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Abstract: Application of scale inhibitors in oil and gas production is aimed at mitigating scale
blockage during production. Many experimental, mathematical, and numerical simulation modeling
works have been carried out to evaluate behavior, performance, and interaction of the scale inhibitor
chemicals within porous media in relation to their efficiency in solving scale problem. However,
the mechanisms underpinning scale inhibitors performance are not well published. Some research
works have shown theoretically that not all scale inhibitors pumped into the formation adsorb onto
the formation rock. Some of the inhibitors may adsorb on produced loose sand grains or colloidal
fine sand particles which float and flow within the pore spaces along with the scale inhibitor mostly
in unconsolidated reservoirs This paper provides a review of research work on the effect of produced
loose sand or colloidal fine particles flow on polyphosphonates and polyphosphinopolymer scale
inhibitors performances during crude production.

Keywords: adsorption; scale inhibitors; fine sands; colloids; reservoir

1. Introduction

The mechanism underpinning sand particles and fines interactions with scale inhibitor
performance is difficult to understand. Sand production from unconsolidated formation
reservoir is a very challenging problem as it ends the production life of a reservoir, and as
well restricts the production flow rate [1].

Sand production occurs when the stress on the formation exceeds the formation
strength and results in rock failure due to tectonic activities, overburden pressure, increase
in the production rate of reservoir fluid due to a large pressure drawdown between the
reservoir pressure and wellbore flowing pressure, stress induced during drilling, and also
producing fluid drag force [2].

In addition, the acidizing process reduces the compressive strength of the formation
rock to weaken the consolidated formation for sand fines production to occur [3,4]. Se-
lecting an appropriate technique for preventing formation sand production depends on
different reservoir parameters, such as the sand prediction technique [1]. Others are resin
and hydrogel chemical injection [5].

Furthermore, injection of surface active media such as chemical surfactants aimed at
lowering surface energy (interfacial tension; IFT or surface tension; SFT) may affect the
mechanical behavior of porous media by weakening the reservoir fabric, thereby causing
loose sand fines occurrence through adsorption phenomenon [6,7].

Although this is dependent on the reservoir geology during the sedimentation process
and type of injected surface-active chemicals surfactants, loose rock fine grains can affect
reservoir rock permeability performance. Prempeh et al. [8] examined the effect of aqueous
salinity water with different ionic strengths and fresh water on fines migration in the
laboratory using sand-packs that contain different percentage of kaolinite and residual oil.
They suggested that loose natural reservoir kaolinite fines can occur under decreasing water
salinity, and their migration and retention within the porous media affect rock permeability.
This revealed that low salinity water injection could promote disintegration of rock fabrics,
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fine grains formation, and scale deposition. Injection of seawater into oilfield reservoirs to
maintain reservoir pressure and improve secondary recovery is a well-established oil and
gas recovery technique in mature field, but one of the risks associated with such technology
is deposition of mineral scales due to reactions of two incompatible waters [9].

According to Merdhah and Yassin [9], two incompressible solution waters containing
dissolved materials with higher concentrations than their equilibrium concentration, such
as seawater, with high concentration of polyatomic anion sulfate (SO4

−2) and formation
waters with high concentrations of calcium ion (Ca+2), barium ion (Ba+2), and strontium ion
(Sr+2) will assume supersaturation condition and form scale blockage. They also reported
that supersaturation can be generated in a single water by changing the temperature and
pressure (T-P) conditions.

This shows that concentrations of injected water and reservoir water with different
ionic reactions and T-P variation are critical to scale formation scenario. Hasson et al. [10],
in this regard, identified water containing ions of sparingly soluble salts such as CaCO3,
CaSO4, Ca3(PO4)2, Mg(OH)2, and silica as responsible ions for scale deposition. Scale could
plug the pores of the formation and results in injectivity decline of fluids into the reservoir
with time [11].

Nevertheless, scale inhibitors are one of the recent technologies used to mitigate water-
insoluble scale during oil and gas production [12–17]. Scale inhibitors are chemicals which
delay, reduce, or prevent scale formation when added in small amounts to normally scaling
water [9]. Bezemer and Bauer [18] listed common classes of inhibitor chemicals as inor-
ganic phosphates, organophosphorus compounds, and organic polymers, which include
polyphosphonocarboxylic acid (PCA) and diethylenetriaminepenta (methylenephosphonic
acid) (ETPMP). Hydrochloric acid (HCl) may be the most cost-effective treatment to remove
calcium carbonate, but corrosion control, system compatibility, and inhibitor adsorption
may all be difficult in a combined treatment [9].

