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Abstract 5 

Naturally fractured reservoirs have been a source of challenging issues with regard 6 

to field development, well stability, drilling, and enhanced oil recovery, as a 7 

connected fracture system can totally dominate the flow patterns. Because of the 8 

high degree of heterogeneity in flow characteristics and reservoir geomechanics, 9 

several mathematical, numerical and discretization methods are proposed to 10 

predict the hydrodynamics behaviour of naturally fractured reservoirs. This paper 11 

presents a critical review of the characteristics of naturally fractured reservoirs in 12 

terms of geomechanics and fluid flow. In the case of poorly connected fractures 13 

and high-density fractured networks, compared to the characteristic length of 14 

interest, multi-continuum approaches are widely applicable. The dual continuum 15 

approach can handle fracture matrix interaction implicitly much more conveniently 16 

than the Discrete Fracture Network (DFN) and Discrete Fracture Matrix (DFM) 17 

approaches, but it cannot capture the fracture geometry explicitly where the 18 

fracture is the main flow path in the area of interest. Distinct mathematical and 19 

numerical modelling of flow and reservoir geomechanics are also addressed in this 20 

review paper. In this context, various coupling schemes of reservoir geomechanics 21 

and fluid flow are discussed. Recent research challenges related to numerical 22 
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modelling of multiphase flow, reservoir geomechanics, coupling schemes, and 23 

discretisation are also reviewed. It is concluded that despite several research 24 

efforts, coupled geomechanics and multiphase flow is still a challenging issue 25 

related to mathematical, numerical models and discretisation schemes to capture 26 

the hydrodynamic behaviour, such as fracture deformation and fluid flow 27 

behaviour, at fracture matrix interaction in naturally fractured reservoirs and 28 

adopting the best modelling approach is very much dependent on the desired 29 

hydro-mechanical aspects to be investigated. 30 

Keywords: Geomechanics, fractured reservoirs, coupling scheme, modelling, 31 

fracture-matrix interaction.  32 

1.0 Introduction  33 

Rigorous numerical modelling of fluid flow in geologically complex reservoirs is a 34 

major challenging issue for petroleum reservoir engineers. Conventional and 35 

unconventional fractured reservoirs are part of these challenges. Predominantly, 36 

fracture network patterns are the main conduits for fluid flow and improve the 37 

permeability in tight formations, while the matrix controls the main reservoir 38 

storage capacity. Building a modelling framework is a challenging task to describe 39 

and understand how single phase and multiphase flow occurs in the fractured 40 

reservoirs, and to qualify the hydrodynamic interactions between fractures and 41 

adjacent porous matrix under variety of overburden stress levels.   42 

Fractured hydrocarbon reservoirs play a significant role both in the world economy 43 

and main energy markets. As a result of high heterogeneity and fabric complexity 44 

in naturally fractured reservoirs, accurate hydrocarbon recovery predications is 45 
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challenging despite the existence of giant hydrocarbon reserves in fractured 46 

formations (Geiger et al., 2009). Over 20% of the world’s reserves and production 47 

are provided by natural hydrocarbon reservoirs, such as the Asmari limestone 48 

reservoir in Iran, the vugular carbonate reservoirs in Mexico, the Kirkuk oil field in 49 

Iraq, the group of chalk reservoirs in the North Sea, and over 400 billion barrels 50 

of hydrocarbon reserves in Canada (Abbas, 2000; Jalali and Dusseault, 2012). 51 

Fractures are ubiquitous in the subsurface (Berkowitz, 2002) and play a significant 52 

role in a wide range of engineering applications, such as nuclear waste disposal, 53 

groundwater management, unconventional shale gas reservoirs, geotechnical 54 

engineering, and enhanced oil recovery (Abass et al. 2007; Lei, Latham, and Tsang 55 

2017; Unsal, Matthäi, and Blunt 2010). The discontinuity of fractures includes 56 

complex networks, dominating the geomechanics and hydrogeological behaviour 57 

of subsurface rocks (Lei, Latham, and Tsang 2017). The geomechanical analyses 58 

play a significant role in demonstrating and characterising phenomena like sand 59 

production during the well production, surface subsidence, stability of wells in 60 

particular in shale formations, and reservoir compaction where subsurface 61 

pressure depletion exists (Jalali and Dusseault, 2012). The main feature of these 62 

common phenomena is strongly related to the behaviour of solid interactions with 63 

the reservoir fluid flow affected by fractures (Settari and Walters, 2001).  64 

The physical interactions of hydraulic and mechanical processes in the porous 65 

bearing formation is called hydromechanical coupling (Rutqvist and Stephansson, 66 

2003). In petroleum reservoirs, hydromechanical interactions are common due to 67 

presence of fractures and pores which are deformable and filled by fluid. In 68 
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general, porous media or fractured rocks are saturated with fluids, and the porous 69 

media connectivity and fracture apertures can deform as a result of either change 70 

in the external stresses acting on the formation, or change in the internal fluid 71 

pore pressure as shown in Fig.1.  72 

 73 

Fig. 1. Overview of the deformation modes in fractured porous media including effects on porous matrix and macro fractures 74 
(Rutqvist and Stephansson, 2003). 75 

This paper reviews the most significant fluid flow numerical modelling methods in 76 

fractured porous media.  It also provides a comprehensive understanding of 77 

different coupling schemes between reservoir geomechanics and fluid flow in the 78 

fractured porous medium, from physical, conceptual, and mathematical models to 79 

discretization approaches.  In addition, it shows the flexibility and complexity of 80 

different flow modelling approaches in fractured porous media, in terms of 81 

computational accuracy and cost. Furthermore, various coupling approaches 82 

related to reservoir geomechanics and fluids are summarised based on the 83 
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geometrical complexity, flexibility, computational efficiency, and types of 84 

discretization. 85 

2.0 Modelling of Fluid Flow and Transport in Fractured Porous Media 86 

The flow equations in a small volume of porous media (e.g. rock or geological 87 

materials), which is representative of elementary volume (REV), was first derived 88 

by Bear (1972) (Bear, 1972). Subsequently, mass and momentum conservation 89 

equations were used to describe the fluid flow behaviour and transport in fractured 90 

porous media. Fig. 2 illustrates the relationship between volumetric porosity and 91 

REV, and the fact that porosity measurement changes with sample volume and 92 

the domain of the REV (Bear, 1972; Nordahl and Ringrose, 2008).  93 

 94 

Fig. 2. Illustration of the REV concept for porosity (Nick, 2010). 95 

In this section, the previous track record of governing flow equations for single 96 

and multiphase flow reservoirs are introduced. Furthermore, an extension of 97 

Darcy’s law in the fractured domain for single-phase flow and physical parameters 98 

that govern multiphase flow in fractured reservoirs are highlighted. 99 
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2.1 Single Phase Flow 100 

Darcy transport equation is widely applicable for single, two and three phase flow 101 

(Bear, 1972). Eq. (1) represents the Darcy transport equation where the pressure 102 

gradient is the major driving force (∇𝑃𝑃) for single-phase. 103 

 𝑣𝑣 = −𝑘𝑘
𝜇𝜇
 (∇𝑃𝑃 − 𝜌𝜌𝜌𝜌∇𝐷𝐷) ……………………………………….. (1) 104 

The mass conservation equation is normally provided by Eq. (2) for single phase 105 

flow in the fractured porous media.  106 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) + ∇. (𝜌𝜌𝑣𝑣) = 𝑞𝑞 ……………………………………….. (2) 107 

Where: 𝑣𝑣 is the Darcy velocity, 𝜌𝜌 is the density of the fluid, 𝜇𝜇 is the viscosity of the 108 

fluid, 𝑘𝑘 is the permeability of the formation, 𝜌𝜌 is the gravitational acceleration, 𝐷𝐷 109 

is the depth of the datum, 𝜌𝜌 is the rock porosity, and 𝑞𝑞 is the source term.  110 

As a result of high flow velocity in the fracture (free channel) domain relative to 111 

the porous matrix, Sanaee et al. (2012, 2013) employed the Navier-Stokes 112 

equation in fracture volume. In addition, the Brinkman equation, which is an 113 

extension of Darcy law (Bars and Worster, 2006), was used to control single phase 114 

flow at fracture matrix interactions.  115 

2.2 Multiphase Flow 116 

In the multiphase flow and isothermal condition, multi-mass components and 117 

mass balance equations are needed to describe the flow in fracture and matrix 118 



   7 
 

reservoir rocks separately for each phase. Mass conservation equation is given by 119 

Eq. (3).  120 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑆𝑆𝛽𝛽𝜌𝜌𝛽𝛽� = −∇. �𝜌𝜌𝛽𝛽𝑣𝑣𝛽𝛽� + 𝑞𝑞𝛽𝛽 ……………………………………….. (3) 121 

In Eq. (3): 𝑆𝑆𝛽𝛽 ,𝜌𝜌𝛽𝛽, 𝑣𝑣𝛽𝛽 is the saturation, density and velocity for the phase of flow 122 

respectively (𝛽𝛽= g for gas, 𝛽𝛽= w for water, and 𝛽𝛽=o for oil).  123 

Darcy law is also widely applied for considering the effect of density, viscosity and 124 

pressure gradient for multiphase flow in the fractured porous media as shown in 125 

