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Equivalent Modeling for Intelligent State of Charge Prediction of Lithium-ion Batteries
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aSchool of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; 

bSchool of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK.

Abstract: The rapid development of new energy vehicles puts forward higher requirements for the lithium-ion batteries model 

construction, high-efficiency condition monitoring and collaborative estimation. An improved high-fidelity second-order autoregressive 

model is proposed and constructed, and the autoregressive model is integrated with the second-order equivalent circuit model, which can 

achieve an accurate and reliable description of the batteries internal dynamic change process. To achieve the accurate expression of the 

battery's external characteristics and internal state, the forgetting factor is combined with the recursive least square algorithm to improve 

the parameter identification accuracy and optimality while reducing the space complexity of the algorithm. A novel gray wolf particle 

filtering algorithm is proposed, which eliminates the particles severe degradation in traditional algorithms and enhances the ability of 

particles to resist degradation. The algorithm superiority and generalization are verified under complex working conditions. The 

experimental results show that the accuracy of the high-fidelity second-order autoregressive model can reach 99%, which can well simulate 

the complex chemical reaction process inside the lithium-ion battery. Experimental simulation is performed under constant current 

conditions. Compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, the gray wolf particle filter 

algorithm has reduced the root mean square error by 3.39%, 0.90%, 2.84%, and the mean absolute error has reduced by 1.95%, 0.51%, 

2.22%. Under dynamic stress test conditions, the root mean square error is reduced by 1.54%, 0.33%, and 0.78%, and the average absolute 

error is reduced by 1.4%, 0.22%, and 0.76%. In addition, when tested under different environmental conditions, although the improved 

algorithm has a relatively long running time, the estimation accuracy of the algorithm is greatly improved and the execution efficiency is 

high. The improved algorithm provides a theoretical basis for the reliability and stability of the onboard operation of lithium-ion batteries.

Key words: state of charge; lithium-ion batteries; high-fidelity second-order autoregressive model; gray wolf particle filtering
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1. Introduction

With the structural changes in the global energy supply, 

battery management systems (BMS) have become the main 

direction of technological innovation in the new energy 

industry [1, 2]. The functions of the BMS are gradually 

improved, and the occurrence of abnormal phenomena such 

as battery over-charging, over-discharging, and overheating 

has been effectively prevented with the advancement of 

science and technology [3]. This greatly increases the 

battery's cruising range and prolongs its service life, 

ensuring the battery safe and reliable operation [4, 5]. 

Lithium-ion batteries (LIBs) are an important part of the 

BMS. Throughout the life cycle of the battery, the 

differences between the cells and their significant 

accumulation, and the unreasonable attenuation of cycle life 

have become the core elements that restrict the current stage 

development. The reason for this phenomenon lies in the 

imperfect understanding of the LIBs working characteristics 

and operating mechanism, and the failure to form a reliable 

model construction and state prediction optimization 

mechanism. Therefore, to describe the reaction mechanism 

of LIBs more intuitively, an equivalent circuit model is 

constructed. This provides accurate and effective input 

parameters for the subsequent LIBs state estimation [6]. The 

accurate LIBs state of charge (SOC) estimation can prevent 

irreversible damage to the batteries due to overcharge and 

over-discharge, which is of great significance to further 

accurately predict the batteries’ life [7-10].

LIBs have strong nonlinear dynamic characteristics due to 

the combination of multiple parameters coupling processes. 

Considering the aging of the LIB itself and the complexity 

and variability of the environment. To simulate the voltage 

response characteristics under different load conditions, the 

existing research divides the equivalent model into three 

types: black box model, electrochemical mechanism model, 

and semi-mechanical and semi-empirical model [11-13]. 

The black box model is mainly used to characterize the 

voltage response characteristics. It is a non-linear mapping 
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function. The data is used to train the model without 

considering the internal mechanism and structure, but it is 

heavily dependent on the experimental data. The 

electrochemical model (EM) is aimed at the LIBs complex 

dynamic characteristics and can accurately simulate the 

electrochemical reaction process inside the battery. Xiong 

et al. [14] proposed an EM to effectively describe the 

physical and chemical behavior of batteries. However, there 

are many identification parameters and the construction 

structure is complicated. The semi-mechanical and semi-

empirical model can describe the electrochemical 

characteristics through simple circuit components, and use 

mathematical expressions to simulate the battery dynamic 

behavior. The equivalent circuit model (ECM) has clear 

physical meaning and simple mathematical expressions. 