Many experimental, mathematical, and numerical simulation modeling works [19–21]
have been carried out to evaluate behavior, performance, and interaction of the scale
inhibitor chemicals within porous media in relation to their efficiency in solving scale
formation problems. These studies have focused only on the evaluation behavior, perfor-
mance, and interaction of scale inhibitor chemicals in relation to scales mitigation efficiency
within porous media. Squeeze treatment designed for steady injection of inhibitor is also
published [22].

The success of a squeeze treatment is determined by the length of time in which
inhibitor is released back into the produced fluid at minimum inhibitor concentrations
(MIC) and this time is dictated by the retention/release mechanism of inhibitor in the
reservoir [23,24]. In adsorption squeeze treatments, the amount of inhibitor adsorbed,
and the lifetimes are dependent on the properties and surface chemistry of the reservoir
system [15].

Squeeze treatment is governed by adsorption, desorption, precipitation, and dissolu-
tion (Phase separation) interactions between the scale inhibitor and formation rock [25].
Adsorption phenomenon can be best described using adsorption isotherm r(c) and may be
a function of several variables such as concentration of inhibitor [c], calcium concentration
[Ca2+], pH, and temperature [26]. Adsorption of scale inhibitor is thought to occur through
electrostatic and Vander Waals interaction between the inhibitor and formation miner-
als [27]. In carbonate formation where the unconventional squeeze treatment method is
used, the majority of the acid phosphonate inhibitor is precipitated near the formation face.
The formation of Ca-phosphonate resulting from the reaction of acid with carbonate in the
formation proceeds very rapidly and this has a shortcoming in a carbonate formation [28].
The unprecipitated inhibitors occurring during these unsuccessful treatments are quickly
swept from the formation because they are not retained [23], the result of this being shorter
treatment lifetimes and inefficient use of inhibitor, demand for subsequent treatments, lost
production time, and significant cost.
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However, the mechanism of inhibitor-sand interaction and their performance in
sand producing reservoir is not well published, and it is difficult to understand. This
represent a gap in knowledge which can be addressed by using experimental and numerical
methods. The experimental method may involve the use of engineered sand pack flooding
investigation process with polyphosphonate and polyphosphinopolymer scale inhibitors,
and lab-based brine and low salinity aqueous water, and validation of lab results with the
numerical method.

2. Fine Sand Production in Formations

Fine sand production in oil and gas wells has been an issue of concern (Figure 1)
because it has caused operational and economic problems in the oil and gas industry. The
main issues in respect to fine sand production are the potential risk of well failure, limited
productivity, erosion of facilities, and increased operational expense [29]. Figure 1 shows
the production separator that was shut down because of ingress of formation fine sands.

Figure 1. Illustration of separated sand fines from the produced hydrocarbon within a two-phase
horizontal separator. Extracted and modified after [29].

Fine sand production is currently a subject of extensive study in the oil and gas
industry. The study of sand production has focused on prediction of failure of sand and
subsequent production, estimation of produced sand volume and rate, and measures for
controlling or removing sand in the well [30]. Studies to evaluate the effect of fine sand on
corrosion inhibitor activity using rotating cylinder flow (RCF) and flow loop for comparison
have shown that the inhibitor was capable of adsorbing on sand thereby canceling out its
activity [31].

However, virtually little or no knowledge exists on how fine sand production affects
the effectiveness of common types of scale inhibitors used in the sand-producing reservoirs
for flow assurance purposes. Figure 2 shows the arrangement of reservoir outcrop with very
much sorted (A) with no amounts of loose clay/fine sand particles within the formation
pores, and a very poorly sorted outcrop (B) with significant amounts of loose clay/fine
sand particles within the formation pores.
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Figure 2. Pore arrangement of a very well sorted reservoir (A) with no clay/fine sand contents and a
very poorly sorted reservoir (B) with much clay/fine sand contents. Modified after [32].

The effective performance of chemical inhibitors in rock sample B is not well known
and has not been well reported. The in-depth understanding of loose sand fines effect on
chemical inhibitors can be used to design and optimize scale inhibitor squeeze applications
especially in reservoirs or wells with the potential to produce sand.