Eq. (4). 126 

𝑣𝑣𝛽𝛽 = −𝑘𝑘𝑎𝑎𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑟𝑟

(∇𝑃𝑃𝛽𝛽 − 𝜌𝜌𝛽𝛽𝜌𝜌∇𝐷𝐷) ……………………………………….. (4) 127 

In Eq. (4): 𝑣𝑣𝛽𝛽 is the Darcy velocity of the phase 𝛽𝛽, 𝜇𝜇𝛽𝛽 is the viscosity of the phase, 𝑘𝑘𝑎𝑎 128 

is the absolute permeability of the formation, 𝑘𝑘𝑟𝑟𝛽𝛽 is the relative permeability of the 129 

phase, and ∇𝑃𝑃𝛽𝛽 is the pressure gradient of the phase 𝛽𝛽.  130 

Multiphase (two and three phases) flow modelling is still a challenging task while 131 

the most widely used approach is the same one used for single phase flow. To 132 

describe multiphase flow in fractured porous media, some more physics should be 133 

introduced before proceeding, such as saturations, relative permeability, and 134 

capillary pressure (Karimi-Fard and Firoozabadi, 2001; Monteagudo and 135 

Firoozabadi, 2004). In the presence of multiphase flow, fluids jointly fill the porous 136 

medium indicates the relation (Eq.5) (Zhangxin et al., 2006). 137 

∑𝑆𝑆𝛽𝛽 − 1 = 0 ……………………………………….. (5) 138 
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When multi-immiscible fluids exist in the porous media, the distinct pressure 139 

between the non-wetting and wetting phases is called capillary pressure (Eq. 6); 140 

across the interface, pressure arises from the capillary forces and these capillary 141 

forces come from the surface and interfacial tension (Pyrak-Nolte et al., 2008; 142 

Soares et al., 2015). 143 

(𝑃𝑃𝑐𝑐) = 𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑤𝑤 ……………………………………….. (6) 144 

where: 𝑃𝑃𝑐𝑐 stands for capillary pressure, 𝑃𝑃𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎  𝑃𝑃𝑤𝑤 are the non-wetting and wetting 145 

phases’ pressures respectively.  146 

In immiscible multiphase flow, the presence of the non-wetting phase decreases 147 

the cross-sectional area availability to flow of wetting fluid and vice versa. 148 

Therefore, the ability of fluid to transport reduces within  porous media domain 149 

and is defined by relative permeability (Falode and Manuel, 2014; Honarpour et 150 

al., 1986; Jerauld and Salter, 1990).  151 

𝑘𝑘𝑟𝑟𝛽𝛽 = 𝑘𝑘𝑟𝑟
𝑘𝑘𝑎𝑎

 ……………………………………….. (7) 152 

𝜆𝜆𝛽𝛽 = 𝑘𝑘𝑟𝑟𝑟𝑟𝑘𝑘𝑎𝑎
𝜇𝜇𝑟𝑟

 ……………………………………….. (8) 153 

where: 𝑘𝑘𝛽𝛽 is the effect permeability of the phase, 𝑘𝑘𝑎𝑎 is the absolute permeability 154 

and 𝜆𝜆𝛽𝛽 is the mobility of the phase. 155 

Adding Eqs. (7) and (8) to Eq. (2), then Eq. (9) describes multiphase 156 

incompressible fluid flow in the porous media.  157 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑆𝑆𝛽𝛽𝜌𝜌𝛽𝛽� = ∇. �𝜌𝜌𝛽𝛽𝜆𝜆𝛽𝛽(∇𝑃𝑃𝛽𝛽 − 𝜌𝜌𝛽𝛽𝜌𝜌∇𝐷𝐷) � + 𝑞𝑞𝛽𝛽  ……………………………………….. (9) 158 
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However, flow behaviour cannot be investigated alone by Eq. (9) in different 159 

continuums. Therefore, it is essential to specify the initial and boundary conditions, 160 

and the continuity equation must be detected at different interfaces between 161 

distinct continua in terms of pressures, concentrations and mass fluxes (Martin et 162 

al., 2017). Fig. 3(a) represents the flow term evaluation, spatial discretization and 163 

grid block connections within a multi-continuum system between two neighbour 164 

grid blocks (i, j) directly based on the integrated finite difference approach. Fig. 165 

3(b) illustrates the effect of the periodic domain system (Ω) which is the effect of 166 

fracture length on the contaminant transport in the fractured porous media at the 167 

macroscopic scale where multiple fracture scales exist (Kalinina et al. 2014; Wu 168 

et al. 2006).  169 

 170 

Fig. 3. (a) 2D Finite difference integration for flow term evaluation, spatial discretization and connection (Wu 2016).(b) 171 
Fractured porous media domain, REV (Representative Elementary Volume),  Ωf (fracture domain), Ωm (matrix domain), Ω 172 
(Periodic domain), 𝑙𝑙 (microscopic characteristics length), 𝑙𝑙𝑝𝑝 (the pore lengthscale), 𝛤𝛤 (fracture-matrix boundary or interface) 173 
(Royer et al., 2002). 174 

 175 

3.0 Conceptual Flow Modelling of Fractured Rocks  176 

A conceptual model describes the main geological and hydrogeological features of 177 

the fractured porous media that control the transport and fluid flow behaviour in 178 
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the system (Berkowitz, 2002). The realistic development of conceptual models for 179 

multiphase flow in fractured rocks is a significant research problem for enhanced 180 

oil recovery, nuclear waste disposal, and subsurface contamination (Council, 181 

1996).   182 

In the past few decades, several mathematical modelling approaches have been 183 

developed and extended. They mainly depend on continuum approaches involving 184 

geometrical information for fracture and matrix formation systems, setting up the 185 

domain of the fracture matrix system for mass and energy conservation equations 186 

(Lei, Liao, and Zhang 2019; Wu, Liu, and Bodvarsson 2004). These approaches 187 

are followed by solving discrete nonlinear algebraic equations numerically which 188 

couple fluid flow phases with other physical processes (Warren and Root 1963; 189 

Wu 2016).  190 

3.1 Single Continuum Approach 191 

The single continuum approach states that both fracture and matrix are in the 192 

same domain, and fractured permeability is adapted by the porous matrix domain. 193 

The fluctuation of permeability tensor and its orientation might vary, based on the 194 

fracture properties and network. The volume average of this approach is ideally 195 

expressed by representative elementary volume (REV) (Bear, 1972; Berre et al., 196 

2019). 197 

In the single continuum method, transport is transfigured from a microscopic to a 198 

macroscopic scale when the average of microscopic quantities are used for the 199 
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problem (Dadzie et al., 2008). The whole domain’s exact local characteristics are 200 

covered by the use of average quantities of REV.  201 

The heterogeneity size is much smaller than the size of REV and the size of the 202 

REV must be smaller than the microscopic length scale. This method allows REV 203 

to be determined, and then the continuum approach is applicable in a fractured 204 

reservoir. The physical behaviour upscaling method of the macroscopic level can 205 

be derived by the REV scale. In general, Darcy’s law is applied for flow in the single 206 

continuum approach where the flow is essentially influenced by frictional 207 

resistance and the pressure gradient is the major driving force in the system as 208 

already discussed (Royer et al., 2002). 209 

3.2 Dual Continuum Approach  210 

The dual continuum approach represents the fracture and matrix domains 211 

separately, such as with dual porosity and dual permeability values. The dual 212 

continuum approach can involve several fractures or fracture networks locally and 213 

is expressed by representative elementary volume (REV) (Wu 2016). 214 

The dual continuum method has been advanced and used as the main method for 215 

modelling fluid flow, heat transfer, and chemical transportation in fractured porous 216 

media (Wu, Pan, and Pruess 2004). Furthermore, the physical process of fluid flow 217 

and transport in fractured reservoir rocks are treated separately for each 218 

continuum, such as fracture continuum and matrix continuum.  The same basic 219 

conservation of mass, energy and momentum are governed for flow within each 220 

continuum separately (Khalili 2008; Wu and Qin 2009). Although, it should be 221 



   12 
 

noted that the dual continuum approach depends on the uniform distribution of 222 

denser fracture networks, and detailed information of fracture and matrix 223 

characteristics. The dual continuum approach is widely used in petroleum reservoir 224 

simulation and in commercial reservoir simulators (Moinfar et al., 2011; 225 

Monteagudo and Firoozabadi, 2004).  226 

Multiphase flow is described separately, in naturally fractured formations, for both 227 

continua matrix and fracture using doublet flow equations in the dual continuum 228 

approach. This method causes a set of partial differential equations for both 229 

continua (Wu, Pan, and Pruess 2004). 230 

3.3 Triple Continuum Approach  231 

The triple continuum approach is developed in the same way as Warren and Root’s, 232 

used for the dual-porosity model; both matrix systems are considered locally 233 

uniform and homogenous. There may exist an important heterogeneity within the 234 

rock matrix and fractures systems. The concept of double porosity has been 235 

extended to explore the effect of heterogeneity on flow in fractured and rock 236 

matrix (Wu, Pan, and Pruess 2004). In addition, a number of triple continuum 237 

methods have been progressed and used to carry out the effect of rock matrix 238 

heterogeneity, small fractures, and for vuggy fractured reservoirs. In general, 239 

these multi-continuum approaches have concentrated on distinct levels and scales 240 

of the lithological heterogeneity of fractures and rock matrix. This includes 241 

subdividing the fractures and matrix systems through two or more subdomains 242 

with distinct characterizations for single and multiphase flow in fractured porous 243 

media (Wu 2016). 244 
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Furthermore, the fracture–matrix system is conceptualized as a triple continuum 245 

model to explore the effects of small-scale fractures in fractured reservoirs. This 246 

includes single porous rock matrix and two kinds of fractures: (1) large fractures 247 

which globally connect to other fractures; and (2) small fractures that are locally 248 

connected to the large fractures and the rock matrix (Wu, Pan, and Pruess 2004). 249 

