are not distorted and the results obtained from the
computer vision algorithms are less prone to errors. We have
implemented a method presented by Zhang [5] to generate
a calibration matrix that helps correct these distortions by
taking multiple images of a well-defined object, in this case, a
checkerboard. Beforehand, the camera parameters (brightness,
saturation, focal length, etc.) must be manually configured to
obtain the best possible image. Afterwards, a matrix is gener-
ated based on the corner patterns of the checkerboard. We used
a pattern of 6× 5 corners, as shown in Figure 2. Afterwards,
we detect the corners using the cv2.cornerSubPix function in
OpenCV for Python. We then calculate the camera matrix and
its distortion coefficients using cv2.calibrateCamera. Finally,
with the obtained information we generate a new matrix that
is used to undistort the images.

Fig. 2: Chessboard image used for calibration

B. Mapping

Using Coppelia Sim software3, a 3D model of a maze
was deployed in order to record a video simulating the robot
traversing it. The methodology described below was applied
to each frame of said video in order to sketch the labyrinth
and obtain an internal map for the robot.

The first step consists on applying the Canny algorithm to
divide the image into different areas which allow to better
control what the robot detects and maps. Three zones are
obtained (1) the top zone (i.e. the farthest), (2) the middle
zone and (3) the bottom zone (i.e. the closest). The robot uses
the middle zone to sketch the maze, and anything above or
beyond zones 1 and 3 is discarded, Afterwards, the Hough
transform 4, [6], followed by a merge algorithm5, are applied
to each zone in order to find the lines which define the
maze. Then, the obtained middle lines are superimposed over
a black image using a perspective transform6. This allows a
better perspective of the space in front the robot, allowing
it to determine approximate distances from the surrounding
environment. For the estimation of distances, we used the
Euclidean distances based on the pixels.

Once the distances from the robot to the different points are
calculated, in a new black image the map sketching takes place
by using a previously defined starting point and then taking
the distances to a 10 : 1 ratio, so that the entire map fits into a

3https://www.coppeliarobotics.com/helpFiles/index.html
4https://patents.google.com/patent/US3069654
5https://stackoverflow.com/questions/45531074/

how-to-merge-lines-after-houghlinesp
6https://github.com/ndrplz/self-driving-car



single image. The lateral lines that the robot visualizes in each
frame were drawn from the starting point. When the sketching
for this frame ends, the starting point is updated, taking as the
new starting point the last coordinate of the drawn lines. In
this way, the next segment of the map will be sketched just
after what has already been plotted.

C. Path planning

The Tremaux algorithm is one of the most efficient methods
to get out of a maze [7]. It consists on marking all the steps and
the direction that a maze-solving entity comes from. Using this
method, repeating the traversing of a path can be avoided. For
this implementation, we established priorities for the following
four moves: (1) front step, (2) left step, (3) right step and (4)
back step. Moreover, we implemented an exception on the
Tremaux algorithm rule of never returning to a node twice
since this could lead to the robot getting caught in a situation
such as the one shown in Figure 3a. Still, we maintain the rule
which prioritizes the nodes with less visits.

Naturally, a maze image may contain either false walls or
paths which can disrupt the path planning process. Therefore,
the algorithm considers that each pixel depicting the walls and
paths may have a possible error range. Thus, we implemented
a maze adjustment as shown in Figure 3b prior to executing
the path planning phase.

(a) Image representing a robot passing three times through the
same node.

(b) Maze adjustment.

Fig. 3

D. Communication

A NAO robot has two communications methods with a com-
puter in order to be programmed: Ethernet and Wi-Fi7. The
latter was selected since the robot will be in constant motion.
Currently, any version of a NAO robot can be programmed
using 32-bits Python 2.78.

