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Summary

Effective energy prediction is of great importance for the operational status monitoring of high-power lithium-ion 
battery packs. It should be embedded in the battery system performance evaluation, energy management, and 
safety protection. A new Streamlined Particle-Unscented Kalman Filtering method is proposed to predict the 
available energy of lithium-ion batteries, in which an Adaptive-Dual Unscented Transform treatment is conducted 
to realize the precise mathematical expression of its working conditions. For the accurate mathematical description 
purpose, an improved Synthetic-Electrical Equivalent Circuit modeling method is introduced into the internal 
effect equivalent process considering the influence of time-varying temperature and current conditions. As can be 
known from the experimental results, the proposed prediction method has a maximum estimation error of 2.27% 
and an average error of 0.80%, for the complex varying-current Beijing Bus Dynamic Stress Test. Under the Urban 
Dynamometer Driving Schedule working conditions, the available energy prediction has high accuracy with a 
maximum error of 1.83% and a voltage traction error of 3.28%. It provides vehicle-mounted available energy 
prediction schemes for effective management and safety protection of high-power lithium-ion batteries.
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INTRODUCTION

The available energy state of high-power lithium-ion battery packs is crucial to be predicted under different 
power supply applications. The technical bottleneck of its accurate prediction, energy status monitoring, and 
immature management has severely restricted the development of battery systems. The average 
circulating current has a great influence on the available energy status of lithium-ion batteries, which can 
be predicted by using Dual Extended Kalman Filtering, Gaussian Markov Modeling, and Unscented 
Particle Filtering algorithms.1-3 The relaxation behavior of exotic lithium-ion batteries can be extracted to 
express its capacity decaying characteristics, including Dynamic Linear Modeling, Long Short-Term 
Memory (LSTM), Neural Network (NN), and Wide Operating Temperature Degradation methods.4-8 

Consequently, the robust adaptive Sliding Mode Observation algorithm is introduced into the effective and 
predictable correction stage as well as its diagnosis evaluation in advance.

To realize the accurate available energy prediction, observing strategies are introduced into the 
iterative calculation process, such as Adaptive Dual Kalman Filtering, Thermoelectric Coupling 
Modeling, and Open-Circuit Voltage (OCV).9-12 In the calculation process, the effective energy state 
prediction can be realized by combining the experimental data. By conducting the State of Balance 
prediction for lithium-ion battery packs, the onboard dynamic balancing adjustment of the battery pack 
is carried out to improve its power supply performance. And then, Unscented Kalman Filtering (UKF), 
Equivalent Internal Resistance (EIR), Thermo-Dynamics, Gray Particle Filtering (GPF), and External Short 
Circuit methods13-18 are used as proportional integral observers to realize the available energy prediction.

The Recurrent Neural Network illumination searching method is introduced to realize the available energy 
prediction, which is combined with Particle Filtering (PF) and other methods19-22 to improve the residual energy 
prediction effect of lithium-ion batteries. The temperature compensation modeling strategies can be also 
considered to predict the energy state of the retractable charger. The Extended Kalman Filtering and 
Fractional Calculus Modeling strategies are combined for the cell-to-cell state prediction before its energy 
management.23 The comparative analysis is performed entirely by introducing different ECM into the State of 
Charge (SOC) prediction process with delightful experimental results of battery cells.24,25 The SOC and state of 
health can be predicted effectively by using built-in piezoelectric senors, actuators, and guided waves.25 Using 
the backtracking search algorithm, the NN model can be established to express the energy state difference of 
the internal series cells, and the observation ability can be improved in exchange for shorter calculation time 
and accuracy. The constrained Bayesian Double Filtering method has a good effect on the available energy 
prediction of lithium-ion batteries effectively.26 The prediction can be realized effectively by the embedded 
Square Root-Volume Kalman Filtering algorithm, which is adaptive to the time-varying power supply conditions 
of all climate batteries.27 Intelligent Wavelet Neural Network and electro-thermal modeling strategies are 
constructed to achieve state prediction based on discrete wavelet transform.28 The Dual Slip Mode Observer 
construction strategies are used to realize the combined available energy state prediction.29 The observer can 
be designed by Grey Genetic Modeling, according to which loop-based iterative calculation process can be 
investigated. By measuring the internal resistance and constructing a multiscale dual H∞ filtering model 
combined with CKF and PF algorithms,30 the capacity prediction effect can be verified. The remaining power 
state of the battery can be estimated through the current integration accumulation during the energy supply 
process. Since the confounding parameters are not considered, the Residual Energy State (RES) cannot be 
corrected by the surrounding temperature conditions. Subsequently, improved methods should be introduced 
to estimate the RES value and its real-time correction, including Reduction Pseudo Dimensional Modeling 
(RPDM), Gated Recursive-Unit NN, LSTM, CKF, and Fractional Order Modeling (FOM) algorithms.31-35 As the 
single method still has shortcomings along with the economic growth rate change, which has a significant 
impact on the power state estimation and suitable to the permanent calculation. Subsequently, the high 
requirements for the initial value are limited to its application so that the results can be well applied in practice. 
For this reason, optimization methods such as GPF are introduced to solve this problem as well as the 
Gaussian Processing Regression and Deviation Compensation-Recursive Least Squares algorithms.36-39  The 