In principle, the triple continuum approach is similar to a dual continuum approach 250 

for small fractures. The entire reservoir volume is occupied by three distinct spatial 251 

continua (vug, fracture and matrix) that use effective porosity values to 252 

approximate the two fracture types (small and large) and rock matrix (Wu 2016). 253 

3.4 Discrete Fracture Network Model (DFN) 254 

In general, the DFN concept is a comprehensive study of fractured rock modelling 255 

and it is a group of geometrical planes that represent fractures (Tavakkoli et al., 256 

2009). In DFN modelling, the model domain of the formation includes every 257 

fracture pattern’s properties (e.g. orientation, size, position, shape and aperture) 258 

and flow description, explicitly through fractured systems at fracture matrix 259 

interaction. A discrete fracture model is a rigorous approach for the field scale as 260 

opposed to other fracture modelling approaches because of computational 261 

intensity and large data requirement (Lei, Latham, and Tsang 2017). 262 

In addition, the number of fractures involved in the field simulation is vast, and 263 

this approach usually requires the detailed characteristics of fracture and matrix 264 

properties and their spatial distributions – which are hardly familiar from the field 265 

site in fractured reservoirs. The DFN model commonly disregards the host domain 266 
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and ignores the flow in the matrix domain, and considers the impenetrability of 267 

the matrix domain (Lei, Latham, and Tsang 2017). In the DFN model, it is assumed 268 

that only a fracture network can contain and store fluid which is represented by 269 

lattice. A DFN model is commonly used and appropriate where (1) the porous 270 

media is explicitly presented by entire porosity and permeability of the fracture; 271 

and (2) the network represents a model of fractures in low permeable porous 272 

media (Berre, Doster, and Keilegavlen 2019; Wu 2016). 273 

3.5 Discrete Fracture-Matrix Model (DFM) 274 

The discrete fracture-matrix model was first introduced by (Noorishad and Mehran, 275 

1982), commonly referred to as the DFM model. The main concept of the discrete 276 

fracture-matrix model is based on the equilibrium cross flow between the fluids in 277 

the fracture node to the rock matrix node next to the fracture (Monteagudo and 278 

Firoozabadi, 2004). The DFM model attempts to create a balance between loss of 279 

accuracy and applying geometric complexity by upscaling. Fluid flow is explicitly 280 

represented in the fracture and matrix domain, and this model allows the creation 281 

of a length of fracture, much less than the size of the matrix domain. Therefore, 282 

the DFM model provides secondary permeability in the fracture domain, rather 283 

than being part of the explicit fracture network, as in the DFN model (Berre et al., 284 

2019). 285 

Although all the fractures can be incorporated in the fracture domain and within 286 

the governing equations, it is not practicable to retain an explicit representation 287 

of all fractures because of the computational complexity. Therefore, some of the 288 



   15 
 

fractures are preserved, while others are upscaled and replaced by averaged 289 

quantities within the matrix domain (Keilegavlen et al., 2017). 290 

The DFM model can be used in the detailed modelling of the interface of two phase 291 

flow, capillary pressure and hydromechanical interaction between flow and the 292 

matrix medium even if the matrix medium is considered as impermeable (Berre 293 

et al., 2019). Fig. 4 highlights a generalized picture of different conceptual models 294 

for fractured medium, and how the different conceptual models might relate to 295 

examine the specific problem in the fractured porous media. The application of 296 

different conceptual models in comparison to others is based on the existence of 297 

the separate scales fractured medium, along with the availability of the original 298 

information. 299 

 300 
Fig. 4. Illustrating the fractured porous media model concepts (Berre et al., 2019). 301 
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4.0 Numerical Flow Modelling of Fractured Rocks 302 

The fractured fluid flow and transport behaviour of the system is normally 303 

estimated by numerical models, described by conceptual models such as two and 304 

three dimensional (2D, 3D) equivalent fracture matrix networks (Yao et al., 2019). 305 

Fig. 5(a) illustrates a simplified 2D representation of the solid red streamline, 306 

where the triangular interfaces are diminished to the line segments in the model. 307 

A 3D schematic concept of the network interface is also depicted in Fig. 5(b), 308 

where the main fluid paths are between tetrahedrons in the triangular interfaces. 309 

Flow geometry provides the mathematical formulations of the numerical models 310 

specified in the conceptual model (Council, 1996).   311 

In general, several numerical methods have been developed and progressed based 312 

on the conceptual models for fluid flow modelling, based on their classification for 313 

the complexity and treatment compatibility in fractured porous media (Blunt, 314 

2001; Unsal et al., 2010; Yao et al., 2019; Zhang et al., 2019).  315 

 316 

 Fig. 5.  Conceptual representation fluid flow in equivalent fracture and matrix models in 2D and 3D (Yao et al., 2019). 317 
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4.1 Numerical Modelling of Single Continuum Approach 318 

The single continuum approach treats the fractured rock system as a continuous 319 

body that can be determined implicitly by the old finite difference method and 320 

finite element method. In addition, this is the simplest method and gives the single 321 

value of porosity and permeability for the fractured domain. The proper application 322 

case of the single continuum approach is when a single continuous fracture in the 323 

domain is being modelled (Berre, Doster, and Keilegavlen 2019; Jing 2003; Lei, 324 

Latham, and Tsang 2017). 325 

4.2 Numerical Modelling of Dual Continuum Approach 326 

In the dual continuum implicit approach, finite element method and finite volume 327 

or difference discretization schemes are typically used for discretization of the fluid 328 

flow process in fractured porous rocks. It is a practical approach to investigate and 329 

understand the behaviour of coupled mechanics of multiscale systems (Ashworth 330 

and Doster, 2019; Monteagudo and Firoozabadi, 2004). However, these models 331 

are limited to sugar cubic representations of a fractured system. Another limitation 332 

is the fluid flow exchange term between the fractured domain and matrix, and the 333 

exchange term may not be suitably defined by gravity and viscous effects only 334 

(Monteagudo and Firoozabadi, 2004). 335 

Furthermore, there is a huge number of advancements of control volume methods 336 

for flow discretization such as two-point flux approximations (TPFA), nonlinear 337 

two-point flux approximation methods (NTPFA), Multipoint flux approximations 338 

(MPFA), mixed finite element (MFE), and mimetic finite difference (MFD) (Arrarás, 339 

Portero, and Jorge 2010; Berndtf et al. 2001; Karimi-Fard and Durlofsky 2016; 340 
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Klausen and Russell 2004; Lipnikov, Manzini, and Svyatskiy 2011; Wang et al. 341 

2016; Zhang and Abushaikha 2019). 342 

The two-point flux approximation (TPFA) is the straightforward method for 343 

discretization where the flux is approximated by using the pressure in the two 344 

grids sharing the edge. However, TPFA does not provide a dependable flux, is not 345 

convergent, and is not suitable to resolve the flow field accurately. But, it is easy 346 

to formulate, employ, and does not suffer from artificial oscillations (Droniou, 347 

2014). 348 

To employ large grid stencils and considering the transmissibilities as a function 349 

of the solution of the fluxes, significant progress has been done for the traditional 350 

TPFA which involves the computational complexity denoted to nonlinear two-point 351 

flux approximation (NTPFA) (Chen et al., 2008). 352 

It is worth mentioning that the flux over an edge cannot be approximated properly 353 

by using a linear amalgamation in the two adjacent cells. Therefore, the multipoint 354 

flux approximation (MPFA) has been progressed independently by (Aavatsmark et 355 

al., 1996) to involve the non-linear approximation, adjust the flux expression, and 356 

to consist of more points in the flux stencil (Aavatsmark et al., 2010, 2008, 1998). 357 

Furthermore, several local conservative methods have been developed to control 358 

volume methods and discontinuity of the permeability tensors such as mixed finite 359 

elements (MFE) and mimetic finite differences (MFD) (Klausen and Russell, 2004).  360 

In addition, many of the computational efforts are started solving nonlinear and 361 

thereby linear systems in the field of applications. The main significant factor for 362 
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fast solvers of MPFA is to achieve popularity and to formulate a suitable 363 

mathematical framework for the analysis of the methods (Droniou, 2014).  The 364 

analysis of convergence is still based on the relations between MPFA methods and 365 

MFE or MFD discretization (Wheeler and Yotov, 2006). 366 

4.3 Numerical Modelling of Triple Continuum Approach 367 

The main purpose of using this approach is when the vuggy, fractured porous 368 

matrix, or two different scales of fractures and rock matrix are available. The triple 369 

continuum approach treats the vuggy fracture matrix system separately, as three 370 

distinct continua. The finite element methods are used implicitly for modelling of 371 

fluid flow, aided with the controlled volume or finite difference method (Wu 2016; 372 