Web services such as Ubidots, Firebase and Google Drive
API can be implemented for communication purposes using

7http://doc.aldebaran.com/2-1/family/robots/connectivity nao.html
8http://doc.aldebaran.com/2-5/dev/python/install guide.html

different programming languages, including Python and con-
sidering the JSON standard. Ubidots has the advantage of a
graphical interface or dashboard that allows to monitor discrete
values sent via a widget, with a maximum of four write or
read requests every second9. Firebase lacks this functionality
but offers the possibility to store up to 1 GB and to transfer
20,000 write requests and 50,000 read requests per day10.
Regarding Google Drive API, the storage limit depends on the
user’s account, and its advantage in comparison to the previous
approaches is that any type of file can be stored. Up to 50,000
Google Drive write requests per day can be performed11.

Figure 4 shows a diagram of the operation of the proposed
communication module. Two robots, named Curie and Atom,
act as master and slave respectively. On a central computer, the
programming code for Curie’s motion controls acquired, stored
and compiled in Python 2.7 by means of the image obtained
from the upper camera. Moreover, the communication protocol
is generated using the JSON standard with Ubidots. This code
is then uploaded to Curie’s CPU via the ALProxy function,
found inside the NAO Python SDK NAOqi, which creates a
proxy server with the robot. The image stored on the computer
is retrieved by another script which processes the Canny
function12 (implemented in Python 3.3.7). On the other hand,
Atom compiles a second Python 2.7 based code on its CPU,
which ensures that a value stored in a global variable is called
in Ubidots through a second JSON-based script. This value
is a positive integer that Atom interprets to make a specific
move.

Fig. 4: Communication module operation diagram.

IV. TEST BENCH

A. Camera calibration

We took several pictures of a checkerboard in different
angles and under different light conditions. It is important to
mention that calibration focuses on a region of interest (ROI).
In our case, this area was the checkerboard itself. We realized
that an increase in the number of images yielded better results,

9https://ubidots.com/
10https://firebase.google.com/
11https://developers.google.com/analytics/devguides/config/mgmt/v3/

limits-quotas
12https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/py

imgproc/py canny/py canny.html



however we decided to stop at 51 images since there were no
significant changes after that.

B. Mapping

During the testing phase, the possibility of using a corner
detection algorithm was raised; however, the algorithm was
detecting corners of the rendered image, and so in a real
situation with smoother images, those characteristics would
not be present and therefore, the code would need to be re-
adapted to perform in a real environment. Also, we did not
want to limit the code to a maze with corners, since this would
limit its adaptability to other environments. For these reasons,
this option was discarded in favor of line detection.

Another important test aspect was to define the values for
the Canny function since, as mentioned in [6], the performance
of Hough transform depends on the image that the Canny
algorithm provides. After several tests, it was determined
that to clean the image and keep only the important lines,
a second Gaussian filter should be applied in addition to the
first Gaussian one. The filter didn’t affect lines detection.

The most challenging stage, and the one in which most
tests were carried out, was in the sketch of the internal map,
as there were issues with the turns. Figure 5 (left) shows
how the sequence of the hallways was lost at these points.
In contrast, Figure 5 (right) shows that it was possible to fix
this by changing the condition of the adjustment for the new
center and stop mapping during the laps.

Fig. 5: Corner mapping.

Then, the code was executed and it was discovered that
when a wall was not detected, the distance was computed
from the center to the first point of the image, which caused
useless line traces. In order to solve this, it was necessary
the use of flags to indicate the presence or absence of walls.
Figure 6 shows some further visual errors found.

C. Path planning

We applied the Trémaux algorithm to the obtained maze
map. We noticed that some trajectories resulted circular, as
shown in Figure 7a. After adjusting the map, we noticed
a bigger difference in terms of performance as shown in
Figure 7b. It was empirically observed that the resulting routes
were more natural and less error prone.

Fig. 6: Wall detection correction.

(a) Trémaux algorithm with the
original maze.

(b) Trémaux algorithm with the
adjustment maze.

Fig. 7

D. Communication

The main knowledge to be shared between the robots is the
map of the maze. This will be used as a guide for the second
robot to solve the maze effectively. Currently, the format of
the map has not been defined, whether we will communicate
it as an image or as a hexadecimal arrangement, it will depend
on the mapping module applied.