KF-based algorithm also provides an effective method to predict the energy state of the battery based on 
past state records. As the battery operating characteristics are nonlinear in most cases, the modeling 
accuracy should be considered when using composite multidimensional features and NN models,40 which is 
the core reason why it is limited by environmental variables such as temperature and so on.
  The treatment of discharging time and current is conducted with direct state calculation to describe the 
charge-discharge effect with appropriate estimation accuracy. Since the OCV value cannot be measured 
online and takes a long-shelved time, it is not suitable for large-scale promotion. The joint energy state 
estimation can be realized by introducing the backpropagation algorithm,41 according to which the prediction 
accuracy is improved effectively. Because the external environment and aging characteristics play an 
important role in its application process, the improved chaotic and genetic algorithms are introduced to 
determine the effective energy of the battery, and it is used for the battery state prediction, as well as the 
FOM and statistical data-driven methods.42-45 In the phase change composite material that is suitable for 
lithium-ion battery systems, the adaptive energy state prediction is realized when considering the thermal 
influence.
   As for the available battery energy state prediction, the improved Synthetic-Electrical Equivalent Circuit 
(S-EEC) modeling method is introduced into the internal effect equivalent process considering the influence 
of time-varying temperature and current conditions, according to which the accurate characterization is 
realized for high-power lithium-ion batteries. Subsequently, an improved Streamline Particle-Unscented 
Kalman Filtering (SP-UKF) model is constructed for the residual power state prediction, which is 
encapsulated in a sub-module combined with effective feedback correction. The main evaluation factors are 
determined and its mathematical description is realized together with the theoretical analysis. The energy 
state is predicted effectively for lithium-ion batteries under varying Beijing Bus Dynamic Stress Test 
(BBDST) and Urban Dynamometer Driving Schedule (UDDS) working conditions.

MATHEMATICAL ANALYSIS
This section provides a detailed mathematical description method of the lithium-ion battery pack that is used 
for its onboard available energy prediction, which plays a positive role in promoting its power supply 
application.

Mathematical state-space description
An improved S-EEC model overcomes the defect that the traditional model cannot reflect steady-state 
voltage changes, which is adaptive to the nonlinear battery system with multiple advantages. By describing 
the internal battery as part 1 and the external load as part 2, the improved S-EEC construction strategy is 
designed and realized for high-power lithium-ion battery packs, as shown in Figure 1.
In Figure 1, the physical meaning of the main parameters in the S-EEC model can be expressed as shown 
in Table 1.
Subsequently, the internal reaction process of lithium-ion battery packs can be described accurately by 
considering the cell-to-cell difference in its packing power supply process, which simplifies the 
comprehensive modeling processes greatly. According to Kirchhoff's voltage law, the relationship between 
these model parameters can be obtained as shown in Equation (1).

FIGURE  1  Synthetic-electrical 
equivalent circuit modeling 



wherein Rp1 is the first-order polarization resistance and Cp1 is the polarization capacitance, according 
to which Ts1 can be obtained and used as its time constant. Rp2 is the second-order polarization 
resistance and Cp2 is the capacitance. And then, Ts2 is used as its time constant. Since the model 
structure is not complicated, the iterative calculation amount is optimized effectively. Thus, the 
equivalent modeling convergence is realized quickly. In the proposed equivalent model, the discharge 
direction is positive, and the voltage across the polarization resistance increases along with the current 
rising process. Subsequently, the special time-domain relationship can be obtained as a supplement to 
the iterative calculation as shown in Equation (2).

TABLE  1  Physical meaning of the main parameters in the synthetic-electrical equivalent circuit model

Parameters Physical meaning

UOC Open circuit voltage

Rs Self-discharge Resistance

Is Flowing current through the self-discharge resistance

R0 Internal resistance

Rp1 First-order polarization resistance

Cp1 First-order polarization capacitance

Up1 Voltage of the first-order parallel resistance-
capacitance circuit

Rp2 Second-order polarization resistance

Cp2 Second-order polarization capacitance

Up2 Voltage of the second-order parallel resistance- capacitance circuit

I Total current

Uδ Reverse Voltage for the Consistency Effect of the Connected Battery Cells

Rδ Consistency of Influencing Resistance

Rcd Differential Charge–discharge Resistance

UL Closed-circuit Voltage

RL Load Resistance
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wherein Cp is the polarization capacitance. Up represents the terminal voltage of the parallel resistance-
capacitance circuit. The total current is represented by I. The polarization resistance is represented by Rp and 
R0 is the internal resistance of the battery. U1 represents the voltage at the start time point of the pulse-current 
discharging process. U2 represents the voltage at its stable time point. U3 represents the voltage at the start 
time of pulse-current charging. U4 represents the voltage at the time point when it is stable. U5 represents 
the stable Closed-Circuit Voltage (CCV). The model parameters can be identified accordingly, which are used 
to replace the battery voltage change equation along with time extension, and the coefficients are used to 
describe its functional relationship. The calculation process is shown in Equation (3).

y¼ c1� c2e�c3k� c4e�c5k

UOC ¼ c1;Rp1 ¼ c2=I;Rp2 ¼ c4=I;Cp1 ¼ I= c2c3ð Þ;Cp2 ¼ I= c4c5ð Þ

(

ð3Þ

wherein y represents the functional output. k represents the discrete-time variable. Functional coefficient 
parameters are described by the coefficients of c1, c2, c3, c4, and c5. Therefore, the model parameter values 
are calculated accordingly, named as Rp1, RP2, CP1, CP2, and Uoc. Compared with other methods, it only 
needs to perform mixed pulse Constant Current (CC)-Constant Voltage (CV) treatment. The state-space 
equation of the equivalent model can be obtained, and the relationship between these parameters can be 
summarized as shown in Equation (4).