Youssef and Alnuaim 2017). The comparisons of the triple continuum approach 373 

with the single continuum and dual continuum (dual porosity and dual 374 

permeability) approaches are depicted in Fig. 6. In general, the concept of the 375 

triple continuum approach is an extension of the dual continuum approach by 376 

computing one more network of small fracture between large fractures and matrix 377 

blocks as shown in Fig. 6(d).  378 



   20 
 

 379 

Fig. 6. Illustrating distinct conceptualization for fracture matrix treatment (a) Single Effective Continuum Approach (b) Dual 380 
Porosity Approach (c) Dual Permeability Approach (d) Triple Continuum Approach (F=large fracture, f=small fractures, and 381 
M=matrix) (Wu 2016; Wu, Liu, and Bodvarsson 2004). 382 

 383 

4.4 Numerical Modelling of Discrete Fracture Network Model (DFN)  384 

A discrete fracture network (DFN) is based on the premise that the subsurface 385 

flow and transport occur mainly within the fractures, and there is no space 386 

between the fractures except the location of their intersection. Therefore, the 387 

concept of DFN is used to interpret the fracture and fracture set properties. The 388 

DFN represents fracture characterization such as orientation, size, spatial 389 

distribution, shape, and transmissivity explicitly (Barton et al., 2013). The 3D 390 

DFNs provide single aperture values per fracture, because the simplifications of 391 

fracture heterogeneity may introduce errors in estimating the hydraulic response 392 

in the fractured rock masses as illustrated in Fig. 7 (Huang et al., 2019).  393 
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 394 

Fig. 7. Representation of 3D DFN fracture aperture distributions and different hydraulic response results, where Lf/L is the 395 
fracture length to the domain length, h is the hydraulic head, 𝐹𝐹𝑘𝑘 is the set of fracture intersection, 𝛤𝛤𝑓𝑓  is the border of the 396 
fracture domain 𝛺𝛺𝑓𝑓 , and 𝛤𝛤𝑆𝑆 is the fracture intersection (Huang et al., 2019). 397 

4.5 Numerical Modelling of Discrete Fracture Matrix Model (DFM) 398 

In the last decade, the discrete fracture matrix model has received considerable 399 

attention for simulating naturally fractured reservoirs. Most DFM models focus on 400 

unstructured grids to conform to the geometry and the location of the fractures 401 

(Moinfar et al., 2014). Fig.8 highlights the unstructured mesh which is triangular 402 

based and subdivided into 2D, 1D, and 0D objects. The DFMs can produce the real 403 

geometry of the fracture explicitly and each of the fractures has its own size, 404 

shape, orientation, and permeability (Yang et al., 2020). Therefore, the DFMs 405 

account for the effect of every individual fracture on fluid flow in the fractured 406 

porous medium (Karimi-Fard and Firoozabadi 2003). Endeavours toward the 407 

development of DFMs based on the finite element method by (Baca et al., 1984), 408 

and later (Marcondes and Sepehrnoori, 2010) resulted in the implementation of 409 
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control volume and finite element methods to simulate fracture and flow in the 410 

fractured reservoirs.  411 

 412 
Fig. 8. 2D schematic of DFM (Zhao et al. 2018). 413 

Much research effort was given to the study of outcrop characterisation, and 414 

illustration of significant changes in fractures’ height, aperture, space, length, and 415 

network connectivity (Karimi-Fard, Durlofsky, and Aziz 2003; Lee and Schechter 416 

2015; Lu Li, Shi, and Wang 2019; Monteagudo and Firoozabadi 2004; Xia Yang et 417 

al. 2018). However, there was a large discrepancy in terms of realization and 418 

uniformity in dual porosity assumptions. The discrete fracture matrix model has 419 

been developed to reduce the number of nonphysical notions in the dual 420 

continuum approach. The majority of DFMs focused on the unstructured grids to 421 

explicitly represent fractured porous rocks. DFM has several advantages, such as 422 

the realistic simulation of the geometry of fractures, and the effect of each 423 

individual fracture. It is easy to update fracture models in this approach because 424 

they are not constrained with grid-defined geometry of fractures.  In contrast, the 425 

discrete fracture matrix models requires solving discrete systems of equations and 426 
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hence a complex structure and more difficulty in  solving numerically (Moinfar et 427 

al., 2011). In addition, the DFMs will provoke a generous number of refined grids 428 

around the position where the fractures intersect or densely distributed, which 429 

leads to low computational efficiency (Zhao et al., 2018). Therefore, the DFM 430 

approach was further integrated and elaborated to deliver an embedded discrete 431 

fracture model (EDFM) (Lee et al., 2001; Li and Lee, 2008). In general, EDFMs 432 

have straightforward mathematical algorithms for producing grids and will not 433 

produce many refined grids compared to DFMs when the fractures have complex 434 

geometric features. A structured mesh is also employed to discretize the matrix 435 

system in EDFMs and fractures are embedded into the background mesh to be 436 

divided into some fracture grids (Yang et al., 2020). It is also stated that the 437 

EDFMs have high computational efficiency as a result of avoiding the struggle in 438 

creating and recreating high quality conforming mesh (Rao et al., 2019). 439 

Furthermore, different types of fracture network models demonstrate different 440 

strengths in various aspects but might all suffer from some drawbacks, as listed 441 

in Table 1. Table 1 also provides a detailed comparison of distinct fracture network 442 

models. 443 
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Table 1: Comparison between various numerical flow modelling of fractured rocks. 

Numerical 
Methods (models) Input Parameters Advantages Limitations 

Single continuum 
approach 

Material properties of 
matrix. 

• Reduces geometrical complexity. 
• Suitable for large scale of application. 
• Uses deterministic or stochastic models. 
• Productive calculation. 

 
• No consideration of matrix porous media. 
• No fracture and matrix interaction, displacement and rotation. 
• Implicit generation of system. 
• Valid only for using REV (Council 1996;  Lei, Latham, and Tsang 2017). 
• Uniform value of porosity and permeability (Youssef and Alnuaim, 2017). 

Dual continuum 
approach 

Properties of fracture 
and matrix. 

• Simplicity of geometry. 
• Suitable for large scale of application. 
• Two separate continua (matrix and fracture). 
• Uses deterministic or stochastic models. 

 
 

 
• Implicit generation of system (Ashworth and Doster, 2019). 
• Continuity of the fractures. 
• Valid only for using REV (Council 1996; Lei, Latham, and Tsang 2017). 
• Limited to sugar cube representation of fracture domain. 
• Needs fluid flow exchange term between fracture and rock matrix 

(Monteagudo and Firoozabadi, 2004). 

Triple continuum 
approach 

Material properties of 
fractures, matrix 
rocks and vugs. 

• Three separate continua (matrix,   fracture 
and vug or matrix, small fracture and large 
fracture) (Youssef and Alnuaim, 2017). 

• Suitability of use for large scales. 
• Uses deterministic or stochastic models. 

 
• Implicit generation for all systems. 
• Continuity of the fractures. 
•    Valid only for using REV (Council 1996; Lei, Latham, and Tsang 2017). 
• Needs fluid flow exchange term between fracture and rock matrix 

(Monteagudo and Firoozabadi, 2004). 

Discrete fracture 
network model 

Material properties of 
fractures and 
fracture sets. 

• Includes discontinuous fractures. 
• Explicit generation of the effect of each 

individual fractures on fluid flow (Monteagudo 
and Firoozabadi, 2004). 

 
• Fracture is the main store of fluid to flow towards the wellbore. 
• Rock matrix is impermeable. 
• Intensive  computational time (McClure and Horne, 2013). 
• Can found only by stochastic and probabilistic models. 

Discrete fracture 
matrix model 

Material properties of 
fractures, fracture 
sets and matrix 
blocks. 

• Includes discontinuous fractures and matrix 
blocks. 

• No need for fluid exchange term between 
fracture and matrix interface. 

• Explicit generation of the effect of each 
individual fractures on fluid flow (Monteagudo 
and Firoozabadi, 2004). 

 
• Intensive computational time. 
• Conforming unstructured mesh. 
• Losing local mass conservation quality while modelling for multiphase flow 

(Karimi-Fard, Durlofsky, and Aziz 2004). 
• Can found only by stochastic and probabilistic models.  
• Numerical instability of the flow computation (Fleishmann et al., 1999). 

Embedded Discrete 
Fracture Model 

Material properties of 
fractures, fracture 
sets and matrix 
blocks. 

• Includes discontinuous fractures and matrix 
blocks. 

•  Most popular and accurate numerical flow 
modelling (Dong et al., 2019). 

•  Explicit generation of the effect of each 
individual fractures on fluid flow (Monteagudo 
and Firoozabadi, 2004).  

• Conforming structured mesh. 