Notice that the main issue to address in this regard is the
Python version incompatibility. On the one hand, Curie will
run script in Python 2.7 attending three tasks: (1) acquisition
and storage of an image from her upper camera, (2) com-
munication using the JSON standard by Ubidots and (3) its
control i.e. the instructions related to the movement of any
part of the robot’s body. On the other hand, Python 3.7.7 script
must be executed in the computer which retrieved the stored
images in order to process them. Furthermore, Atom will
recover the value of a global variable stored in Ubidots, which
contains the positive integer value that represents movement.
This variable is updated by Curie depending on the movement
to be executed. For instance, if the global variables equal to
8, this translates into rotating the head 90◦.

Ubidots is a platform typically used to monitor discrete
values, for instance, the temperature of an engine. Nonethe-
less, it is not a suitable tool for handling large amounts of
information, or in our case, pixel and/or hexadecimal chains.
Therefore, we looked for platforms that will allow us to do so.
Two viable options were found: Firebase and Google Drive.
In the red rectangle of Figure 8, it can be seen that a fragment
of the hexadecimal chain of a photograph uploaded by Curie
in Firebase is enclosed and thus, Atom can make a request



to read this chain. As a result, the robot can perform all the
processing with the modules of path planning and mapping.

Fig. 8: Firebase matrix.

The Google Drive API was used as follows: from a Python
2.7 script, a Google Sheet was created in which multiple write
requests were made to make latency measurements. Figure 9
shows a box plot of the tests carried out. Five tests were
implemented, each consisting of sending 23 random character
strings with 24 possible combinations with variable length,
where the first test had 10,000 characters, the second had
20.000, and so on. When sending the 23rd character string, a
console error Quota exceeded for quota group ”WriteGroup”
was shown. In the Google Drive API documentation, it is
mentioned that each user can make maximum 100 write
requests to a Google Sheet every 100 seconds13. Since all the
packages were sent in a burst in approximately 27 seconds
time, this was the cause of the error.

Fig. 9: Write request latency to Google sheets (TC = Thousand
Characters).

V. RESULTS

A. Camera calibration

As mentioned in Section IV-A, the ROI of the checkerboard
was well defined at that point. The final calibration took
approximately 3 minutes to process all images. Although
originally designed for webcams, it proved to be effective for
the robot camera likewise. Figure 10 shows an example of the
result after the 51st iteration.

13https://developers.google.com/sheets/api/limits

Fig. 10: Image calibration with 51 samples.

B. Mapping

As mentioned in Section IV-B, three fundamental solutions
were found to improve mapping. First, wall detection flags
were required. Second, we had to stop mapping when an
orientation change occurred and restart mapping when both
walls were detected again. Finally, in orientation changes,
the mapping center must be adjusted. The final result can be
observed in Figure 11.

Fig. 11: Sketched maze.

C. Path planning

As concluded from Section IV-C, the Tremaux algorithm is
a fast and efficient method to navigate through an unknown
maze and find a way out. As seen in Figure 12, despite
an initial traverse into a dead end, the robot kept searching
effectively until reaching the exit.

Fig. 12: Tremaux algorithm: path to the endpoint.

D. Communication

Given that Curie and Atom were already connected to
Ubidots, a latency test was performed to analyze the time it
takes to upload a new value to the global variable in Ubidots
and to transfer it into a local variable to be used by Atom.
The test consisted of ten different write requests, where the
value of the global variable was increased from 1 to 10 in a
step of 1. The first execution of the test was performed with



both the computer and Atom connected via Wi-Fi. The results
obtained are shown in Table I. We noticed that the average
latency obtained from Atom was 42.71 seconds greater than
Curie’s. To rule out problems with connection speed due to the
distance between Atom and the access point, we proceeded to
interconnect them via Ethernet. The results obtained were very
similar to the reported ones. Again, Atom showed an average
latency well above Curie’s. It is important to remark that each
robot was located in a different place (due to social distancing
measures derived from the COVID-19 pandemic), and thus a
test within the same network is pending. In addition, it is likely
that Atom’s network card is damaged due to natural tear and
wear.