S kjk�1ð Þ¼ S k�1ð Þ�ηIηTI kð ÞTs=Qn� Is kð Þ �Ts=Qn

UL kð Þ¼ UOC�Uδð Þ� RoþRδð Þ � I kð Þ� I kð ÞRp1 1� e�Ts1= Rp1Cp1ð Þ� �(

�I kð ÞRp2 1� e�Ts2= Rp2Cp2ð Þ� �
� I kð ÞRcd: ð4Þ

wherein S(kjk-1) represents the predicted value of available energy at the time point k obtained from the time point 
k-1. S(k-1) represents the available energy value at the time point k-1. ηI represents the efficiency coefficient 
affected by the current rate. ηT represents the efficiency coefficient affected by temperature. Ts represents the 
sampling time interval. Qn is the rated battery capacity. The other parameters in the second part of Equation (4) 
are the same as those of Equation (1). In the instant charge-discharge process, the battery voltage change is 
recorded, and the internal parameters of the battery model are obtained by using Ohm's law and its 
time-domain relationship. Through tests under various working conditions, the internal resistance can be 
obtained accurately. The battery voltage change can be described under different effective energy levels and 
depth of discharge conditions, effectively reflecting its dynamic characteristics in the charge-discharge process. 
Consequently, the model parameters are obtained from continuous tests, in which the ohm resistance value can 
be calculated by analyzing the dynamic changes of the terminal voltage at the start and end time points. 
Meanwhile, the polarization resistance can be obtained by the slow change of the battery terminal voltage after a 
certain period as well as the polarization capacitance.

Adaptive unscented transformation

An improved Adaptive Dual-Unscented Transformation (A-DUT) strategy is proposed with high stability 
and feedback correction. Afterward, by calculating nonlinear variables, multivariate values can be obtained 
with the same statistical properties. Corresponding finite sampling points are chosen through state variable 
characteristics. 



 Then, the probability distribution characteristics of these specific data points are similar to the known 
variables. Using the symmetric strategy, the sampling points are obtained as xi (i = 0, 1, 2, ..., 2n), the 
counting number of which is 2n + 1. Using the combination of the average covariance of y and Py, the 
relationship between the state parameter and the observed variable can be obtained, and the expected 
accuracy is maintained through weighted calculation. The specific steps of A-DUT pro-vide more clues 
to the inner state plumbing of lithium-ion batteries. Afterward, the sigma points and corresponding 
weights are initialized by Equation (5).

xi ¼
x̂, i¼ 0

x̂þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λð ÞPx

p� �
i, i¼ 1…n

x̂� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λð ÞPx

p� �
i�n, i¼ nþ1:::2n

8><
>: ð5Þ

where n represents the state variable dimensionality. The sampling strategy in A-DUT has a serious impact 
on the estimation effect, and the symmetrical sampling strategy is adopted, which is convenient for calculation 
with good effect. The sampling points are converted into 2n+ 1 data points, which have the same mean and 
variance value as its original data. Each point has its corresponding mean and variance weight 
coefficients to resist the surrounding noise influence. The weight coeffi-cient considering the calculation 
influence is initialized according to Equation (6).

ωm
0 ¼ λ= nþ λð Þ;ωc

0 ¼ λ= nþ λð Þþ1�α2þβ

ωm
i ¼ωc

i ¼ 1=2� nþ λð Þ, i¼ 1:::2n

�
, ð6Þ

where α represents the scattering factor degree, and the choice of α determines the closeness of the sampling 
points to its mean value, which is set as a positive num-ber from 0 to 1. For Gaussian distribution, the optimal 
redistribution factor is β = 2. k is an auxiliary scale factor that satisfies k + n ≠ 0. λ is a scaling parameter 
calculated by λ = α2(n + k)-n. By constructing a Sliding Coeffi-cient Window, reasonable adjustment of α and k 
improves the estimation accuracy. The dimension of the state variable x is initialed as n, and Px is set to be its 
average covariance matrix. Meanwhile, the observation variable is characterized by y, according to which the 
relational state variable expression is realized. The observation variable can be described by y = f(x), and the 
nonlinear transformation of the sigma point set is conducted accordingly as shown in Equation (7).

ŷ¼ 1
2

X2n
i¼0

ωm
iyi ¼

1
2

X2n
i¼0

ωm
if xið Þ
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P2n
i¼0

ωc
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i¼0
ωc

i f xið Þ� ŷ½ � f xið Þ� ŷ½ �T

8>>>><
>>>>:

: ð7Þ

The goal of the A-DUT is to construct a certain number of sigma points together with the 
corresponding weights, ensuring the characteristic distribution of the nonlinear variables and 
approximating the performance index as much as possible. Then, the mean and covariance of y are calculated 
accordingly. According to the proposed modeling method, a single one-dimensional available energy state 
estimation model is established. Therefore, the terminal voltage UL is set as the observed variable 
entangled by the measurement noise. Compared with other methods, the three-dimensional reduction is 
conducted in only one dimension. In this way, it reduces the computational time in the varying parameter  
correction by initializing [S, Up1, Up2]T as the state variables. Taking the discharging direction as positive,
the state-space equation can be established as shown in Equation (8).
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where Qn is the rated battery capacity and Ts is the sampling time interval. Taking Sk as the state variable 
xk, UL can be obtained for the observation variable yk that is conducted at the time point of k. The battery 
operating current Ik is used as the input variable uk, so that the observation equation can be transformed 
into a typical nonlinear function.

Unscented transform Sate equation Multiplied by weight coefficient Unscented transform again

Spre Ssigma1

Observating
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FIGURE  2  Available energy prediction flow chart of the Streamline Particle-Unscented Kalman Filtering method

Iterative prediction and correction
As a loop iterative calculation, the sigma point is selected according to the characteristic distribution 
of the referenced point, and the covariance of the sigma point xk is guaranteed by the 
correction treatment. Then, these data points are introduced into the state equation to get the 
predicted data group. Using the generalized Kalman gain and combined with the difference of 
observed-predictor variables, the predictive value is corrected continuously to obtain the optimal 
value of the state variable. The iterative prediction-correction process of the SP-UKF method is 
shown in Figure 2.

Using the improved calculation thought, the specific energy state prediction is realized by 
conducting the previous initial parameter configuration. Corresponding research is carried out on 
this state prediction purpose, and the optimal state variable is obtained at the time point of k-1. 
Then, the A-DUT treatment is substituted to obtain the 2n + 1 sigma points for the state-space 
equation. Subsequently, one-step state variable prediction is realized, as shown in Equation (9).

