
HOENKAMP, E., BRUZA, P., HUANG, Q. and SONG, D. 2008. The asymptotic behavior of a limited dependencies 
language model. In Hoenkamp, E., De Cock, M. and Hoste, V. (eds.) Proceedings of 8th Dutch-Belgian information 

retrieval workshop 2008 (DIR 2008), 14-15 April 2008, Maastricht, Netherlands. Enschede: Neslia Paniculata, pages 
59-64.  

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

The asymptotic behavior of a limited 
dependencies language model. 

HOENKAMP, E., BRUZA, P., HUANG, Q. and SONG, D. 

2008 



The Asymptotic Behavior of a Limited Dependencies
Language Model

Eduard Hoenkamp
University of Maastricht

The Netherlands
hoenkamp@acm.org

Peter Bruza
Queensland University of

Technology
Australia

p.bruza@qut.edu.au

Qiang Huang
Open University
United Kingdom

q.huang@open.ac.uk

Dawei Song
Open University
United Kingdom

d.song@open.ac.uk

ABSTRACT
Intuitively, any ‘bag of words’ approach in IR should benefit
from taking term dependencies into account. Unfortunately,
for years the results of exploiting such dependencies have
been mixed or inconclusive. To improve the situation, this
paper shows how the natural language properties of the tar-
get documents can be used to transform and enrich the term
dependencies to more useful statistics. This is done in three
steps. First, the term co-occurrence statistics of queries and
documents are each represented by a Markov chain. The
paper proves that such a chain is ergodic, and therefore its
asymptotic behavior is unique, stationary, and independent
of the initial state. Second, the stationary distribution is
taken to model queries and documents, rather than their
initial distributions. Third, ranking is achieved by compar-
ing the Kullback-Leibler divergence between the stationary
distributions of query and documents. These steps can be
implemented as a simple and computationally inexpensive
algorithm. The main contribution of this paper is to ar-
gue why the asymptotic behavior of the document model
is a better representation of the document than any model
that represents the dependencies in the document by its ini-
tial distribution. A secondary contribution is to investigate
the practical application of this representation. To do so,
the algorithm was tested on the AP88-89 and WSJ87-92
collections in a pseudo-relevance feedback setting. Results
showed consistent improvements over a standard language
model baseline. Moreover, even in its simple form, the algo-
rithm proved already to be on a par with more sophisticated
algorithms that depend on choosing sets of parameters or
extensive training. Hence, adding such schemes may be ex-
pected to improve the the results of the simple algorithm
beyond current practice.

1. INTRODUCTION
Imagine (or perhaps recall) that you just came back from a

well-deserved vacation in the South Pacific. When someone
asks you about your vacation, you are happy to recount

how it was. First you tell it to the people at home, then
to your neighbors, then to your colleagues at work. At first
there will be much variation in your story, but by and by all
has been said, and the rendition of your experience becomes
stable, only mentioning the essential parts. Or think of an
event that lands as late breaking news on your paper’s front
page. As days go by, the story may reappear a few times,
but eventually all has been said.

Now suppose a search engine would need to return the
most relevant (as opposed to the most entertaining) story
about your vacation. Should it be one from the earlier stages
where it still meandered haphazardly along all that hap-
pened? Or one of the later more concise and orderly ac-
counts?

Let us look at this phenomenon from the language model-
ing perspective to IR [10]. In this paradigm a text is viewed
as a sample from a stochastic source that produces words
according to some distribution. With the vacation story,
you were the source, and your stories were different samples
from that source. As the source is assumed to be stochas-
tic, the words and their frequencies will change from one
account to the next, as in the case of your stories.

Without a model of the underlying process, however, it
would be difficult to reconstruct the distribution of the source
from the samples alone. Therefore, language models can be
distinguished by how they model the source and by how
the distribution is derived from the samples. As current
language models don’t use an explicit representation of the
meaning of documents, we can illustrate our approach with
a simple abstract example. Assume a language of just the
words a and b, and two documents D1 = [a a a a a b b b
b b b a] and D2 = [a b a b a b a b a b a b]. Using Q = [a
b a b ] as the query (or topic), which document would be
considered the most relevant for a given language model?
In the multi-bernoulli model [10], D1 and D2 would get the
same score, as all words in the query are also in the docu-
ments. The multinomial unigram model [15] also assigns the
same score because the frequencies of a and b are the same
in D1 and D2 and hence the p(Q|D) =