Therefore, it is widely used in describing the batteries 

electrochemical characteristics and has good adaptability. 

Zhang et al. [15] studied and compared the first-order and 

second-order RC models, and clarified the model selection 

in the actual control system. He et al. [16] considered the 

hysteresis characteristics of the open circuit voltage (OCV), 

explored and proposed a variable parameter equivalent 

hysteresis model based on Thevenin model. Wu et al. [17] 

employed that the temperature-compensated Thevenin 

ECM accurately reflects the batteries dynamic 

characteristics. Wang et al. [18] presented a splicing-

equivalent circuit model (SECM) to achieve LIB packs 

accurate mathematical expression during complex working 

conditions. The ECM structure is simple and easy to analyze, 

which is particularly important for energy management and 

has become the batteries modeling mainstream direction.

In recent years, new energy vehicles have developed 

rapidly, and SOC estimation algorithms have emerged in an 

endless stream. The traditional basic SOC estimation 

methods include OCV method, internal resistance method 

and Ampere-hour (Ah) method [19-23]. However, these 

approaches have the following weaknesses. First, the 

batteries state at the initial moment is not easy to determine 

and there is a certain error in accuracy. Second, only when 

the batteries are left standing for a long time, the accuracy 

of the batteries state estimation is high, but it is not 

applicable to actual working conditions. Third, ignore 

batteries aging process the influence of the energy density 

and cycle life on the estimation. In order to overcome the 

above-mentioned problems, modern SOC estimation 

methods developed by modern adaptive control theory have 

been successively proposed. Among them, the most classic 

state estimation algorithm is the Kalman filter (KF) 

algorithm, which makes the best estimation of the state of 

the dynamic system [24-29]. After multiple iterative 

updates, the estimation result is close to the true value, the 

initial value of the capacity is corrected efficiently, and the 

anti-interference ability is strong. Yang et al. [30] employed 

extended Kalman filter (EKF) for SOC estimate. It is not 

necessary to know the SOC value and the OCV value in 

advance, and the SOC can be estimated in real time. 

However, EKF is the local linearization result, which 

greatly increases the estimation error. And it is related to the 

statistical characteristics of the state noise and the 

observation noise, which will affect the filter divergence. 

Therefore, Ben et al. [31] and Zhu et al. [32] employed 

unscented Kalman filter (UKF) algorithm to estimate the 

SOC in response to the EKF algorithm problems. Zhang et 

al. [33] proposed an adaptive unscented Kalman filter 

(AUKF) algorithm to accurately estimate the SOC online. 

And it solves the problem that the error covariance matrix 

is a non-positive definite matrix. Liu et al. [34] utilized the 

particle filter (PF) algorithm to estimate the SOC. Unlike 

the KF algorithm, it is not limited by linearization errors and 

Gaussian noise assumptions, and is suitable for any state 

and measurement model in any environment [35-37]. In 

order to improve the LIBs status observation accuracy, 

Wang et al. [39] proposed an unscented particle filtering 

(UPF) method and obtained the best remaining discharge 

prediction time. To prevent particle degradation, Wei et al. 

[38] adjusted the adaptive factor composed of prediction

residuals, thereby avoiding the disturbance of abnormal 

observation and the kinematic model noise. However, its 

sensitivity performance is not specifically analyzed.

In addition, many other modern SOC estimation methods 

are also being proposed and studied. The neural network 

(NN) method is suitable for all kinds of batteries. The 

battery is regarded as a black box, and the mapping data 

between input parameters and output parameters is 

extracted, and then it is determined by repeated trials during 

training [4, 40-42]. However, it requires a lot of data, and 

the estimation structure is greatly affected by the training 

data and methods. Therefore, in practical applications, the 

hardware requirements are extremely high due to the 

complexity of the algorithm. Support vector machine (SVM) 
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a1 2-c5T/c1

a2 c5T/c1-T2/c1-1

b0 c2

b1 c3T/c1-2c2

b2 c4T2/c1-c3T/c1+c2

The ECM is rewritten as a discretized time series, and the 

differential equation in the time domain is obtained.
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(5)

Among them, k is the time signal of the sampling sequence.