After initializing the variables, the state value of each sampling period is predicted and updated for the 
available power estimation of the battery. Then, the Kalman gain is adjusted and the feedback error is 
corrected continuously according to the error covariance. As time accumulates, the loop-calculation 
number increases, and the available energy prediction value approaches the true value constantly, so it has 
self-correction characteristics in the estimation process. And then, the state variables are updated in time by 
the average weighting treatment, as shown in Equation (10).

xik ¼ x̂k�1, i 0

xik ¼ x̂k�1þ
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x̂kjk�1 ¼
P2n
i¼0

ωm
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� 	
xikjk�1� x̂kjk�1
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The parameter i represents the ith column of the covariance matrix. The average weight ωm and variance 
weight ωc are then obtained. After iterative calculation and verification, the parameters are initialized as k = 2, α = 
0.01, and β = 2. And then, the state variable covariance is updated as shown in the second part of Equation (10). 
Even if the initial value is set to be far from the true value, the predicted value can approach the true value gradually 
as the algorithm proceeds with high estimation accuracy and strong robustness. Considering the observation 
noise statistics, the observation variable is updated by Equation (11).

ŷkjk�1 ¼
X2n
i¼0

ωmiy
i
kjk�1 ¼

X2n
i¼0

ωmih xikjk�1,uk
� �

: ð11Þ

When the environment around the carrier changes, its statistical characteristics change greatly together 
with the observation noise of the carrier. Meanwhile, the prediction accuracy and stability are reduced 
greatly and the error covariance is updated, as shown in Equation (12).
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h i
yikjk�1� ŷkjk�1
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>>>:
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The most computational operation is to recalculate the new sigma point set for each updating process 
of the SP-UKF iterative calculation method. In the correction stage, the square root of the error covariance 
is used to replace the error covariance of the state variables. Therefore, it transmits the square root value of 
the covariance directly, avoiding the decomposition in each loop calculation step. Through feedback correction, 
the influence of the surrounding environment is weakened, and the Kalman gain is updated according to 
Equation (13).

Kk ¼P
P
xy
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,

k
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�
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i xikjk�1� x̂kjk�1

	
yikjk�1� ŷkjk�1
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:

ð13Þ
When the battery operating current changes sharply, it will encounter a negative covariance problem in 

the later stage. The covariance Pk of the state variable also changes, so it becomes negative in the 
Cholesky decomposition. Consequently, the matrix must be semi-deterministic, otherwise, the calculation 
process cannot continue and fails. The reason for this failure is the rounding error of the numerical 
calculation. Therefore, the proposed SP-UKF is derived by replacing the traditional covariance with the 
square root of the state variable covariance. Through the iterative operations, the positive semi-definiteness 
and stability of the state variable covariance matrix are guaranteed, and the visible divergence 
can be overcome effectively. And then, the state update purpose is achieved through the optimal covariance 
matrix and real-time voltage measurement processing, as shown in Equation (14).



��
x̂kjk ¼ x̂kjk�1þKk yk� ŷkjk�1

Px,kjk ¼Px,kjk�1�KkPyy,kKk
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It is an integral part of covariance square root processing, which is also a recursive update of full covariance. 
Wherein, S is the square root of the covariance matrix P, that is, SST = P. As long as S ≠ 0, P is nonnegative. 
The proposed SP-UKF method uses three powerful linear algebra techniques, named QR decomposition, 
Cholesky factor updating, and effective least squares. The Cholesky decomposition is performed on the 
theorem states. If P Rn*n is symmetric and positive definite, there is a unique lower triangular matrix S Rn*n. The 
results show that SST = P holds the diagonal elements of the positive matrix S virtually, which is the Cholesky 
factor of P. If A Rm*n(m > n), the decomposition of A can be expressed as A = Q*R, where Q is an m*m matrix 
and R is the m*n upper triangular matrix. The upper triangular part is the transposition of P. And then, the 
Cholesky factor is updated accordingly by using the function of S = chol(P), and its matrix decomposition is 
updated again via the mathematical correction treatment. Then, the update function of cholupdate() is used to 
realize the Cholesky decomposition, and the square root S is used to replace the original covariance P.

Square root initializing and updating
The proposed SP-UKF calculation process mainly includes four parts: initialization, sigma point acquisition, 
time update, and status update processing. The error covariance P0 is use to determine the initial value of the 
state variable. S0 is the Cholesky factor of the covariance P0, and its initial value is determined as shown in 
Equation (15). 

Through the responding analysis, the capacity and internal resistance can be predicted and 
characterized for energy management. Considering different working conditions, the vertical sigma point 
collection is performed, as shown in Equation (16).
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>: ð16Þ

Si
k denotes the ith column of the state variable covariance performed at the time point of k, and the 

average weighting parameter ωm is obtained by the iterate calculation together with the variance parameter 
ωc. According to the input variable at k-1, it can be predicted by the state equation, as shown in Equation (17).

x̂kjk�1 ¼
2nX
i¼0

ωm
ixikjk�1 ¼

2nX
i¼0

ωm
if xik�1jk�1,uk�1
� �

: ð17Þ

Then, the error covariance of the state change is decomposed by the one-step prediction of the 
sampling points. Therefore, the vehicle-mounted working state estimation is conducted to describe its 
working characteristics, as shown in Equation (18).