Test Curie - sixth version Atom - fifth version
1 0.6539 43.1109
2 0.6299 43.7829
3 0.5699 43.439
4 0.6779 43.331
5 0.634 43.639
6 0.6189 43.524
7 0.5869 42.78
8 0.6214 43.592
9 0.6385 43.4018

10 0.6452 42.798
Average latency 0.62765 43.33986

TABLE I: Latency (in seconds) to post and get the value of
global variable using Ubidots.

From the latency test, it is shown in Figure 13 how Curie
(master) raises the left arm and how the number seven is posted
in the global variable stored in Ubidots Dashboard. The value
of this variable is retrieved by Atom (slave), making the same
movement. We provide a video14 with the complete simulation,
where it can be seen that the working principle is the same
as in the latency test, but in this case, Atom retrieves a global
variable whereas Curie does not.

Fig. 13: Communication between Curie and Atom through
Ubidots.

VI. CONCLUSION

In this paper, we presented a pipeline methodology which
allows a robot to solve a maze. Moreover, this robot will be
capable of transferring this knowledge onto another robot so
that this can solve the maze as well based on different inner
and outer settings. Camera calibration could be done correctly
using Python 3.7, nevertheless, it needs to be deployed using
Python 2.7 to be compatible with the NAO robot. Regarding

14https://youtu.be/oDl gai7iWw

the mapping step, algorithms used worked correctly when
obtaining the maze map. In addition, Tremaux algorithm along
with maze adjustment, made possible to obtain the route to
get out the maze just by knowing the initial point. Finally, the
NAO robots were able to communicate via Ubidots, Firebase,
and the Google Drive API, however Atom had higher latency
than Curie on the Ubidots platform. The connectivity tests
carried out between Atom and the access point lead us to
suppose that due to the use of the robot the network connection
has flaws. So far, Google Drive API is the most viable
platform, since the number of characters we can transmit every
100 seconds is greater than the hexadecimal string that the
image represents. Curie could even directly upload the image
to a Google Drive folder for Atom to download and process.

In future, other path planning algorithms will be tested in
master robot to analyze their speed and effectiveness, intended
to reduce the time taken to solve the maze. Also mapping
will be improved by determining actual distances or even by
reconsidering using corner detection algorithms. Finally, we
aim at integrating the whole pipeline into a single system.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial and
technical support of Writing Lab, TecLabs, Tecnologico de
Monterrey, Mexico, in the production of this work.

REFERENCES

[1] X. Cortés, F. Serratosa, and C. F. Moreno-Garcı́a, “Semi-
automatic pose estimation of a fleet of robots with em-
bedded stereoscopic cameras,” in Emerging Technologies
and Factory Automation, 2016.

[2] V. M. Respall, S. Sellami, and I. Afanasyev, Implementa-
tion of autonomous visual detection, tracking and landing
for ar.drone 2.0 quadcopter, 2019.

[3] A. Kumar., P. Biplab., and D. Parhi. (Mar. 2018). Intelli-
gent navigation of humanoids in cluttered environments
using regression analysis and genetic algorithm, [Online].
Available: https://doi.org/10.1007/s13369-018-3157-7.

[4] M. Schranz., M. Umlauft., M. Sende., and W. El-
menreich. (2020). Swarm robotic behaviors and cur-
rent applications, [Online]. Available: file : / / /C :
/Users / Areli / Downloads / Swarm Robotic Behaviors
and Current Applications.pdf.

[5] Z. Zhang, “A flexible new technique for camera cal-
ibration,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 11, pp. 1330–1334,
2000.

[6] J. Matas, C. Galambos, and J. Kittler, “Progressive prob-
abilistic hough transform,” 1998.

[7] I. Anureev, “Context machines,” in Proceedings of XVI-
IIth Concurrency, Specification and Programming, 2009,
pp. 1–12.


	coversheet_template
	RODRIGUEZ-TIRADO 2020 A pipeline framework (AAM)