Q
i p(qi|D) are the

same. If Q were extended with a word c that does not ap-
pear in the documents, so that smoothing [17] was called for,
words would be discounted by the same amount, and again
the documents would receive the same score. Basically, we
are trying to estimate a relevance model (1) without fur-
ther knowledge about the corpus, (2) under the assumption
that the term occurrences are independent, and (3) in the
absence of training data. These issues have received much
attention lately. For example, several researchers have stud-



ied bigrams and trigrams [15] or even studied the optimal
distance over which to consider dependencies in general [14,
9] or based on natural language constraints [5]. Metzler
and Croft [9] in particular distinguished among full inde-
pendence, sequential dependence, and full dependence. The
terms mean what they suggest: in sequential dependence
the ranking of a document depends only on the dependency
of adjacent words, whereas in full dependence any clique
of words is to be considered. In this paper we consider a
fourth option, halfway between sequential and full depen-
dence, namely when a word comes after another, but sep-
arated by words in between. For example, in D1 and D2

above, one can accumulate the distances from every a to
every b to derive a probability that a is followed by b. In
the example, this probability is much lower for D1 than for
D2. Imagine that, as in the vacation story that was told
over and over again, the sources of D1 and D2 would go on
for a long time producing one new document after another
according to their distributions. If we assume for concrete-
ness a dependency of no more than five words, then (as we
will see) in the long run a would appear about as often as b
for D2 but twice as often for D1. This is obviously different
from the word counts that would suggest a 50% probability
for each. Moreover, the distribution in the long run seems
to reflect the impression that D2 is more like Q than is D1.
This paper will show how the term dependencies of a partic-
ular document predict the asymptotic behavior of its source,
and with it the term distribution that would be observed if
the source would continue to produce new documents.

The sections that follow show how the approach of asymp-
totic behavior relates to other language models, and how it
accomplishes the following objectives:

• It shows that under very realistic, plausible, and ele-
mentary conditions the source underlying a document
is ergodic, and therefore a stationary distribution to
represent the source can be derived from just one doc-
ument,

• It shows how documents can be ranked based on their
underlying stationary distributions.

• It shows how an initial (ad hoc) distribution for a doc-
ument can be establish , based on a semantic approach
called the Hyperspace Analog to Language (HAL),

2. THE DOCUMENT SOURCE AS AN ER-
GODIC CHAIN

One reason that language models use lower order depen-
dencies is the (in)tractability of the Bayesian chain rule.
Another is often simply a lack of knowledge about higher
order dependencies. Yet, in practice, bigrams already give a
reasonable improvement over unigrams [6]. In addition, [15]
and others have shown that an interpolation of unigram and
bigram models performs well.

The practical considerations aside, the question remains
whether higher order dependencies would lead to better mod-
els, even if it is tempting to assume the affirmative. To begin
answering the question, it is important to realize that the
current approach to language modeling is applicable to any
stochastic source and the languages they produce (human,
machine, or perhaps alien). The models pay no heed to
the fact that the documents to be modeled are produced

by humans. Yet this throws out particular constraints that
could make the methods more tractable. Some constraints
can be borrowed from cognitive science, some follow directly
from confining the languages under consideration to natural
language:

• Many cognitive phenomena can be understood suffi-
ciently well in terms of word-pairs. Pertinent exam-
ples can be found e.g. in the research on memory [14],
work as mentioned above on the ‘semantic space’ [2],
and results from old theories on ’spreading activation’
[1] to recent brain (ERP) studies [4]. This supports
the view that the source underlying the document can
be modeled as a (first order) Markov process.

• Words in a natural language corpus can be separated
by any number of intermediate words. (Think of adding
an extra adjective before a noun.) This means there
cannot be any cycles in the process. Identifying words
with the states of the process then means that the
Markov chain is aperiodic.

• You can always get from one word to another by con-
tinuing to produce text (words can never be used up).
Consequently, the Markov chain is irreducible.