Sxk� ¼ qr
ffiffiffiffiffiffiffiffiffiffiffiffip
ωc

1:2n xkjk�p1
1:2n� x̂kjk�1

�
,
� ffiffiffiffiffiffi

Q

� p

k

	�
Sxk ¼ cholupdate Sxk�,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abs ωc

0ð Þ xkjk�1
0� x̂kjk�1

ffi�
, sign
�

ωc
0ð Þ
 �

(
:

ð18Þ

h
x̂0 ¼E x0ð Þ;P0 ¼E x0� x̂0ð Þ x0� x̂0ð ÞT

i
S0 ¼ chol P0f g¼ chol E x0� x̂0ð Þ x0� x̂0ð ÞT

n h : ð15Þio
8><
>:



Considering that the values of α and k may cause ωc
0 to be negative, the semi-definiteness of the 

matrix should be guaranteed. Sxk represents the square root update value of the error covariance for the 
state variable at the time point of k shown in the second part of Equation (18). According to the prediction 
result of the state variable, the one-step predictor is constructed from the high-speed observing equation, 
as shown in Equation (19).

wherein Syk represents the square root update value of the error covariance for the observed variable 
at time point k, and the state updating treatment is also investigated at this point. Therefore, considering 
the battery efficiency, the optimal depth of discharge is obtained. The cross-covariance of state and 
observed variables can be described by Equation (20).

Pxy,k ¼
2nX
i¼0

�
ωc

i xikjk�1� x̂kjk�1

	
yikjk�1� ŷkjk�1

h Ti
: ð20Þ

Here, its value directly affects the size of Kalman gain, so it is taken as an important factor for the 
iterative calculation. Its accuracy has a great influence on the energy estimation effect. Through 
mathematical processing, it can adapt to various situations, thereby improving the estimation accuracy. 
Its calculation process is shown in Equation (21).

Kk ¼P
2n
xy,k SykSyk

T
� ��1

¼
X
i¼0

ωc
i xikjk�1� x̂kjk�1

� 	
yikjk�1� ŷkjk�1

h Ti
SykSyk

T
� ��1

:

ð21Þ

The Cholesky decomposition is introduced to calculate the square root of the covariance matrix to 
initialize the model parameters. The propagated and updated Cholesky factor can form abrupt sigma 
points in subsequent iterations. The error covariance correction is used to describe the state variables, 
according to which the experimental measurement of yk is performed at the time point k, as shown in 
Equation (22).

x̂kjk ¼ x̂kjk�1þKk yk� ŷkjk�1

� �
Sk ¼ cholupdate Sxk�,KkSyk,�1

� �
8<
: : ð22Þ

As can be seen from the calculation process, the time update of the Cholesky factor Sxk
� can be realized by 

the compound QR matrix decomposition. It contains the weighted propagation sigma points and the square root matrix 
of the process noise covariance. The subsequent Cholesky update is essential to reduce the process error. Using these 
two steps to replace the time update of Px,kjk-1, it overcomes the shortcomings of poor stability in traditional algorithms 
and ensures the semi-determinism of the covariance matrix.

yikjk�1 ¼ h xikjk�1,uk
�

;
�
ŷkjk�1 ¼

2nP
i¼0

ωm
iyikjk�1

Syk� ¼ qr
ffiffiffiffiffiffiffiffiffiffiffiffi

pj
p
ωc

1:2n yk k�1
1:2n

� �
,

ffiffiffiffiffip
Rk

oinh
Syk ¼ cholupdate Syk�,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abs ωc

0ð Þ ykjk�1
0� ŷkjk�1

�� ŷkjk�1�
, sign ωc

0ð Þ
n o

8>><
>>:

8>>>>>><
>>>>>>:
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Adaptive window-factor correction

When predicting the battery state, particle degradation is encountered. Also, considering the influence of 
temperature on capacity, the coefficient correction is conducted to improve the ampere-hour integration 
processing accuracy, as shown in Equation (23).

S tð Þ¼ S t0ð Þ�
ðt
0
ηI tð Þ= LtQnð Þdt, ð23Þ

where Lt is the temperature coefficient, which is the ratio of industrial temperature capacity to its 
standard value. Qn is the battery capacity. I(t) is the charge-discharge current. S(t) is the SOC value 
at the time point of t. The temperature variations influence the calculation and make the estimation ability 
decrease, leading to inaccurate prediction results. Therefore, this phenomenon is considered to improve 
the estimation accuracy. To improve prediction accuracy and reduce particle degradation, an approximate 
Bayesian filtering treatment is conducted by the Monte Carlo probability density function. The iterative 
calculation process is designed for the adaptive window-factor correction, as shown in Figure 3.

In Figure 3, the iterative calculation flowchart of the adaptive window-factor correction is described 
and the detailed expression can be described as follows.

1. Initialization. The prior probability is used to generate N initial particles and their weights, as shown in
Equation (24).

p x0ð Þ!N Si0

 �N

i¼1, qi0

 �N

i¼1 ¼ 1=N: ð24Þ

2. The cyclic calculation process is designed as follows.
3. Updating. According to the system correction equation with a priori probability sample, a

detailed mathematical description of the lithium-ion battery pack is carried out for the onboard
available energy prediction. Considering the promotion effect, the particle weight is obtained and
updated at the next time point according to Equation (25).

Sk
i


 �N

i¼1 )wi
k ¼wi

k�1p UL kð Þ Sik
��� �¼wi

k�1p UL kð Þ �h
�

Sik
� �

,
	

i¼ 1,2, � � �,N: ð25Þ

FIGURE  3  Iterative calculation process flowchart of the adaptive window-factor correction



4. Weighting normalization. The realization process mainly adopts the Bayesian criterion to weigh
discrete random samples and complete the mean integral operation. The normalized weight is
calculated according to Equation (26).

wi
k ¼ wi

k

 NX
i¼1

wi
k: ð26Þ

5. The average estimated value is calculated by Equation (27)

Ŝk ≈
NX
i¼1

wi
kS

i
k: ð27Þ

6. Resampling. The effective particle number is calculated as shown in the first part of Equation (28).

By judging the difference in size, a new particle set is obtained, as shown in the second part of Equation 
(28).