2.2. Online full-parameter identification based 

forgetting factor recursive least square method

The recursive least square (RLS) method is widely used 

in numerical optimization problems. It finds the data best 

function match by minimizing the sum of squared errors, 

and can give the best parameter fitting results in a statistical 

sense. Based on the RLS, adding a forgetting factor to 

reduce the amount of old data in the covariance matrix can 

effectively prevent data saturation in the RLS algorithm. As 

an effective method to solve this problem, in order to obtain 

the coefficient matrix 2(k), the mathematical derivation 

process is as follows.

Step 1: Forecast estimation error e(k).

( )= ( ) ( ) ( ) 1T

L OCe k U k U k k�� � � (6)

Step 2: Update the gain K(k).

1( ) ( 1) ( )[ ( ) ( 1) ( )]TK k P k k I k P k k� � � � �� � � � � � � (7)

6 is the forgetting factor, with a value between 0.95 and 

0.99.

Step 3: Calculate the error covariance matrix P(k).

( ) [ ( ) ( )] ( 1) /TP k I K k k P k� �� � � � � (8)

Step 4: Obtain the coefficient matrix 2(k).

( ) ( 1) ( ) ( )k k K k e k � � � (9)

Step 5: Repeat steps 1 ~ 4 until the parameter 

identification at all times is completed.

Thus, the parameter values of the second-order 

autoregressive model can be identified. Therefore, the 

pseudo code for the least squares online parameter 

identification based on the forgetting factor is shown in Tab. 

3.

Tab. 3 Forgetting factor recursive least square method

Algorithm 1. Pseudo-code of model parameter identification

1. Procedure Model parameter identification

2. Given the initial value, the forgetting factor is 0.985.

3. for k = 1, …, N do

4. Update the gain coefficient matrix K(k) using Eq. (7)

5. Calculate the error e(k) between the voltage actual

value and theoretical value using Eq. (6)

6. Calculate the error covariance matrix P(k) using Eq.

(8)

7. Calculate parameter vector 2(k) using Eq. (9)

8. Calculate model parameters

9. The newly obtained parameters are used as the old

parameters for the next recursion.

10. end for

11. end while

12. end procedure

2.3. Gray wolf particle filtering algorithm

In view of the serious particle degradation phenomenon in 

the traditional PF algorithm, the gray wolf algorithm is now 

used for optimization, which effectively increases the 

particle diversity and enhances the particle's anti-

degradation ability. Gray wolf optimization is a local and 

global optimization process that can simulate wolf pack 

hunting. It can be roughly divided into four behavior modes: 

social hierarchy, tracking, encircling and attacking prey. It 

involves few parameters and is simple to implement. The 

mathematical derivation process of the GWPF algorithm is 

as follows.

Step 1: Set the state transition amount initial value.

The particles are extracted according to the important 

density function, and the high-dimensional particle set is 

selected by Sequential Importance Sampling (SIS). That is, 

N particles are collected at t = 0 to form a particle set {xi 0, 

i = 1, …, N}. Define the recommended density function as 

shown in Eq. (10).


 � 
 �1= i i

t t tq x p x x � (10)

Then the particle set weight is shown in Eq. (11).


 � 
 � 
 �

 � 
 �

1: 1: 1

2

1 2 exp

i i i

t t t t

i

t t

w x w x p y x

y y�� �

��

� �� � �� �� �

(11)

Among them, yt is the system observation. Q is the 

variance of Gaussian distribution, that is, Q = 1.
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Step 2: The social hierarchy mechanism.

Take the particle set {xi 0, i = 1, …, N} at t = 0 as the 

initial population of the gray wolf algorithm. The weight 

w(xi 1:t) is used to characterize the individual fitness of gray 

wolves and carry out social hierarchical stratification. The 

gray wolf individual with the best adaptability in each 

generation population is selected to determine the position 

of the head wolf.