The first point was already proposed by Shannon in his fa-
mous article [13], without the backup from cognitive science.
The next two points, that the Markov process is both ape-
riodic and irreducible means that it is ergodic. An ergodic
chain has the property that in the long run it reaches a sta-
tionary distribution (also called stationary kernel, or steady
state), irrespective of the initial state.
It is easy to sample a document and generate a new one on
the basis of its distribution; see the examples in [13], or any
of the many sites on the web that offer programs to do this.
What we would like to compute however is the distribution
of the source underlying the document. Or in the metaphor
of the introduction, we would like to model the final stable
and concise story as the most relevant to the query about the
vacation. With little knowledge of the source, one could use
a Gibbs sampler, i.e. generate a long series of documents
and sample until the distribution seems to converge. The
Gibbs sampler was proposed for example by Wei and Croft
[16] to find a distribution for their LDA model. Besides the
benefits of the technique, there are several issues to over-
come: (1) it is computationally demanding, (2) it is hard to
know when the process has converged, and (3) it is not cer-
tain if the outcome is the only fixed point. The observation
above that the process is ergodic obviates all three issues at
once. The final distribution of the Markov chain can easily
be computed without sampling (it is the eigenvector with
eigenvalue 1), and it is guaranteed to be unique.

Note, first, that the properties mentioned to derive this
result are valid for natural languages in general. This means
that the method may be used for languages other than En-
glish (and which are increasingly visible on the Web). Sec-
ond, it also answers the question about the higher order de-
pendencies, in that it is unlikely that these will contribute
much to improving search results. With the answer comes
an other question to the fore: how to compute the lower
order dependencies given the documents. The next section
offers a proposal, one we will use in an experiment further
on, but it is by no means meant as the last word on finding
initial distributions.



3. DERIVING THE INITIAL
DISTRIBUTION

In language modeling, the document source represents the
author producing the document. As an author could pro-
duce different renderings of the same story, these renderings
would be different samples of the source, and so the term
distribution could differ from one document to the next.
Fortunately, the ergodic chain has a property that is very
useful here, namely that its asymptotic behavior is inde-
pendent of the initial state. In other words, if one would
continue to sample the source, then in the long run it would
not matter what sample, i.e. what document, was observed
first; the asymptotic behavior would be the same. What
remains then, is to derive an initial distribution given the
document. This is where language models differ greatly from
one another. As we mentioned in the introduction, an im-
portant distinction lies in the degree of term dependency
that is assumed. In this paper we follow the approach of
Lund and Burgess [8] who computed co-occurance statis-
tics from a rich source of spontaneous conversations: Usenet
newsgroups. They called the representation of these statis-
tics the ‘Hyperspace Analog to Language’ or HAL. HAL is
computed by sliding a window over the corpus and assigning
weights to word pairs, inversely to the distance from each
word to every other in the window. This results in a word
by word matrix with the accumulated word distances in the
cells. Box 1 may clarify the construction further.

Box 1

Given an n-word vocabulary, the HAL space is represented
as a n ∗n matrix constructed by moving a window of size w
over the corpus ignoring punctuation, sentence, and para-
graph boundaries. The strength of co-occurence decreases
with the number of intervening words. Instead of an ex-
tended corpus, let us take just the sentence The effects of
spreading pollution on the population of Atlantic salmon.
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the 1 2 3 4 5
effects 5
of 8 5 1 2 3 5
spreading 3 4 5
pollution 2 3 4 5
on 1 2 3 4 5
population 5 1 2 3 4
atlantic 3 5 1 2 4
salmon 2 4 1 3 5

The table above shows the HAL matrix for a window size
of 5. Take e.g. the entry for ‘population’. To find the
distance to ‘pollution’, go backward starting at ’population’
with strength 5 (for ‘the’) counting down to 3 for ‘pollution’.

(Note that the number in a cell is formally not a distance
because the matrix is usually not symmetric.) If a word is
connected to a second word via a small number, than it is

more likely to be followed by that word than if the number
had been high (e.g. the table shows that ’of’ is more likely
to be followed by ’the’ than the other way around). Based
on this observation, the HAL matrix is transformed into a
transition probability matrix pHAL by normalizing the row
vectors. So, to find the document source distribution for a
document requires only two steps:

1. Compute the ad-hoc distribution, in our case pHAL,

2. Compute the stable distribution (epi-HAL).

epi-HAL, for ‘ergodic process interpretation of HAL’, is easy
to compute in several ways, which follow from the ergodic
property. For example, one can compute the eigenvector of
pHAL that belongs to the eigenvalue of 1.