2.1. Migration of Colloidal Fines

Several physical and chemical processes accompany the squeezing and adsorption
of scale inhibitors onto formations, thereby affecting their desired performance. The
migrations of colloidal particles, which are present in natural rock porous media and
unconsolidated porous media such as packed beds, is considered to facilitate or hinder
the mobility of other colloids in porous media [33]. It has been reported that the existence
of mobile colloidal fines under certain conditions can serve as adsorbents and potentially
relevant transport mechanism for materials [34]. The detachment of an adsorbed particle
results from a balance between external forces exerted on it. These forces are adhesion
or physicochemical interactions, drag and lift forces. Furthermore, physicochemical in-
teractions between particles or a particle and grain surface include Van der Waals and
electrical double layer forces [35]. This physicochemical interaction could also account
for the continued adsorption of the solute on loose sand particles. However, it has been
reported that particle release is caused by electrostatic repulsion which is enhanced by low
ionic strength and not flow-induced shear forces [36]. Solutes such as polymers, surfactants,
and resins adsorbed on the particle surface affects the colloidal suspension stability by
increasing steric interaction in nonporous media with tendencies to alter apparent surface
charge on colloidal particles [37].

Fielder [38] carried out scale inhibitor product performance qualification screening
using the seeded static jar test and continuous stirring, whereby suspended solids such
as calcite and kaolinite were applied. Fielder suggested that the poor performance of the
tested inhibitors may be partially caused by the presence of the suspended solids and or
old scale deposits. However, his experimental work on suspended solids did not involve
continuous flow or flood test backed up by simulation and moreover, it was not clear
whether suspended solids or old scale deposits were the cause of poor performance of the
tested scale inhibitor.

Chakraborty et al. [39] examined the effects of loose grain silica gel grain size and
layers on adsorption chiller. They concluded that the use of various loose grain silica gel
designs in the sorption bed allows for significant effects on the coefficient of performance
and cooling capacity of adsorption chiller. Conversely, they maintained that the coeffi-
cient of performance of the chiller was affected by heat capacity, inert mass, heat losses
and heat exchanger because of loose silica gel grains. The dissolution of grain fabrics
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from rock–chemical interactions increased the porosity and permeability of the sandstone
formation [40]. The dissolved grain fabrics could affect the adsorption and desorption
performance of squeezed chemical inhibitor because loose sand grains from the dissolved
grain fabric could potentially be adsorbents for scale inhibitors. This rock–chemical interac-
tion was attributed to Van der Waal forces which bind the chemical to the rock surfaces [35]
through adsorption.

This review has been carried out to examine journal reports on adsorption and desorp-
tion behavior of the most commonly used oil and gas scale inhibitors and how production
of colloidal fine sands in reservoirs affect the performance of scale inhibitors in sand-
producing reservoirs.

2.1.1. Scale Inhibitors

Scale inhibitors used in squeeze treatment provide one of the most common and
efficient methods for preventing the formation of scales in producer wells. The selection of
these scale inhibitors is geared towards the accomplishment of the following tasks [41]:

To prevent or delay the formation of scales (either sulphate or carbonate scales) at
very low concentrations otherwise known as the minimum inhibitor concentration (MIC)
or threshold concentration (Ct);

To interact with the reservoir or formation substrates in order to give high adsorption
over a short period of shut-in time;

To interact, to a large extent, with the reservoir or formation materials to give long
inhibitor desorption or return profile at or above MIC or Ct level.

Additionally, it is not sufficient that scale inhibitors interact appropriately with the
formation or adsorbent [24], but that they also be compatible with brine composition and
comparably stable to thermal degradation. Non-compatibility of scale inhibitors and the
brine system might likely result in the precipitation of the inhibitor prior to injection or at
the near well bore areas, thereby resulting in the formation of makeshift fine scales which
might cause the plugging of formation pores. Furthermore, the scale inhibitors selected
must be such that they are not degraded or dissociated in the course of the operation due
to the formation temperature and sometimes change in formation temperature.

Scale inhibitors are considered to have very marked effects on the growth rate of
crystals deposited in a scaling environment. These threshold inhibitors function by ad-
sorbing onto the growing crystals and distorting the lattice, which disrupts the crystal
growth process [14]. Interaction between the polyaspartic acid (PASP) scale inhibitor with
calcite crystal surface is mainly because of the strong Λ–Λ interaction between the ∏4

3
delocalized bonds of –COOH groups in PASP and ∏6

4 delocalized bonds on the surface of
calcite crystal, and the hydrogen interactions between them and water molecules. Further
reported is that polymer inhibitors do not interact directly with calcite crystal in the water
solution, but indirectly through the chemical bonds and non-bond interactions between
PASP and H2O and calcite [42].