• Intensive computational time. 
• Losing local mass conservation quality while modelling for multiphase flow 

(Karimi-Fard, Durlofsky, and Aziz 2004). 
• Numerical instability of the flow computation 
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5.0 Geomechanical Characterization 1 

Geomechanical record observations trace back to AD 77, when two men observed 2 

that the level of water in a well corresponded to the ocean tides, and  they recorded 3 

this phenomenon in a book (Zhao 2012). Since then, geomechanical research has 4 

progressed consistently. As petroleum exploration and production significantly 5 

increased, more physical phenomena related to geomechanics have been observed 6 

in the oil and gas reservoirs in the early 20th century. For instance, Goose Creek 7 

oil field was reported to sink into the water in 1918 and this subsidence was caused 8 

by oil and gas extraction (Pratt and Johnson, 1926). Later, the physical hypothesis 9 

was developed by Biots, and other scientists behind various observations in the 10 

petroleum industry.  11 

5.1 Constitutive Relations  12 

The hypothesis of geomechanics, through a series of laboratory experiments, was 13 

first presented by Karl Terzaghi (Terzaghi et al., 1996). In these laboratory 14 

experiments, a constant load was applied laterally for a saturated soil sample. This 15 

hypothesis was depicted by the following equation:  16 

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 𝑐𝑐 𝜕𝜕
2𝑝𝑝
𝜕𝜕𝜕𝜕2

 ……………………………………….. (10) 17 

where 𝑝𝑝 is the pore pressure, 𝑡𝑡 is time, 𝑐𝑐 is the consolidation coefficient and 𝑙𝑙 is 18 

the length of the soil sample.  19 

The concept and definition of effective stress were then defined by Karl Terzaghi, 20 

as he noticed that effective stress, which is the difference between pore pressure 21 
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and externally applied stresses, controls the behaviour of the saturated soil 22 

samples as depicted in Fig. 9 (Zoback, 2007).  23 

𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝜎𝜎′𝑖𝑖,𝑗𝑗 ± 𝛿𝛿𝑖𝑖,𝑗𝑗𝑝𝑝 ……………………………………….. (11) 24 

where 𝜎𝜎𝑖𝑖,𝑗𝑗 is the total stress,  𝜎𝜎′𝑖𝑖,𝑗𝑗 is the effective stress, 𝛿𝛿𝑖𝑖,𝑗𝑗 is the Kronecker delta 25 

in 𝑖𝑖 and 𝑗𝑗 volume respectively. 26 

The + and – signs depend on the direction of externally applied stresses. If the 27 

external stresses are defined as positive, then + should be used (Zhao 2012). 28 

Then, the Biot Willis Coefficient (𝛼𝛼) parameter is identified as the drained and solid 29 

bulk moduli of material (Garg and Nur, 1973; Nur and Simmons, 1969).  30 

𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝜎𝜎′𝑖𝑖,𝑗𝑗 ± 𝛼𝛼 𝛿𝛿𝑖𝑖,𝑗𝑗𝑝𝑝 ……………………………………….. (12) 31 

Biot Willis coefficient can be calculated as in Eq. 13.  32 

𝛼𝛼 = 1 − 𝐾𝐾𝑑𝑑
𝐾𝐾𝑠𝑠

 ……………………………………….. (13) 33 

where 𝐾𝐾𝑑𝑑 is the drained bulk moduli of material and 𝐾𝐾𝑠𝑠 is the solid bulk moduli of 34 

material (Biot 1962). The typical value of 𝛼𝛼 is between 0 and 1. For the compacted 35 

and nearly solid rocks, the value of 𝛼𝛼 is zero when there are no interconnected 36 

pores, and pore pressure has no impact on rock behaviour, such as in quartzite. 37 

In contrast, the value of 𝛼𝛼 is equal to one for highly interconnected pores, and 38 

indicates pore pressure has a maximum influence such as the case of (uncemented 39 

sands) (Zoback, 2007). 40 
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 41 

Fig 9. Demonstration of effective stress and pore pressure (Zoback, 2007). 42 

A theoretical governing equation system for three dimensional (3D) consolidation 43 

was then developed by Biot (1941). The Biot 3D consolidation model is considered 44 

as the basis of computational geomechanics which illustrates pore pressure 45 

variation with solid consolidation. This model was then further expanded to 46 

describe dynamic behaviour in the soil (Biot 1956). Some theories were developed 47 

later to model fluid flow in soil consolidation based on the Biot theory (Green and 48 

Naghdi, 1970). 49 

In summary, the basic constitutive relations mentioned above are used to describe 50 

porous material deformation behaviour under different stress loading. The major 51 

geomechanical constitutive relations are categorised as the elasticity, 52 
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poroelasticity and thermoporoelasticity models that are widely employed in 53 

petroleum reservoir simulation (Zhao 2012).  Due to the complexity of the porous 54 

material behaviour observations under different stress loading, some 55 

simplifications of the geomechanical constitutive relations were made based on 56 

natural geomechanical phenomena. The geomechanical constitutive relations are 57 

expressed as linear and nonlinear mathematical formulation, based on the 58 

requirements of the practical applications (Bemer et al., 2001). The linear 59 

poroelasticity model is widely used in fractured porous rocks to investigate the 60 

mechanical change due to the pressure depletion in the fractured reservoirs 61 

(Bagheri and Settari, 2005; Bai et al., 2019; Garipov et al., 2016; Ren et al., 62 

2018; Sanaee et al., 2013; Sangnimnuan et al., 2018; Yang et al., 2018). Another 63 

significant use of geomechanical constitutive relations is to inform when the 64 

material reaches plasticity behaviour and eventually collapses. In the reservoir 65 

simulation point of view, this phenomenon is significant in recovering oil and gas 66 

when the fracture is the main path to flow in the fractured porous rock reservoirs.  67 

5.2 Geomechanical Modelling of Fractured Rocks 68 

In general, numerical approaches in geomechanical modelling are categorized for 69 

both continuum and discontinuum methods based on their taxonomy and 70 

treatment displacement compatibility (Jing, 2003; Lei et al., 2017). Continuum 71 

and discontinuum numerical approaches have been employed to accelerate 72 

computer power and defeat the simplified analytical hypothesis (Manouchehrian 73 

et al., 2012). The continuum approach has greater efficiency to handle the 74 

enormous problems, while the discontinuum approach can more accurately 75 

integrate complicated fracture networks and fragmentation processes. In addition, 76 
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the discontinuum approaches can handle the continuous deformations, whereas 77 

there are some advanced continuum techniques to consider the discontinuities 78 

which are included contact algorithms and fracture mechanics (Lei et al., 2017). 79 

Several numerical methods and codes have been developed and progressed for 80 

geomechanical modelling, based on their classification for the compatibility in 81 

handling displacements – in classical mechanical problems with little modifications 82 

(Cundall, 1988; Figueiredo et al., 2015; Jing, 2003; Potyondy and Cundall, 2004; 83 

Tham et al., 2004). The preference for using a method for geomechanical 84 

modelling depends on the scale of the problem and the complexity of the fracture 85 

network system. There is a huge number of numerical approaches such as finite 86 

element method (FEM), finite difference method (FDM), boundary element method 87 

for continuum approaches and discrete element method (DEM), and discontinuous 88 

deformation analysis (DDA) for discontinuum approaches (Bobet, 2010). 89 

5.2.1 Continuum Approaches 90 

In the conventional continuum approaches, the rock domain is assumed to be 91 

continuous and solved by finite difference method (FDM), finite element method 92 

(FEM), or boundary element method (BEM) (Bobet, 2010; Pang et al., 2016). The 93 

continuum approach is only applicable when a few or a large number of fractures 94 

exist (Jing, 2003).   95 

The finite difference method (FDM) is based on the discretization of the governing 96 

partial differential equations (PDEs) by following partial derivatives with 97 

differences described at neighbour grid points (Jing and Hudson, 2002).  The set 98 

of linear differential equations are employed by FDM which can be solved by any 99 
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classical methods. The dynamic problems are solved by FDMs, where the 100 

displacements are a function of time and position.  In addition, maximum time 101 

steps are required explicitly to ensure stability while solving dynamic problems 102 

(Bobet, 2010). The localized formulation and its solution are more efficient for 103 

memory storage and handling computer applications. There is no local trial in the 104 

neighbourhood of sampling points to approximate PDE, as is concluded in FEM and 105 

BEM. On the other hand, the conventional FDMs have several shortcomings such 106 

as material heterogeneity, complicated boundary conditions, and inflexibility in 107 

dealing with fractures (Shojaei et al., 2019; Wang, 2020). In general, the FDMs 108 

are incompatible for modelling rock mechanics problems (Nikolić et al., 2016).  109 

The finite element method (FEM) is the most widely employed numerical approach 110 

for the analysis of the continuous or quasi continuous media across the science 111 

and engineering fields. The term of “Finite Elements” was firstly introduced by 112 

Clough (1960). The continuum is discretised into the small-scale aspects in the 113 

FEMs. Finite element method (FEM) has proved to be successful in distinct 114 

applications for solving geomechanical problems numerically. The indigenous 115 

governing equations of geomechanics can convey the various formulations, and 116 

the distinct formulation can be expanded, based on the finite element method. 117 

The benefit of this approach is that the result is guaranteed to be the exact solution 118 

as a result of the discrepancy formulation, which is mathematically identical to the 119 

original equation (Zhao 2012). In general, there are well-established numerical 120 

methods for solving geomechanical problems. The finite element method (FEM) is 121 

the most common and widely implemented due to its flexibility in handling material 122 

characterisations of heterogeneity, nonlinearity, and boundary conditions. 123 
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However, it is computationally challenging for dynamic related problems (Bobet, 124 