Box 2

For readers unfamiliar with the Markov approach, the es-
sential steps in the algorithm are illustrated below. Assume
a language of just the words a and b, whose dependencies
are defined by the transition probabilities in matrix H. H
defines a Markov chain, where state A ouputs a and state
B outputs b.

H a b
a .2 .6
b .8 .4

⇒ A B.2

.6

.4

.8

For initial state s0 (e.g. A if started with word a), the next
state is given by s1 = s0 ∗ H, where

H =

„
.2 .6
.8 .4

«
followed by s2 = s1 ∗ H = s0 ∗ H2, ..., sn = s0 ∗ Hn with

Hn =
1

.8 + .6

„
.6 .6
.8 .8

«
+

−0.4n

.8 + .6

„
.8 −.6
−.8 .6

«
which converges to:

lim
n→∞

Hn =

„
.4286 .4286
.5714 .5714

«
so the Markov chain becomes stationary with P (a) = .4286
and P (b) = .5714, independent of the initial state. (The for-
mal derivation was only given to show the convergence. The
stationary distribution can also be computed directly from
the transition matrix.) In the same way these values can be
obtained for the examples in the introduction. Computing
the HAL matrix with window of size 4, the distributions
converge to:
D1 = [a a a a a b b b b b b a], P (a) = .36 and P (b) = .64
D2 = [a b a b a b a b a b a b], P (a) = .49 and P (b) = .51
Q = [a b a b ], P (a) = .44 and P (b) = .56
Computing the Kullback-Leibler divergence yields
KL(Q||D1) = .017, and KL(Q||D2) = .007, so D1 diverges
more from Q than D2, and therefore D2 is ranked as more
relevant.

Doing this for all documents produces a source represen-
tation for each document. The same can be done for the



query, which would represent the searcher. To rank the doc-
uments in order of relevance to the searcher, the documents
are not compared to the query directly (as in the vector
space model) but the sources are compared. Researchers in
the language modeling community use the Kullback-Leibler
(KL) divergence to compare distributions, and so will we.
The algorithm is explained in Box 2 using a very simple
language for clarity.

The main goal of this paper is to explain and more for-
mally justify our approach. Yet, the next section will add a
more practical justification by showing that even a straight-
forward and simple implementation of our approach can al-
ready compete with a closely related but much more sophis-
ticated language model.

4. IMPLEMENTATION AN EVALUATION
There are other language models that use a Markov ap-

proach. Notably Cao, Nie, and Bai [3] use the Markov chain
for the same reason as we do, namely to find a stable dis-
tribution. There are a number of choices made in [3] that
we do not depend on: we do not use WordNet (for semantic
relationships), there are several parameters we do not have
to set, and we don’t use training for optimization. Further-
more, although in the authors of [3] make use of a stationary
distribution, they cannot guarantee that their initial distri-
bution is ergodic. So their stationary points may not be
unique and depend on the initial distribution, i.e. on the
precise rendering of the document. At the time of writing
we have not yet compared our results with theirs, so we will
report our findings once we have done the experiment. We
did, however, conduct an experiment to compare our model
with the somewhat older relevance model of Lavrenko &
Croft [7].

The evaluation experiment follows a pseudo-relevance feed-
back paradigm, which requires a few choices to be made
which we will mention here. This makes the model less ele-
gant, but it was necessary in order to evaluate the approach
against the work of others.

First a document ranking is produced in response to a
query Q. The top n documents are used to derive a distri-
bution Mn

epi by computing the epi-HAL over this collection.

Similarly, MQ
epi is computed for the query. These are used

in turn to define a mixture model (cf. equation (15) in [7]).

Pr(w|Q) = λ Pr(w|MQ
epi) + (1 − λ) Pr(w|Mn

epi) (1)

The documents were re-ranked using the KL-divergence, and
we used the standard baseline unigram LM in the Lemur
toolkit. In the experiments reported below a simplified ver-
sion Robertson’s term selection value (TSV) worked well in
the case of HAL, and which was defined as

WT(w) =
rw

R
log

N

fw
(2)

where fw is the occurrence frequency of word w within a
corpus of N documents, R is the number of selected top-
ranked documents and rw is the number of documents that
contain a particular term w. We established the number of
terms by balancing the number of relevant terms and provid-
ing sufficient dimensionality for pHAL. We found a value of
300 terms, but others have used different values here. (Such
differences are to be expected as the distributions are cal-
culated differently, and there is no better way known then

to establish these numbers empirically.) Once this num-
ber is established it can be used to compute Pr(·|Mn

epi) and

Pr(·|MQ
epi). Substituting these in equation (1) yields the

query model MQ = Pr(w|Q). Subsequently, documents are
re-ranked via KL(MQ||MD), where MD corresponds to a
document language model. In our case, MD is delivered by
the baseline language model.