Several classifications and types of scale inhibitors have been reported [43]. Among
these classifications, polyphosphonates and polyphosphino polymers have been profusely
and widely employed in oil and gas scale control due to their high scale inhibition efficiency,
low economical cost, and relative environmental compatibility.

Jordan et al. [12] reported that phosphonates at elevated temperatures, particularly
from 70 ◦C, perform very well. Additionally, they added that at and above 70 ◦C, the
phosphonates exhibit strong retention characteristics and excellent release profiles which
make them the choice chemical for scale squeeze treatment, though low temperature
does not favor retention of their molecules on the rock rather the phosphonate ester
chemicals. In contrast, studies have indicated that phosphonates generally adsorbed
poorly onto sandstone with squeeze lifetimes often unsatisfactory [15]. However, it has
been ascertained that the presence of phosphorus in the monomer building block of
phosphonates was incorporated to provide good retention properties and relative ease of
detection [27,44] Ketrane et al. [45] in their study have compared the efficiency of five scale
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inhibitors, three polyphosphates, one polyphosphonate, and one polycarboxylic acid, and
claimed to have observed that phosphonates are better inhibitors than polycarboxylates or
polyphosphates. This could be attributed to their characteristic mono- or multi-functional
groups (-PO3H2) that contain short chains and kinetically more stable bonds P-C-P or
P-C-N-C-P than P-O-P bonds of condensed phosphates and the P-O-C ester linkage which
are sensitive to hydrolysis and susceptible to oxidation and reduction [45,46].

Several importance of the use of phosphonate inhibitors in the field with reference to
aminotri (methylene phosphonic acid) (ATMP) have been highlighted [23] to include:

The economic viability of the scale inhibitors which stem from their ability to inhibit
the scale at low concentration;

Their stability over a wide range of temperature and pH;
Their versatility of use as scale inhibitors to mitigate diverse forms of scale;
The relative ease with which their concentration in the produced fluid can be deter-

mined, thereby providing information on retreatment time for the well.
The essentiality of phosphorus as a nutrient for the growth of aquatic algae and other

biological organisms has been elucidated. However, further reported is that excessive use
of phosphonates would introduce uncontrolled phosphorus into the natural water bodies
such as lakes and reservoirs with resultant algae blooms and eventual degeneration of
water quality [47].

Many chemicals such as organic phosphonates, organic phosphates, and low molec-
ular weight ester derivatives of these molecules with desired secondary properties have
been widely used as scale inhibitors in oil and gas applications [48]. Nevertheless, on-
going efforts are geared towards green scale inhibitors such as polycarboxylic acids and
polyacrylates and their copolymers, which are eco-friendly [41]. The need for replace-
ment presumably stemmed from their corrosive and bacterial fouling characteristics which
necessitates their application in a mixture of other additives. At high concentrations of
these chemicals, they become too acidic and affect seaweed and constitute environmental
concerns, as a result, they have become increasingly restricted for use [49]. Structural
representation of different organo-phosphonate scale inhibitors with different functional
groups and a carboxylic acid inhibitor most commonly used as scale inhibitors are depicted
in Figure 3 below.

Figure 3. Molecular structures of some organo-phosphonate-based inhibitors (adapted from [50]).

The number of phosphonate, carboxylic, and hydroxyl groups attached to a compound
has a significant role in the inhibition efficiency of the molecule. The phosphonate groups
strongly adsorb onto the BaSO4 or CaCO3 crystalline substrate owing to the high chelating
ability of the -P(O)(OH)2 groups when ionized to PO3

2− [51]. However, polyphosphinocar-
boxylic acid (PPCA) has been reported to lower the ionic activity product of scales through
either chelating of the metal ions or by decreasing pH [49]. Polyphosphinocarbolylic acid
is characterized by its reactive carboxylic and hydroxyl functional groups, which makes it
an effective scale inhibitor and gives it a wide application in oil and gas systems. However,
phosphonate molecules are characterized by their multiple functional groups with varying
charges which depend on pH as well as in their interactions with available cations [50].
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Hao et al. [52], in their study on the preparation and adsorption performance of aque-
ous glyphosate on manganese oxide-powdered activated carbon (MnO2/PAC) composite,
have reported that the uptake rate and the kinetics of adsorption are essential parameters
to consider in designing appropriate adsorption isotherm because they determine the
residence time of adsorbed solute. Figure 4 below shows kinetic adsorption of glyphosate
solute on porous MnO2/PAC-packed bed, which in general, elucidates kinetic adsorption
pathways for most of the scale inhibitors.