2010).  Compared to the FDM, the FEM covers enough flexibility in dealing with 125 

fractures, complicated boundary conditions, the treatment of the material 126 

heterogeneity, nonlinear deformation, in situ stress, and gravity (Jing and Hudson, 127 

2002). The most significant shortcoming factors are the treatment of the fractures 128 

and fracture growth in the implantation of the FEM for the rock mechanics 129 

problems. The fracture elements cannot be torn in the general continuum 130 

hypothesis during the FEM implementations. Therefore, the FEM suffers from the 131 

treatment of block rotation, entire detachment, and large-scale fracture opening 132 

(Manouchehrian et al., 2012). The FEM is disabled while the simulation process of 133 

the fracture growth due to the required small element sizes, fracture growth 134 

continuous re-meshing, and convenient fracture path and element edges. This 135 

disadvantage makes the FEM less efficient than the boundary element method 136 

(BEM) in dealing with fracture problems (Datas, 2020; Jing, 2003) 137 

The boundaries of the continuum are discretised only in the boundary element 138 

method (BEM), whereas the complete domain needs to be discretized in the FDM 139 

and FEM methods (Jing and Hudson, 2002; Manouchehrian et al., 2012). In 140 

addition, there is no artificial boundaries are required where the common problems 141 

in geomechanics are the extended medium to infinity, while the artificial 142 

boundaries are required in both FDM and FEM methods (Fahmy, 2021; Mesquita 143 

and Pavanello, 2005). BEMs are especially convenient to address the static 144 

continuum problems with small boundary to volume ratios, with stress and elastic 145 

behaviour or displacements implemented to the boundaries (Gao, 2003). Also, the 146 

BEM has much simpler mesh generation and input data preparation with the 147 
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reduction of the model dimension by one compared with the FDM and FEM (Jing, 148 

2003). Furthermore, the continuous domain inside is applied as a solution, unlike 149 

the discontinuous point-wise solution is determined using FDM and FEM. 150 

Nonetheless, the BEM is not so sufficient in dealing with material heterogeneity, 151 

compared to the FEM because BEM cannot involve as many subdomains as 152 

elements in the FEM. Also, the BEM is not powerful in simulating the nonlinear 153 

material behaviour compared to the FEM such as in plasticity and damage growth 154 

process (Bobet, 2010; Jing and Hudson, 2002). In general, the BEM is more 155 

applicable for solving problems of fracturing inhomogeneous and linearly elastic 156 

bodies (Kabele et al., 1999). Fig. 10 presents the discretization concepts of finite 157 

element methods (FEM), boundary element method (BEM), and finite difference 158 

method for fractured systems. 159 

 160 

Fig. 10. Illustration of the discretization concepts as (a) shows the representation of the  fractured rock mass (b) shows the 161 
finite element method (FEM) concept, (c) represents the boundary element method (BEM) concept, and (d) demonstrates 162 

the discrete element method (DEM) concept (After Jing, 2003). 163 
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5.2.1 Discontinuum Approaches 164 

The discontinuum approach consists of the discrete/distinct element method 165 

(DEM) with an explicit solution form and distinct deformation analysis (DDA) with 166 

an implicit solution scheme. The discontinuum modelling represents the fractured 167 

rock as an assemblage of blocks bounded by a number of intersecting 168 

discontinuities (Lei et al., 2017; Lisjak and Grasselli, 2014). The mechanical 169 

computation of the fractured geometry can be treated as rigid bodies or 170 

deformable subdomains.  171 

The distinct element method (DEM) was originally identified by Cundall (1988). 172 

The DEM computation procedures are basically involved (1) the contact between 173 

blocks and the contact forces between distinct bodies that care computed based 174 

on their relative problems, (2) Newton’s second law to calculate acceleration for 175 

each distinct element, (3) the velocity and displacement are further developed by 176 

time integration with new positions obtained (Hatzor, 2008). The DEM is 177 

implemented under an explicit time scheme to solve the problems iteratively until 178 

the complement of the block interaction process simulation. Despite the possibility 179 

of using a DEM code to model the continuum, the main advantage of the DEM is 180 

to model the discontinuities through specific constitutive relations (André et al., 181 

2012). Nonetheless, the proper simulation of the continuous geomechanical 182 

materials is the main difficulty for DEM.  Although the simulations of the 183 

geomechanical problems are simple and accurate, they might need too much 184 

computational time for the current computational technology (Ferretti, 2020). 185 

Unlike continuous FEM, the DEM can handle the stress-strain characteristics of 186 
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intact rocks, the shearing/opening of preexisting fractures, the interaction 187 

between multiple fractures and blocks (Lei et al., 2017). 188 

The discontinuous deformation analysis is developed to capture the deformation 189 

and motion of multi block systems by Shi and Goodman (1985, 1989). Although 190 

the discretization method is quite the same for both DEM and DDA, the basic 191 

differences between DEM and DDA lies to the computational framework. The DEM 192 

employs explicit solution scheme to deal with each blocks separately, whereas the 193 

DDA applies the implicit solution form to calculate the displacement field based on 194 

a minimization of the whole blocky domain of the potential energy.  Compared to 195 

the DEM approach, the DDA approach has a significant advantage for fast 196 

convergence with unconditional numerical stability that needs a time step smaller 197 

than the critical threshold (Jing, 2003).  198 

It is worth mentioning that several efforts have done to combine the finite element 199 

analysis of stress/deformation evolution with the discrete element solutions of 200 

transient dynamics, contact detection, and interactions in terms of the hybrid finite 201 

element- discrete element method (FDEM) (An et al., 2021; Knight et al., 2020; 202 

A Lisjak and Grasselli, 2014; Munjiza, 2004). In this discontinuum solution form, 203 

the FEM approach is employed to capture the internal stress field of each discrete 204 

matrix block while the DEM algorithm is used to calculate the translation, rotation, 205 

and interaction of multiple rock blocks (Munjiza, 2004). Fig. 11(b) shows the 206 

process of discretization for the solid bodies into a number of elements that deform 207 

in accordance with the prescribed boundary and loading conditions using the FEM. 208 

On the other hand, the original of the DEM deals with a large number of rigid 209 
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particles that interact with each other through contact and cohesion laws as shown 210 

in Fig. 11(a). When these techniques of FEM and DEM are coupled, the solid bodies 211 

are modeled as an assemblage of deformable particles that are bonded with each 212 

other as depicted in Fig. 11(c). A series of cohesion points are employed to 213 

represent the particle bonds numerically that is located along the boundaries of 214 

the deformable particles (Fiore et al., 2013).  215 

 216 

Fig. 11. Illustration of the main feature of the combined finite element method and distinct element method (Fiore et al., 217 
2013).  218 

 219 

 220 

 221 

 222 

 223 

 224 
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6.0 Coupled Geomechanics and Fluid Flow  225 

The dynamic coupling of geomechanics and fluid flow is of interest in many areas 226 

of science and engineering (Minkoff et al., 2003). Coupling geomechanics and fluid 227 

flow have received a great deal of attention in civil and geotechnical engineering 228 

for many years (Majorana et al., 2015; McCartney et al., 2016). As a result of the 229 

shrinkage and extension of structural deformation, coupled structural mechanics 230 

and heat flow also have been investigated in structural science and mechanical 231 

engineering (Baran et al., 2017).  232 

In the petroleum engineering discipline, coupled fluid flow and geomechanical 233 

interactions can play a major role in dictating the behaviour of fluid flow in 234 

fractures and tight rock reservoirs. The characterisation of reservoir geomechanics 235 

can play a critical role in enhanced oil recovery (Chiaramonte et al., 2011; Guy et 236 

al., 2012), subsidence, stability of wells (Fjær et al., 2008), stress-dependent 237 

porosity, the permeability of rock matrix and stress-dependent fracture aperture 238 

change (Cao et al., 2019; Mohiuddin et al., 2000; Sanaee et al., 2012) in fractured 239 

and unconventional reservoirs. Wellbore stability problems have been the subject 240 

of several studies due to the vicinity changes of the stress and strain around the 241 

wellbore (Zoback, 2007). Reservoir compaction may lead to serious damage in the 242 

wellbore during surface subsidence as a result of reservoir pressure depletion, but 243 

can also increase oil recovery and the slow decline in reservoir pressure while 244 

production takes place (Muggeridge et al., 2014; Pettersen, 2010). 245 
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6.1 Coupling Schemes 246 

Several coupling schemes have been used to model geomechanics and fluid flow 247 

interactions (Ahmed and Al-Jawad, 2020; Curnow and Tutuncu, 2015; Doster and 248 

Nordbotten, 2015; Jing, 2003; Kim et al., 2013; Lavrov, 2017; Longuemare et al., 249 

2002; Rutqvist and Stephansson, 2003; Sanaee et al., 2013; Weishaupt et al., 250 

2019; Xiong et al., 2011; Zhao et al., 2017). Coupling methods are generally 251 

divided into two different categories: volume coupling and coupling through flow 252 

properties (Settari and Mourits, 1998). Volume coupling requires the same pore 253 

volume changes in reservoir geomechanics and flow models which are the 254 

functions of stress, pressure, and temperature (Lee and Schechter 2015). In the 255 

coupling through flow properties, permeability and relative permeability are varied 256 

as a result of changes in stress and displacements (Settari and Mourits, 1998).  257 