Neff ¼ 1
 NX

i¼1

wki
� �2 !N eff ≤ Ns

Si0;
�

k, i ¼ 0,1,2, � � �,N

 �

: ð28Þ

7. Prediction. The state equation is used to predict the unknown state parameter at the time point of k + 1.
8. The end condition is determined for the iterative calculation program. If it is not over, the time point is set

as k = k + 1 and the procedure turns to step 1).

When it is used to estimate the battery state under complex working conditions, the processing noise
affects its influence on the state-space expression established by the observing calculation. When setting 
the model boundary, the observed variable is equal to the load voltage considering the state variable 
change, as shown in Equation (29).

xkþ1 ¼ f xk, ik,wkð Þ xk¼ � nikΔtð Þ= ηiηTηnQnð Þ wkþ
ykþ1 ¼ f yk, ik,wkð Þ k0¼ �Rik�k1=xk�k2xkþk3ln xkð Þ

�

þk4ln 1� xkð Þ vkþ : ð29Þ

where wk is processing noise and vk is observation noise, which obeys the functional relationship of wk ~ N (0, Q) 
and vk ~ N (0, R). Δt is the sampling period. When calculating the innovation covariance matrix, it is necessary to 
perform the window averaging on the sampling values of the innovation sequence to overcome unsatisfactory 
results. There is a problem in choosing the window function and size unless it is coordinated. If the function 
window width is too small, the predicted covariance matrix has greater noise. On the contrary, the covariance 
matrix reflects large characteristics. The window size of M is initialized from 1tok.When M = 1, it has the worst effect 
with a small calculation amount. When M = k, it works well, but the calculation amount becomes larger. The window 
size is set as M = 3 artificially with a good prediction effect. The relevant covariance matrix is described by defining 
the unit innovation, and its calculation process is shown in Equation (30).

Ek ¼
2n

E ekek
T

� �¼Pyy,k

¼
X
i¼0

ωc
i yikjk�1� ŷkjk�1

h i
yikjk�1� ŷkjk�1

h Ti
þRk: ð30Þ



On this basis, a unique adaptive window factor d is defined dynamically to determine the window size. It 
has the advantages of high judgment efficiency and fast convergence speed, which is suitable for real-time 
forecasting. Considering the prediction effect and the calculation amount comprehensively, the two 
factors can reach an appropriate balance when the statistical characteristics of the measurement noise are not 
clear. After that, the forecast deviation is avoided effectively and the forecast result is accurate. The adaptive 
window factor d represents the measured value, and the expression is shown in Equation (31).

d¼ ek
TEk

�1ek

¼ ek
T

2nX
i¼0

ωc
i yikjk�1� ŷkjk�1

h i
yikjk�1� ŷkjk�1

h Ti
þRk

( )�1

ek,

ð31Þ

where the function of d is to adjust the width of the adaptive window M dynamically. When the innovative 
correlation matrix is large, its calculated value is less than 0. The predicted value differs from the measured 
value greatly. The window opening width increases until the terminal point, making the predicted value closer 
to the true value, M = k. When the innovation correlation matrix is small and the calculated d is greater than 1, 
the predicted value is better with no tedious calculation requirement. The window is simplified as M = 1 to 
realize the accurate calculation. When 0 < d < 1,  M = k � ηd-μmin takes an appropriate value. The uncertain
size of the adaptive window M is shown in Equation (32).

M¼ 1,d≥ μmax;M¼ k,d≤ μmin

M¼ k�ηd�μmin ,μmin < d< μmax

�
, ð32Þ

where μmin and μmax are the determination thresholds. According to experience, they are initialed as μmin = 0 
and μmax = 1. η represents the convergence rate of the window M that is smaller than 1. Since k represents 
the target  time  point, the  adaptive window length varies from 1 to k. Consequently, an improved adaptive 
noise covariance matching method is introduced and applied for effective energy estimation, according to 
which the accuracy is improved greatly. The numerical instability and nonpositive problems are introduced 
in detail, which improves the modeling accuracy by covariance matching.

EXPERIMENTAL ANALYSIS

Test procedure design

Lithium-ion cobalt oxide batteries have the advantages of high energy density and large volume density, 
which have been promoted and applied initially in the power supply fields such as airplanes.28 For the 
related onboard available energy prediction, the constructed management system uses a temperature box to 
maintain a hypothetical environment. According to the embedded signal data, the relationship between voltage 
changes under different current rates is analyzed to predict the available energy. Considering the 
application performance requirements, real-time status monitoring is carried out as well as its remaining 
energy prediction. The running status measurement subsystem is designed and a management system 
is constructed, which uses special semiconductors to perform real-time voltage detection. In this 
experiment, lithium cobalt oxide batteries are selected as the experimental object, and the platform is 
constructed as shown in Figure 4.

The battery experimental charge-discharge platform is constructed by the high-rate power battery 
charge-discharge tester (CT-4016-5 V100A-NTFA). The incubator is a three-layer independent high-
low-temperature test (DGBELL BTT-331 C). Subsequently, the experiment is carried out at different 
temperature conditions. An effective energy evaluation mechanism is established to ensure the 
application safety of energy storage and power supply systems. Compared with the traditional management 
system, the electronic load is used for discharging maintenance, and the real-time protection unit is 
also designed to reform the charge-discharge process in real-time.

current rate of 0.20 C until the terminal voltage of 4.15 V



Model parameter identification

The identification steps are designed as follows. (1) The batteries are charged and discharged three times 
using a current rate of 0.20 C until the terminal voltage of 4.15 V is reached. After that, it is discharged to a 
cutoff voltage of 3.00 V at 0.10 C. After 12 hours of full charge-discharg treatment, the battery is activated. (2)