4.1 Experimental Results
We will now compare the present proposal to the relevance

model. We used the TREC corpora Associated Press 88-
89 and Wall Street Journal 90-92 used in [7]. The results
are tabulated below together with a measure of robustness.
It can be seen from the robustness data that the epi-HAL

Table 1: Comparison of mean average precision
(MAP) by testing Query101-150 on Collection
AP8889, using KL as baseline, the relevance model
RM, and epi-HAL proposed in the present paper.
The robustness numbers below the table give an im-
pression of how consistent the differences are, if any.

KL RM epi-HAL ∆KL % ∆RM %
MAP 0.2336 0.3047 0.3089 +32.2** +1.4
Recall 3179 3919 3952

Robustness EMC vs. KL: Positive 31, Negative 18
Robustness EMC vs. RM: Positive 23, Negative 26
Robustness RM vs. KL: Positive 34, Negative 15

Table 2: See Table 1, AP8889, Query151-200

KL RM epi-HAL ∆KL % ∆RM %
MAP 0.3084 0.3794 0.3807 +23.4** +0.3
Recall 3332 3636 3697

Robustness EMC vs. KL: Positive 33, Negative 16
Robustness EMC vs. RM: Positive 21, Negative 28
Robustness RM vs. KL: Positive 32, Negative 17

approach improves substantially over the baseline, but that
the difference with RM is negligible. The same happens in
Table 2. For the Wall Street Journal, we see a significant
increase in performance of the epi-HALL approach over RM,
for all topics.

Table 3: See Table 1, WSJ90-92, Query101-150

KL RM epi-HAL ∆KL % ∆RM %
MAP 0.2568 0.2632 0.2836 +10.4** +7.7*
Recall 1537 1464 1606

Robustness EMC vs. KL: Positive 30, Negative 18
Robustness EMC vs. RM: Positive 31, Negative 17
Robustness RM vs. KL: Positive 25, Negative 23



Table 4: See Table 1, WSJ90-92, Query151-200

KL RM epi-HAL ∆KL % ∆RM %
MAP 0.2336 0.3047 0.3089 +32.2 +1.4
Recall 3179 3919 3952

Robustness EMC vs. KL: Positive 31, Negative 18
Robustness EMC vs. RM: Positive 23, Negative 26
Robustness RM vs. KL: Positive 34, Negative 15

5. CONCLUSION
We derived a relatively simple language model, epi-HAL,

that deviates in several respects from most language mod-
els proposed to date. Epi-HAL is based on the observation
that texts are produced by humans. From this observation
it follows that (1) there must be semantic dependencies un-
derlying the documents, and (2) that the documents must
obey surface constraints inherent to natural language. To
represent the former, this paper derived the underlying se-
mantics from the Hyperspace Analog to Language (HAL) a
theory presuming that words that appear close together in
text, will also be close in meaning. The surface constraints
were represented by using an ergodic Markov chain.

We believe that current language models are overly gen-
eral in that they do not incorporate these properties of natu-
ral language, the very fabric of the documents they purport
to model. We compared the straightforward implementation
of the proposed model with a sophisticated relevance model.
Evaluation on TREC corpora showed results that are on a
par with with the relevance model in the case of AP8889,
and in the case of WSJ90-92 even performed better.

The results of the experiments encourages us to pursue
several avenues in future work. First, the current experi-
ments can be repeated for comparison with other Markov
approaches, such as the recent [3] which makes a number of
additional assumptions that we don’t have to make. Second,
we could apply the ergodic chain approach to replace the
maximum likelihood document model in [7] by the station-
ary distribution. And finally, because the proposed model
itself is so simple there is always room to improve results
via specialized additions as are currently used in much more
sophisticated models.
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