Furthermore, methods of coupling between geomechanics (solid deformation) and 258 

reservoir flow, in mathematical terms, are generally categorized into four types: 259 

one-way coupling, two-way coupling, iteratively coupling and fully coupling (Tran 260 

et al., 2004).  261 

1. One-way coupling: In one-way coupling schemes, two separate essential sets 262 

of equations are solved independently for fluid flow and geomechanical 263 

deformation over the same time period (Minkoff et al., 2003). This type of 264 

coupling is also called explicit coupling because the data is merely conveyed in 265 

a one-way direction from a fluid flow simulator to a geomechanical model. This 266 

means that changes in pore pressure lead to changes in stress, strains, and 267 

displacements, but changes in stress and strain do not impact the pore 268 
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pressure changes (Tran et al., 2004). Although there is the weakest link 269 

between geomechanical deformation and fluid flow (Tran et al., 2004), one-270 

way coupling has provided valuable insight into a physical situation, and it is 271 

obviously desirable for fluid flow alone, where the mechanical situation is 272 

important (Minkoff et al., 2003). For instance, a one-way coupling experiment 273 

was employed successfully that involved 200 fluid flow simulations to predict 274 

well failure rates in the Belridge Field, California (Fredrich et al., 2000, 1996). 275 

Although the numerical modelling of one-way coupling is simple and does not 276 

require the magnificent development for the modelling of field scale, the one-277 

way coupling is less desirable from the physical point of view compared to the 278 

other types of coupling (Fredrich et al., 2000).  279 

2. Two-way coupling: The fundamental concept of two-way coupling is an 280 

extension of one-way coupling and sometimes called loose coupling or pseudo-281 

coupling (Chin et al., 2002; Tran et al., 2004).  In two-way coupling, reservoir 282 

geomechanics and fluid flow simulators are run sequentially (Jin et al., 2000) 283 

based on two distinct sets of equations that are solved independently, and the 284 

information is conveyed in both directions between the two simulators (Minkoff 285 

et al., 2003). Two-way coupling is relatively as simple as one-way coupling, 286 

but its main advantage is the fact that it captures much more non-linear physics 287 

between geomechanical and reservoir flow simulators, very close to fully 288 

coupling (Dubinya et al., 2015; Kim et al., 2012). The primary drawback of 289 

explicit coupled schemes (one-way and two-way coupling) is that the explicit 290 

nature of the coupling can enforce time step restrictions on runs because of 291 



   39 
 

concerns about stability and accuracy (Dean et al., 2006). Fig.12 defines how 292 

distinct numerical coupling schemes work.  293 

 294 

Fig. 12. Representation of various types of simulation coupling schemes. 295 

3. Iterative coupling: In this type of coupling, either reservoir flow variables or 296 

geomechanics variables are solved first, and then the other variables are solved 297 

sequentially at each time step iteration (Lee and Schechter 2015; Tran, Settari, 298 

and Nghiem 2004).  The governing equations of the flow simulator and 299 

reservoir geomechanics model subsystems are decomposed by a coupled 300 

system of equations. While the reservoir flow simulator and geomechanics 301 

model solve their governing subsystems of equations separately, the coupled 302 

system of equations is solved iteratively using data variables between both 303 

subsystems as shown on the lower part of Fig.13, through a data exchange 304 

interface (Chin et al., 2002). The main advantages of iterative coupling is the 305 

privilege that they are easy to implement between an existing reservoir flow 306 
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simulator and geomechanics model through a data exchange interface (Mikelić 307 

et al., 2014). The primary shortcoming to the iteratively coupling scheme is 308 

the display of the first-order convergence rate calculation in the nonlinear 309 

iterations and then may require a huge number of iterations for complex issues 310 

(Cervera et al., 1996; Dean et al., 2006).    311 

4. Fully coupling: the governing equations of reservoir flow variables (such as 312 

saturation, pressure, and temperature) and the geomechanical response ( such 313 

as displacements) are solved simultaneously (Charoenwongsa et al., 2010; 314 

Giani et al., 2018; Pan et al., 2009, 2007; Settari and Walters, 2001; Stone et 315 

al., 2000). This coupling scheme is sometimes referred to as an implicit 316 

coupling, because the whole system is calculated simultaneously and can be 317 

discretized on one grid domain (Tran et al., 2004), as depicted on the upper 318 

part of Fig. 13. The advantage of a fully coupling approach is internal 319 

consistency and the accuracy of the solution (Giani et al. 2018; Yang, Moridis, 320 

and Blasingame 2014). Another advantage of the fully coupling approach is the 321 

stability and also conservation of the second-order convergence for non-linear 322 

iterations. However, the coupling of flow and geomechanics conservative 323 

relations are complicated to adopt and modelling of the fully coupling 324 

multiphase flow simulator is extraordinarily difficult to models of inelastic 325 

mechanical deformation and nonlinear (Minkoff et al., 2003; Osorio and Chen, 326 

1999). In addition, the fully coupling approach requires more code 327 

development techniques, becomes slower than other approaches, and requires 328 

utilisation of iterative methods in some situations (Rocca, 2009). 329 
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 330 

Fig. 13. Schematics of fully and iterative coupling methods (Kim, 2010). 331 

6.2 Numerical Discretization 332 

Discretization is used to transfer the mathematical model into an algebraic 333 

equation system or numerical model (Liu, 2018). The main principle of 334 

discretization is to divide the whole domain of the reservoir into a number of 335 

discrete subdomains (elements and control volumes), each of which is represented 336 

by a discrete number of points (grids, nodes) (Nordbotten et al., 2019). 337 

Subsequently, the objectives of discretization is to convert partial differential 338 

equations into a set of algebraic equations which are valid at each of these discrete 339 

points (grid points, nodes), followed by solving the system of the algebraic 340 

equation to determine the values of the dependent variables at each of the discrete 341 

points that cannot be solved analytically (BinZubair et al., 2010). 342 

Several distinct temporal and spatial discretization methods are employed in the 343 

literature for coupling reservoir geomechanics and fluid flow in fractured porous 344 

media. The first order differential equation method is applied for temporal 345 

discretization, while various distinct methods are employed for spatial 346 
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discretization, such as the finite difference method (FDM), finite element method 347 

(FEM), finite volume method (FVM), and so on.  348 

a) Review of Reservoir Geomechanics Discretization 349 

In fractured geomechanical modelling, the finite element methods are 350 

widely employed by nodal enrichment for the discontinuous displacement 351 

modes (Ren et al., 2018). Although finite difference methods are often 352 

applied to special cases of one-dimensional problems, such as the simplified 353 

geometries of crystal layers, finite element methods are more applicable to 354 

a multidimensional differential equation with complicated geometries 355 

(Saikia et al., 2018). To capture displacement discontinuity jumps in the 356 

fractured porous rocks, finite element methods are enhanced with some 357 

local degree of freedom, the outcome of which is referred to as the 358 

embedded finite element method (EFEM). Alternatively, the hypothesis of 359 

partition unity is employed in the extended finite element method (XFEM), 360 

with nodal enrichment used to capture the various feature of fractured 361 

porous media discontinuity (Armero and Linder, 2008). Oliver, Huespe, and 362 

Sánchez (2006) (Oliver et al., 2006) compared EFEM and XFEM, with an 363 

emphasis on accuracy and computational cost. However, it is demonstrated 364 

that both approaches present the same quantitative and qualitative results 365 

for enough refined meshes. In general, EFEM showed higher accuracy and 366 

relatively lower cost than XFEM (Oliver et al., 2006). 367 

b) Review of Fluid Flow Discretization 368 
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Extended finite element methods (XFEM) are also used to solve the single 369 

and two-phase flow in the fractured reservoirs  and is less recommended to 370 

model coupled fluid flow and geomechanics compared to other methods 371 

(Boon et al., 2018; Fumagalli and Scotti, 2013). Despite their simplicity, 372 

finite difference methods (FDM) are also applied to solve fluid flow in 373 

fractured reservoirs with the aid of other discretization methods (Antonietti 374 

et al., 2016). In addition,  the finite volume methods are used to capture 375 

the degree of freedom of more physical unknowns that may exist in the 376 

centre of the matrix blocks, and also to capture fracture discontinuities for 377 

multiphase flow, based on the discrete fracture matrix models (Stefansson 378 

et al., 2018). The main advantages of finite volume methods are that they 379 

preserve the locality of mass conservation as well as computational 380 

efficiency and flexibility (Ahn, 2019; Profito et al., 2015; X. Yang et al., 381 

2020).  382 

c) Review of Coupled Reservoir Geomechanics and Fluid Flow Discretization 383 

Extensive amount of research has focused on implementing various 384 

discretization schemes based on the length scale of the problems and 385 

coupling schemes (Chin et al., 2002; Duran et al., 2020; Garipov et al., 386 

2016; Garipov and Hui, 2018; Jalali and Dusseault, 2012; Minkoff et al., 387 

2003) as listed in Table 2. There is a lack of physical control in the fracture 388 

subdomain due to the use of the Darcy flow equation. Researchers (Ren et 389 

al., 2018) also highlighted the coupling between reservoir geomechanics 390 

and two-phase flow using the extended element method (XFEM) and finite 391 
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volume (FVM) discretization based on the discrete fracture matrix model. It 392 

is noted that no literature has been published on coupling reservoir 393 

geomechanics using FEM, and multiphase flow using FVM, for non-Darcy 394 

flow equations in the fracture subdomain though.  395 
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Table 2: Comparison of distinct coupling and discretization schemes. 396 