Figure 4. Kinetic of chemical adsorption on porous material [52].

With all the above-mentioned characteristics, polyphosphonates and polyphosphinopoly-
mers have been widely and profusely used in oil and gas scale squeeze control due to
their ease of adsorption, high scale inhibition efficiency, low economical cost, and relative
environmental compatibility.

2.1.2. Effect of Formation Variables in Adsorbing Characteristics of Polymer on Adsorbent

Most reservoir sands and sandstones contain a given amount of clay. Clay particles
are generally very small fractions of µm size range and contribute both to increasing the
specific area of the core and to decreasing its permeability [53]. The specific area explains
the high adsorbing capacity of clays toward scale inhibitors, whilst the permeability is
expected to favor scale inhibitor reversible retention.

Research on uptake of nitrilotris methylene-phosphonic acid (NTMP) by kaolin, hal-
loysite, and montmorillonite monitored by liquid phase 31P NMR spectroscopy has as-
certained that in the presence of Ba2+ or Ca2+, a significant increase of the amount of
desorbed phosphorous was recorded. It was further maintained that a weak interaction
between scale inhibitor and rock formation contributes to its release in contrast with a
strong interaction between scale inhibitor and formation rock [54]. In another research
to understand rock/phosphonate inhibitor interactions and effect of metal ions on scale
inhibitor retention, it has been claimed that phosphonate precipitation increased, with
major precipitation occurring near the front of the core upon inhibitor pill solution making
contact with core material [55].

The effects of increased temperature and flow rate have been reported to cause higher
equilibrium concentrations and faster dissolution kinetics for a diethylenetriamine pen-
tamethylene phosphonic acid (DTPMP)/sandstone interaction study [24]. However, Dan-
tas et al. [56] reported that the increase in temperature due to exothermic behavior of
adsorption causes a decrease in adsorption capacity.

Zaitoun and Kohler [57] claimed that a change in pH, temperature, brine composition,
and polymer charge density can modify polymer adsorption characteristics on a given
porous material. They further stressed that at a neutral pH, the surface charge of natural
sands and sandstones is negative, and thus, an increase in polymer anionicity raises charge
repulsion with the rock and reduces the adsorption tendency. However, reports have
shown that positive surface charge on SiO2 at a low pH based on the kinetics of dissolution
could exist [58]. It has been reported that solution pH is the most important factor affecting
the molar ratio of Ca to ATMP in a precipitation squeeze treatment with a marked increase
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in solution pH, giving rise to an increase in the amount of Ca-ATMP precipitated [23].
Kosmulki [59] reported that the charges in various solid surfaces in aqueous solutions
are dependent on the pH. Furthermore, he maintained that in an aqueous solution of 1-1
electrolyte, the pH-dependent charges on the solid surface govern the adsorption of ions.

2.1.3. The Effect of Molecular Weight on Scale Inhibitor Adsorption

Flood et al. [60] in their report stated that the strength of sodium polyacrylate (NaPA)
scale inhibitor binding increases with its molecular weight. Adsorption of high molecu-
lar weight macromolecules has been reported to be largely irreversible, with significant
desorption claimed to be observed only at shear rates exceeding 2000 s−1. The adsorption
level according to the report then becomes directly dependent on the specific area of the
rock, i.e., on its clay content [57]. Farooqui and Sorbie [13] maintained that the molecular
weight of scale inhibitors is deemed to be one of the factors upon which both adsorption
and precipitation processes depend on. They additionally asserted that the concentration
of the polymer in the return curve of PPCA scale inhibitor used in their research was
relative to the molecular weight distribution (MWD) effects and in its ability to prevent
scale formation.

2.1.4. Functional Group Reactivity/Pathways to Scale Inhibitor Adsorption on a Given
Sand Surface

Scale inhibitor molecules have a high tendency to adsorb on a given surface such as
sand. Several pathways have been described for this. The first pathway is the linkage of one
functional group to a mineral surface which provides a platform to the fixation of the whole
macromolecule composed of several thousand monomer groups. The next pathway is
reported to be where several weak linkages may produce a very strong attractive force [57].
This happens if electric repulsion forces between the polyanion and the mineral surface
are not high and there exists moderate polymer charge density, minimal brine salinity, and
neutral pH. It has been reported that the main contribution to the binding energies comes
from coulombic interaction, as the indication shows that coulomb interactions are favorable
for the combination of scale inhibitors and calcite [42].