FIGURE  4  The experimental platform design and application

The charging operation is performed by the CC charging with a current rate of 1/3 C until the 
voltage reaches the cutoff value of 4.20 V. It is then continued to be charged by using the 
constant voltage of 4.20 V until the charging current rate reduces to be 0.05 C. At this time point, 
the battery is considered to be charged fully and remains shelved for 1 hour to stabilize the 
voltage and temperature. (3) It is pulse-discharged by constant-current discharging of 1 C for 10 
seconds, and then a 40 seconds break is imposed. The battery is pulse-charged for a duration of 10 
seconds by using the CC maintenance of 1 C. After the charging process is stopped, it is 
shelved for 40 seconds. And then, a completed cycling experiment throughout the overall discharging 
maintenance is completed according to the designed test procedure.(4) The battery is 
discharged at a current rate of 1.00 C for 3 minutes (SOC = 0.95) and shelved for 40 minutes. 
Consequently, the experiment is performed, in which the real-time parameters are recorded 
in real-time, including OCV, discharging current, discharging time, and so on. (5) Steps of (3) 
and (4) are repeated by and the experiments are performed at different SOC levels, respectively.
(6) After performing the complete experiment, the battery is discharged with a 1 C current rate for
3 minutes to reduce the available energy value by 5.00%. After the discharge, the battery is set to stand
for 1 hour, and then the next cycling experiment is performed and introduced into the whole discharging
process until the available energy drops to zero.
The effect of reverse voltage for serially connected cells is engaged in the iterative calculation process,
so its parameter value is not necessary to be identified as well as the self-discharge resistance. As the self-
discharge process is a slow variation procedure, it is characterized by the cycling number and the periodic
measurement. Taking U1 as the battery terminal voltage, it is conducted at the time point when the discharge
starts to be investigated. U2 is the voltage when the discharge starts for 3 seconds. U3 is the terminal voltage
of the time point when the discharge maintenance is finished, and its dis-charging time interval is 10 seconds.
U4 indicates the ter-minal voltage of its ending time point in the pulse discharging maintenance. After the
terminal voltage rises instantaneously for about 40 seconds, U5, is measured to start the charging step at the



end of the holding time interval. To achieve effective parameter representation, the polynomial fitting 
method is introduced for the functional expression, and the coefficients of each power term are obtained for 
subsequent calculations. After substituting 10 groups of voltage data onto SOC from 1 to 0.1, the 
parameters of C1, C2, C3, C4, and C5 are obtained as shown in Table 2.

According to the experimental data onto each SOC level point, the S-EEC parameter values are 
obtained corresponding to the time-varying process. The parameter values of the circuit components 
are obtained by substituting these parameters into the calculation process as shown in Table 3.

As can be seen from the experimental results, R0 increases slowly along with the SOC decrease, 
and the variation ranges are small toward the slow change rate. Rp reduces slowly along with the 
SOC decrease but increases sharply when it is lower than 0.15 due to the acceleration. After the curve 
fitting of all the parameters, the coefficients can be obtained as shown in Table 4.

TABLE 2 Model parameters corresponding to different state of charge (SOC) levels

SOC C1 C2 C3 C4 C5

1.0 4.170590 0.011250 0.098340 0.002280 159.995950

0.9 4.041601 0.014079 0.097746 0.004008 159.996649

0.8 3.929558 0.014736 0.095591 0.003690 159.996882

0.7 3.827812 0.014795 0.093477 0.003617 159.996785

0.6 3.712430 0.010960 0.093045 0.002304 159.996889

0.5 3.646312 0.010340 0.080770 0.002230 159.996773

0.4 3.608898 0.010201 0.087310 0.002044 159.996670

0.3 3.573331 0.010223 0.084905 0.003043 159.997091

0.2 3.499115 0.011859 0.095551 0.003696 159.993569

0.1 3.414992 0.021863 0.112778 0.012579 159.999451

TABLE 3 Model parameters

corresponding to different state of

charge (SOC) levels

SOC R0 Uoc Rp1 Rp2 Cp1 Cp2

1.0 0.003922 4.17059 0.000225 4.56525E-05 45 189.95 136.9073

0.9 0.004101 4.0416014 0.000282 8.01674E-05 36 333.6 77.96353

0.8 0.004083 3.9295585 0.000295 7.38069E-05 35 496.17 84.68205

0.7 0.004068 3.8278124 0.000296 7.2348E-05 36 153.47 86.38972

0.6 0.00407 3.7124298 0.000219 4.60785E-05 49 028.56 135.6408

0.5 0.004083 3.6463121 0.000207 4.45968E-05 59 867.7 140.1475

0.4 0.004099 3.6088983 0.000204 4.08835E-05 56 137.49 152.8764

0.3 0.004126 3.5733311 0.000204 6.0866E-05 57 603.74 102.6865

0.2 0.004179 3.4991152 0.000237 7.39157E-05 44 123.88 84.55922

0.1 0.004318 3.4149921 0.000437 0.000251584 20 279 24.84268



TABLE 4 Model parameters corresponding to different state of charge levels

Coefficients R0 Uoc Rp1 Rp2 Cp1 Cp2

Intercept 0.00452 3.47947 0.00123 8.81E-04 �41 727.647 �97.4336

B1 �2.51901 �0.01032 955 306.591 1948.584

B2 26.91376 0.05177 �4.42E+06 �9844.81

B3 �97.2463 �0.13285 1.24E+07 31 964.77

B4 166.1953 0.18228 �2.03E+07 �55 554.0

B5 �133.4920 �0.12626 1.66E+07 45 574.78

B6

�0.00216

�0.00162

0.03312

�0.08614

0.09037

�0.03417 40.83975

�0.01324

0.07012

�0.19162

0.28091

�0.20715

0.05998 0.03455 �5.21E+06 �13 855.9

After being shelved for a long time, the polarization effect and ohm resistance influence are reduced 
greatly. The measured terminal voltage equals the OCV value toward the electromotive force E. The 
terminal voltage drops rapidly from SOC = 1.00 to 0.85, and the OCV decreases by 0.04 V to 0.06 
V for every SOC level decrease. The OCV drop is stable within 0.03 V for every COP decrease when it 
enters a stable period between 0.85 and 0.15, and the voltage fluctuation is small. After the SOC is lower 
than 0.15, the OCV drops rapidly and the voltage fluctuates greatly as the battery discharges.