Type of Coupling Fluid 
Phases 

Discretization Method 

Flow Domain 

Flow Geomechanics 

Two-way coupling 
(Minkoff et al., 

2003) 
Two Phase FEM FEM Full Domain 

Fully coupling 
(Garipov et al., 

2016) 
Single Phase FVM FEM Full Domain 

Fully Coupling 
(Yang, Moridis, and 
Blasingame 2014) 

Two Phase FEM FEM Full domain 

Iterative Coupling 
(Chin et al., 2002) Two Phase XFEM XFEM Full Domain 

Iterative Coupling 
(Duran et al., 2020) Single Phase FEM FEM Full Domain 

397 
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7.0 Concluding Remarks  398 

In this review, the most recent mathematical, numerical, and discretization 399 

approaches for reservoir geomechanics and fluid flow are investigated. Various 400 

types of coupling schemes are described and compared, related to their 401 

application, computational efficiency, and cost.  The available literature has shown, 402 

in terms of modelling and simulation, there is mature research in the field for the 403 

single-phase flow in fractured porous media. The remaining challenges for fluid 404 

flow are the suitable selection of the conceptual models for the flow governing 405 

equations, and the necessity of the upscaling procedure and discretization in the 406 

fracture network. This is particularly important in capturing the fluid properties in 407 

the fractures and the surrounded porous matrix. In contrast, if the local fracture 408 

networks play as the dominant flow path in the area of interest, the fractures must 409 

be represented explicitly; in such cases, DFN and DFM are the most preferable 410 

methods to capture the flow characteristics in the fracture and the surrounded 411 

porous media. The dual continuum approach is conceptually simpler and 412 

computationally much less demanding than the DFN and DFM approaches (Kumar 413 

et al., 2016). In addition, modelling purposes and the quality of the data in the 414 

specific application are major influencing parameters used to select the proper 415 

modelling schemes.416 
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Multiphase flow occasionally occurs in many applications including the fractured 417 

porous media. This complex type of flow is governed by many physical parameters, 418 

such as saturation, wettability, relative permeability, and capillary pressure, and 419 

subsequently causes non-linearly coupled flow. The experimental and numerical 420 

multiphase flow data in fractured porous media context is exceptionally sparse for 421 

the constitutive relations of relative permeability and capillary pressure, compared 422 

to the non-fractured porous media. Nonetheless, significant signs of progress have 423 

been achieved to model multiphase flow in the fractured porous media (Helmig et 424 

al., 2013; Sabti et al., 2016) since the first multiphase experimental (Kazemi and 425 

Merrill, 1979) and numerical modelling work (Wu 2016). In addition, as a result of 426 

having distinct relative permeability and capillary pressure in the constitutive 427 

relations at the fracture and matrix interface in the fractured porous media, these 428 

strong heterogeneities in the capillary barriers and resistance of flow leads to the 429 

main numerical challenges (Antonietti et al., 2016; Brenner et al., 2018). Despite 430 

several studies, modelling of multiphase flow is still an active area of research in 431 

fractured porous media, in terms of the conceptual and constitutive relations of 432 

multiphase flow, conventional mathematics and numerical representation of 433 

multiphase Darcy law in fractured rocks (Berre et al., 2019).  434 

There is a strong relationship between fractured flow patterns and fracture 435 

structure itself. As a result of fluid flow processes, the fracture characteristic 436 

configurations change, and then the fracture deformations affect the fluid flow 437 

indirectly in the fractured porous media.  Therefore, several kinds of coupling 438 

schemes have been used to couple reservoir geomechanics characteristics and 439 

fluid flow in the fractured porous media (Jiang and Yang, 2018; Rutqvist and 440 
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Stephansson, 2003; Xue et al., 2014). One-way coupling is widely used for 441 

subsidence analysis, because it is more straight forward and less expensive, while 442 

it has a lower degree of coupling compared to other coupling methods (Angus et 443 

al., 2015; Giani et al., 2018). Two-way coupling is far more appropriate than one-444 

way coupling to predict flow behaviour in fractured reservoirs (Kim et al. 2012). 445 

Despite a high resolution of results and convergence, a fully coupled method 446 

requires a unified hydromechanical simulator to provide sufficient definition for 447 

both reservoir geomechanics and fluid flow compared to iterative coupling scheme 448 

(Ashworth and Doster, 2019; Zareidarmiyan et al., 2018). In addition, the fully 449 

coupled scheme requires enormous software development efforts and large 450 

computational costs (Kim et al., 2013) whereas the iterative coupling scheme 451 

combines the conventional reservoir geomechanics and fluid flow simulators 452 

through a data exchange interface (Chin et al., 2002). Despite several research 453 

efforts (Ashworth and Doster, 2019; Martin et al., 2017; Weishaupt et al., 2019), 454 

coupled geomechanics and multiphase flow is still a challenging issue related to 455 

mathematical, numerical models and discretization schemes to capture the 456 

hydrodynamic behaviours, such as fracture deformation and fluid flow interaction 457 

at fracture matrix interface in naturally fractured reservoirs. 458 

 459 

 460 

 461 
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Nomenclature and units 462 

𝑃𝑃 = Effective confining pressure, 𝑀𝑀𝑃𝑃𝑎𝑎 = 𝑁𝑁
𝑚𝑚2 463 

𝑝𝑝 = Pore pressure, 𝑀𝑀𝑃𝑃𝑎𝑎 464 

𝜎𝜎𝑛𝑛 = Effective normal stress, 𝑀𝑀𝑃𝑃𝑎𝑎 465 

𝐾𝐾 = Bulk modulus of the material, 𝑀𝑀𝑃𝑃𝑎𝑎 466 

𝜀𝜀𝑣𝑣 = Volumetric strain 467 

𝑢𝑢 = Velocity, 𝑚𝑚 𝑠𝑠⁄  468 

𝐺𝐺 = Shear modulus of the material, 𝐺𝐺𝑃𝑃𝑎𝑎 469 

𝑣𝑣 = Darcy velocity, 𝑚𝑚 𝑠𝑠⁄   470 

𝑘𝑘 = Effective permeability of the rock, 𝑚𝑚2 471 

𝜇𝜇 = Viscosity of the fluid, 𝑃𝑃𝑎𝑎. 𝑠𝑠 472 

𝜌𝜌 = Density of the fluid, 𝑘𝑘𝜌𝜌 𝑚𝑚3⁄  473 

𝜌𝜌 = gravitational acceleration, 𝑚𝑚 𝑠𝑠2⁄  474 

𝐷𝐷 = Depth of the datum, 𝑚𝑚 475 

𝜌𝜌 = Porosity of the rock, 𝑓𝑓𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 476 

𝑞𝑞 = Source term, 𝑘𝑘𝜌𝜌 𝑚𝑚2⁄ . 𝑠𝑠 477 

𝑘𝑘𝑎𝑎= Absolute permeability, 𝑚𝑚2 478 

𝑘𝑘𝑟𝑟= Relative permeability, 𝑓𝑓𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 479 

𝛽𝛽 = Subscript of the phases (𝛽𝛽= g for gas, 𝛽𝛽= w for water, and 𝛽𝛽=o for oil) 480 

𝑆𝑆 = Saturation of the fluid, 𝑓𝑓𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 481 

𝑃𝑃𝑐𝑐= Capillary pressure, 𝑃𝑃𝑎𝑎 482 

𝑃𝑃𝑤𝑤= Pressure of wetting fluid, 𝑃𝑃𝑎𝑎  483 

𝑃𝑃𝑛𝑛= Pressure of non-wetting fluid, 𝑃𝑃𝑎𝑎 484 

𝜆𝜆 = Mobility of the fluid, 𝑎𝑎𝑖𝑖𝑚𝑚𝑑𝑑𝑎𝑎𝑠𝑠𝑖𝑖𝑓𝑓𝑎𝑎𝑙𝑙𝑑𝑑𝑠𝑠𝑠𝑠 485 

𝑐𝑐 = Consolidation coefficient 486 
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𝑙𝑙 = Length of the sample, 𝑚𝑚 487 

𝜎𝜎 = Total stress, 𝑀𝑀𝑃𝑃𝑎𝑎 488 

𝜎𝜎′ = Effective stress, 𝑀𝑀𝑃𝑃𝑎𝑎 489 

𝛿𝛿 = Kronecker delta  490 

𝛼𝛼 = Biot Willis Coefficient, 𝑓𝑓𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎  491 

𝐾𝐾𝑑𝑑 = Drained bulk moduli of the material, 𝑀𝑀𝑃𝑃𝑎𝑎 492 

𝐾𝐾𝑠𝑠 = Solid bulk moduli of the material, 𝑀𝑀𝑃𝑃𝑎𝑎 493 

 494 
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