Most polymers used in enhanced oil recovery (EOR) applications are weakly anionic
and, surprisingly, adsorb onto rocks with negative surface charge. The presence of local
positive charges on clay edges [61] or the possibility of hydrogen bond formation with
silica has been proposed to explain the high affinity of polymers for many reservoir rocks.
However, Vazquez et al. [62] have reported that the cause of deposition of a solid or a
gel-like immiscible liquid on the surface of a formation rock was because of the formation
of a soluble inhibitor-cation complex or salt such as the inhibitor-Ca complex.

2.1.5. Adsorption on Solid Surface

The surface of quartzite sand consists of charged particles that produce field of force
as depicted in Figure 5 below. The permanent negative charges on the quartzitic sand are
charge balanced by cations exchangers which are chemically bound to the surfaces of the
adsorbent. The interactions between these field of forces at the surface of sand and that
from the molecule of the scale inhibitor to be adsorbed gives rise to surface adsorption on
the sand surface [63]. The surface of sand consists of irregularities which are microscopic
in nature and the existence of these irregularities give rise to variations in the magnitude of
surface forces [64]. These surface forces play a significant role in the adsorption of scale
inhibitors onto the sand surface. In contrast, Yan et al. [24]; Kan et al. [65] have reported
from Tomson et al. [66] that the primary driving force for adsorption is not related to some
specific inhibitor–surface interaction, rather to simple hydrophobic repulsion from the
solution of macroneutral molecule of the calcium-inhibitor complex.
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Figure 5. Active component ions on formation rock surface. Adapted from [63].

Two main forces of attraction synonymous with adsorption of scale inhibitor molecules
onto the surface of sand are; physical and chemical forces. Physical forces give rise to
physical adsorption while chemical forces give rise to chemical adsorption. Gupta and
Bhattacharyya [67] described adsorption as one of the fascinating phenomena related to
the behavior of fluids in a force field exerted by the solid surface. They maintained that a
solid is a good adsorbent if the internal volume accessible to the adsorbate molecules or
ions is high, and further stressed that a solid with large pore volume tend to also have a
large area.

Sorbie et al. [68] outlined interactions between inhibitor and sand surfaces to involve
three processes:

Normal adsorption/desorption;
Enhanced adsorption/desorption—which is sometimes designated as surface precipi-

tation or surface condensation;
Precipitation or phase separation process itself.
A clear understanding of the properties of the adsorbent (sandstone) and the adsorbate

contributes to a better mechanistic view of the inhibitor adsorption/desorption behavior.
Most reservoir rocks, when brought into contact with water, develop positively charged
edges [61] and become negatively charged at higher pH [63,69]. The negative surface
charge on quartz (the principal component of sandstone), when immersed in water or at
normal pH, is generated by dissociation or de-protonation of the weakly acidic surface
hydroxyl groups, silanols [70] as follows:

SiO-H + H2O→ SiO− + H3O+ (1)

Ibrahim et al. [25] reported that the surface of quartzitic or siliceous sand has an
isoelectric point (or alternatively, a point of zero charge) at a pH of about 2, above which
the concentration of negative charge on the surface increases. They reported that at
intermediate pH values (approximately 4) and at room temperature, the adsorption of
inhibitor was found to be lower than at both pH 2 and pH 6 due to a relative weakening of
both the hydrogen bonding and calcium binding mechanism. Adsorption is thought to
occur through an electrostatic attraction or physical adsorption between the inhibitor and
formation mineral [68].

There has been indication that surface area, particularly the internal pore surface and
pore size distribution and the nature of pores, determine the extent of adsorption [71]. The
physical size and form of the solid particles, the chemistry of the adsorbent, namely, degree
of ionization at the surface, the types of functional groups present, and the degree to which
these properties change in contact with an aqueous solution are important considerations
in determining the adsorption capacity of a solid [67].

Oluyemi [16] reported that adsorption and desorption characteristic of formation
in unconsolidated reservoir rocks may be affected by grain-size distribution, porosity
and permeability, and eroding effects of particles of sand in motion. Oluyemi further
ascertained that the eroding effects of sand particles can cause a reduction in the amount
of inhibitors adsorbed as a result of reduction of the surface area of sand available for
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adsorption or the stripping off of the already adsorbed inhibitor species from the formation.
Similarly, McMahon et al. [31] in their laboratory tests simulating field conditions showed
there can be a possible reduction in the concentration of inhibitor available to protect steel
surfaces. They maintained that large amounts of corrosion inhibitors can be lost from bulk
solution by adsorption onto the surface of produced sand grains.