The layering mechanism is introduced into the PF 

algorithm. In the re-sampling stage, the particles are 

preferably selected, and the particles are rearranged to 

increase the diversity of particles and avoid particle 

degradation.

The 9, : and ; wolves used to perceive prey determine the 

direction of the population to encircle and suppress prey. 

The candidate wolf pack < is gradually updated following 

the position of the head wolf. When searching for prey, gray 

wolves gradually approach and surround. The mathematical 

expression is shown in Eq. (12).


 � 
 �

 � 
 �

1 2

1

2 , 2

p i

i i

t t

t t

a a

� ��
�

� � ��
� � � �	

D C X X

X X A D

A r C r

o

o

o

(12)

Among them,  is the Hadamard product, which is a o

type of the matrix operation, also called the basic product. t 

represents the current iteration number. Xi(t) is the position 

vector of the current gray wolf. Xp(t) is the position vector 

of the current prey. r1 and r2 are random vectors on [0, 1]. a

�[0, 2] is the convergence factor, and the whole process a

decreases from linear 2 to 0. A and C are the synergy 

coefficient vectors. D is the distance vector from the prey to 

the gray wolf individual. A random value on [-a, a]. When 

a decreases linearly, the gray wolf moves between its 

current position and its prey. C is a random value on [0, 2], 

which represents random weights, which can effectively 

increase the diversity of particles and prevent the algorithm 

from falling into a local optimal solution.

Step 3: Update the fitness of the wolf.

Individual gray wolves have the potential to identify the 

location of their prey. In order to simulate the search 

behavior of gray wolves, the mathematical model for 

tracking prey is shown in Eq. (13).
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(13)

Thus, the final position of the gray wolf individual is 

obtained, as shown in Eq. (14).


 � 
 � 
 � 
 �1 2 31 3i i i it t t t� �� � � �� �X X X X (14)

Step 4: Determine the iterations number of the gray wolf 

algorithm.

If the gray wolf algorithm has not reached the set number 

of iterations, return to step 2 and continue to select the head 

wolf position.

Step 5: Normalize particle weights.

The selected gray wolf population is used as the sampled 

particles in the PF algorithm, and the normalized weights of 

the particles are calculated, as shown in Eq. (15).


 � 
 � 
 �1: 1: 1 1:

1

N
i i i

t t t

i

w x w x w x�
�

� � (15)

Finally, output the expected estimated value of the system 

state at the current discrete time.

Step 6: Calculate the number of the effective particles and 

determine whether to resample.

For particle degradation, the concept of relative efficiency 

(RNE) is proposed, as shown in Eq. (16).


 � 
 � 
 �
1:

1
RNE 1 var

tq y
w

�

�
� �� �
� � (16)

In the actual calculation process, the approximate value of 

the effective particle number based on RNE is shown in Eq. 

(17).


 � 
 � !

 �

1:
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2

1:

1
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1

t

i

eff tq y

N
i

t

i

N N w x

w x

�

�

� �� � � �

� �� � ��
(17)

If the number of effective particles sampled is less than 

the threshold set by estimation, re-sampling is performed. 

The posterior probability density is shown in Eq. (18).


 � 
 � 
 �1: 1: 1: 1: 1:

1

N
i i

t t t t t

i

p x y w x x x�
�

� �� (18)

That is, the posterior probability density is resampled N 

times, so that p(xi* 1:t) = xj 1:t, where wj k = 1/N.

Step 7: Repeat (2) ~ (6) until the state estimation at all 

times is completed. The pseudo-code of the PF algorithm 

based on gray wolf optimization is shown in Tab. 4.

Tab. 4 PF algorithm based on gray wolf optimization
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the execution efficiency is high, and achieving high-

precision estimation, which confirms that the GWPF 

algorithm has an excellent performance in predicting the 

remaining power of LIBs. Through actual operation 

analysis and verification, the algorithm can increase the 

diversity of particles, realize accurate estimation of the state 

of LIBs, and provide useful explorations for the quality 

evaluation, reliability evaluation, and popularization and 

application of ternary LIBs.
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