2.1.6. Chemical Adsorption of Scale Inhibitors onto Sand Surface

Chemisorption on sand surface consists essentially of the formation of a chemical
compound at the surface of sand and involves an exchange of or sharing of electrons
between the adsorbate molecules and the adsorbent. The surface of the adsorbent consists
of active functional groups which take part in chemical interactions thereby producing
effects that are less reversible and different from that of physical adsorption [71]. Zhang
and Somasundaran [64] in their report claimed that there was a sharp increase in the ad-
sorption of calcium on quartzitic surfaces, and they attributed the increase to chemisorption
caused by hydrolyzed calcium ions. Chemical reactions for the process of adsorption and
desorption due to enthalpy and entropy change are given below [72]:

Clay-Ca2+ + H2O Clay-H+ + OH− + Ca2+ + Heat (2)

Clay-R3NH+ + OH− Clay + R3N: + H2O (3)

Clay-RCOOH + OH− Clay + RCOO− + H2O (4)

The desorption of Ca2+ from the clay surface and the adsorption of the H+ onto
the negative site of clay in Equation (2) gave rise to increased pH and, additionally, an
exothermic process. The displacement of Ca2+ from the solid surface and replacement
with H+ paves the way for adsorption reaction of ionized chemical inhibitor as seen in
Equation (3). Change in pH which could result from brine flooding tends to alter the
reaction kinetics, thereby causing release or desorption of the inhibitor into the flowing
stream for further reaction with Ca2+ or any other cation present in seawater used for
flooding. For many reservoir rocks, there exists a high affinity for chemical inhibitors due
to the presence of hydrogen bonding, electrostatic attraction, and hydrophobic repulsion
from macro neutral molecules [24]. The high affinity of these chemicals with weakly anionic
groups adsorbs onto rocks with negative surface charge and as such cause local positive
charges on clay edges [61].

2.1.7. Physical Adsorption of Scale Inhibitors onto Sand Surface

Physical adsorption or electrostatic adsorption between the inhibitor and formation
minerals has been reported to be the cause of adsorption [68]. Dang et al. [73] have reported
that physical adsorption occurs when polymer molecules are adsorbed onto rock surface
by virtue of a lower overall free energy. They further explained that entropic contribution
whereby the liberation of water molecules previously bound to the rock surface or to the
polymer due to lower free energy causes an increase in entropy.

Veloso et al. [17] in their report have claimed that capacity adsorption in physisorption
decreases with increasing temperature. They further reported a 7% increase in adsorption
capacity obtained from their experimental data after temperature increase from 30 to 80 ◦C.
They suggested that electrostatic interactions or changes in the rock surface could have
occurred to facilitate interaction between the rock and inhibitor.

Adsorption through Hydrogen Bonding Mechanism

Dellostritto et al. [74] have ascertained that the understanding of the structure of the H-
bond network at the quartz–water interface is vital for a complete analysis of the behavior
of the system. They additionally claimed that the surface charging of quartz is highly
dependent on ion concentration as well as cation species with cations promoting negative
surface charge as a function of pH. It has been reported that surfactants with carboxylic,
phenolic, hydroxyl, and amine groups form hydrogen bond with solid surfaces species. The
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bond formed between the surfactant functional groups and the mineral surfaces is reported
to be stronger than that formed between the mineral and interfacial water molecules for
adsorption due to hydrogen bonding to take place [64].

2.1.8. Adsorption Isotherm

There exists a relationship between the type of isotherm and the nature of the ad-
sorbent. The pore size distribution of the adsorbent is a function of the type of isotherm
obtained for a given adsorbate. At equilibrium, the concentration of the solute or adsorbate
in the bulk liquid to the concentration of the adsorbate on the solid phase defines the
adsorption isotherm [20].

It has been reported that in adsorption/desorption squeeze treatment applications,
the nature of the isotherm depicts the behavior of the inhibitor return profile [75]. Reports
have depicted that the nature of adsorption isotherm is influenced by (i) inhibitor species
itself, (ii) the formation brine composition and pH, (iii) application pH and temperature,
and (iv) the nature of adsorbing surface, i.e., surface charge, reservoir mineralogy, and
wettability [62,75]. Bassioni [76] maintained that electrostatic interaction by means of ion-
pair formation, ion exchange, hydrogen bonding, or complex formation on the surface of
formation rock with saturated adsorption plateau gives rise to adsorption. Bassioni further
stressed that anion–anion interaction such as competitive adsorption of organic (citrate) and
inorganic (sodium chloride, nitrate, carbonate or sulphate) on a positively charged surface
may lead to formation of a second layer as well cause increased adsorbent concentration.
The reason given was a reduction of the adsorption enthalpy and consequent increase of
the system’s entropy.

Boels et al. [77] maintained that the presence of calcium during adsorption process
causes a transformation in the equilibrium adsorption isotherm from Langmuir to Fre-
undlich type with much adsorption capabilities. They further claimed that calcium in-
creases the rate of adsorption. Langmuir model was originally developed to describe
gas adsorption onto activated carbon based on the assumptions that (i) the adsorbent
surface has energetically uniform sites for adsorbate ions, atoms, and molecules, (ii) no
adsorbate-adsorbate interactions are present, (iii) the same mechanism is followed through-
out the process, and (iv) at the maximum adsorption, the surface is covered with only a
monolayer [67].

2.2. Theory and Techniques

There are two methods by which oil field scale inhibitors are administered into oil
wells. These two methods are continuous injection and squeeze or batch injection. Continu-
ous injection, as the name implies, involves the continuous injection of chemical inhibitors
into the oil well system by means of electric pumps or gas-driven chemical pumps. This
method is used for prevention of scales in areas such as top sides, chokes, valves and
production tubings where squeezing is not possible. Other well/reservoir enhancement or
treatment chemicals such corrosion inhibitors, hydrate and wax inhibitors, as well as seawa-
ter, can also be applied through continuous injection [78]. Li et al. [79] in their experimental
study on the kinetic behavior of natural gas hydrate reported that continuous seawater in-
jection can keep the balance between productivity and sand production through controlling
production pressure. Alternatively, squeeze treatment is viewed as the most technically
favorable and economically viable option for scale treatment in both conventional and
subsea oilfields. Squeeze or batch treatment is applied as a one-off treatment designed to
inject scale inhibitor into the near wellbore region accompanied by brine overflush which
is injected to drive the scale inhibitor further into the formation. Upon shut-in, to allow the
scale inhibitor to adequately adsorb onto the formation fabric over a period, the production
of the well is put back into operation. The diagram in Figure 6 below shows a schematic
field application of the squeeze procedure applied in the laboratory.
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Figure 6. Schematic view of scale treatment procedure [78].

The laboratory sand pack core holding assembly method using a bench top assembly
is shown schematically in Figure 7 below and is used to evaluate the adsorption rate, the
adsorption amount, and rate of desorption of the chemical inhibitors.

Figure 7. Schematic diagram of sand pack/core holding assembly for Sand pack test. Extracted and
modified from [14].

This technique involves packing of pre-weighed crushed core samples or a sand pack
into a core holder assembly. Synthetic seawater (SSW) is flooded into the sample at a
controlled rate to condition the sand pack and observe the permeability of the SSW into the
crushed or sand pack sample. This would be the initial preflush test. Afterwards, synthetic
seawater dosed with predetermined concentration of the scale inhibitor is injected into
the crushed core sample or sand pack at a determined rate of flow until the inhibitor
concentration of the effluent reaches the maximum initial concentration of the injected. The
effluent inhibitor solution is collected at intervals of time and the residual concentration
analyzed [24] to ascertain maximum inhibitor saturation, as well as rate of adsorption, and
the setup is shut in, while maintaining the initial heated test temperature, and allowed
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to remain over a period of about 24 h to achieve maximum adsorption onto the crushed
specimen or sample.

At the end of the 24-h shut-in, the crushed sand pack sample is flooded with synthetic
formation water (SFW) at an also determined flow rate of, for example, 5 mL/h, and the
effluent collected at intervals of about 1 h. The concentration of the desorbed inhibitor in
the collected effluent portions is analyzed using ICP-OES [24].

3. Conclusions

The mechanism underpinning precise retention of inhibitors and their performance in
sand-producing reservoirs is not well published, and it is difficult to understand. Therefore,
this gap in knowledge requires concerted research. We therefore recommend addressing the
gap in knowledge using experimental and numerical methods. The experimental method
involves engineered sand-pack flooding investigation process with polyphosphonate and
polyphosphinopolymer scale inhibitors, lab-based brine and low salinity aqueous water,
and validation of lab results with the numerical method.
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