Temperature influence and correction

According to the correction target of the prediction process, the temperature influence of the battery 
capacity is analyzed as well as the current rate effect temperature conditions. Considering the temperature 
difference caused by the ground-to-high-altitude variation, the characteristics are obtained under different 
temperature conditions in the calculation process of the Coulomb efficiency coefficient ηT. The experimental 
analysis is carried out at different temperature conditions, which is conducted in the current rate range of 
(0.2, 0.4, 0.6, 0.8, and 1.0) and a widely varying temperature range temperature conditions ( 20.00, 10.00, 
0.00, 10.00, 20.00, and 40.00 C). Then, the variation on temperature and the current rate is obtained for the 
experimental samples of the lithium-ion battery packs. The acquisition of the capacity is obtained by the 
discharging experiments from the full-charged state to the cut-off discharging voltage.

Besides, its total power is released fully in this manner, the discharge capacity law is obtained 
completely as shown in Figure 5.

As can be seen from different experimental conditions, the CC discharging current rate has a 
great influence on the capacity. When the ambient temperature is greater than 0�C, the current rate 
has little influence on the battery capacity when the C-rate is smaller than 5, but the discharging C-
rate has a great influence on the capacity. However, when the experimental temperature is lower than 
0�C, the capacity decreases corresponding to the discharging current rate increase. At low ambient 
temperature conditions, when the discharge rate is greater, the capacity becomes smaller. When the 
temperature is higher than 40.00�C, the discharge power decreases along with the temperature increase. 
Through the operating characteristic analysis over a wide temperature range, a suitable temperature range 
is established from 5.00 C to 35.00 C, and the optimal temperature range is obtained for the OCV 
characteristics as shown in Figure 6.



FIGURE  5  The battery internal resistance variation for different temperature conditions

FIGURE  6  The open-circuit voltage change corresponding to the temperature variation

Through the discharging experiment at different temperature conditions, the voltage changing law is 
obtained along with the temperature variation. As can be known from the experimental results, the 
voltage variation on different available energy levels can be divided into the following three stages 
together in the CC discharging process. In the first phase, the current drops in the initial discharging process 
at a low speed. In the second phase, the voltage enters the plateau after a certain discharging period 
and the descent rate slows down. In the third phase, the voltage enters a steep drop at the end of the 
discharging period when the SOC value is lower than 20%. The functional relationship is used to obtain its 
corresponding efficiency coefficient for different temperature conditions. Then, the experimental results are 
compared with the originally collected data to verify the tracking effect of the fitting curve, which shows that it 
has tougher characteristics than the traditional calculation methods.46



FIGURE  7  Polarization effect variation along with the state of charge and temperature change

Time-varying polarization effect

By comparing the charge-discharge curves at different temperature conditions, there is a certain CCV 
difference. When the SOC value is between 20.00% and 50.00% at 20.00 C, the charging voltage is nearly 
0.06 V higher than the discharging voltage. This difference is mainly affected by the voltage drop of the 
internal resistance. When the SOC value is between 60.00% and 90.00%, the charging CCV value is 0.03 V 
higher than its discharging value. At the temperature condition of 10.00 C, it is 0.10 V higher than the 
discharging CCV value. When the value is 0, the CCV value is 3.00 V. When the value equals 100.00%, the 
terminal voltage of 4.15 V equals the cut-off charging voltage. The polarization resistance variation on the 
experimental temperature change is described as shown in Figure 7.



As can be known from Figure 7, the discharging current increases, and the terminal voltage 
shows a downward trend as the cycling number increases. The fitting equation has a good effect on the 
battery characteristic simulation, which is introduced into the subsequent iterative calculation process. 
Furthermore, the experimental analysis of the temperature variation is carried out with higher accuracy 
compared with the reference. According to the experimental data on different temperature conditions, the 
voltage variation curve is obtained during the charge-discharge period. During the charging process, it has 
a significant voltage change along with low-temperature conditions, but the voltage changes along with 
the available energy variation when the temperature increases.47 The temperature monitoring module is 
placed in its management system via a heater plate and a sink to avoid the over-charge and over-
discharge disks on low-temperature conditions together with its real-time correction. The capacity 
utilization increases the useful life in case of its high-temperature conditions, and the CCV changes 
similarly in temperature. The influencing effect of temperature variation on the critical point is significant. 
When the voltage equals 3.80 V, the valued battery available energy equals 60% at 40.00 C but equals 
20% at -20.00 C.

Varying current RES prediction

To verify the applicability of the proposed SP-UKF prediction method lithium-ion batteries are  used  
in  the experiments. The prediction effect is analyzed when its initial value is small. The prior-
knowledge-independent equalization is investigated to improve its uniformity with energy and 
efficiency, realizing the capacity prediction of the group working lithium-ion batteries. An available 
energy prediction model is conducted that is adaptive to the pulse-current driving patterns of electrical 
vehicles. By comparing the prediction results from the references, the experimental result of the 
proposed method has a better accuracy effect. The prediction algorithm is implemented in performing the 
pulse-current discharge maintenance. The BBDST working condition is used. The steps are organized 
accordingly and the experimental tests are conducted by the schedule shown in Table 5.

TABLE 5 Simulated working

condition parameters and their step-by-

step design

Ph (kW) Pc (W) Single step (s) Total (s) Working conditions

37.5 69 21 21 Start

72.5 135 12 33 Accelerate

4.5 9 16 49 Sliding

�15 �27 6 55 Brake

37.5 69 21 76 Accelerate

4.5 9 16 92 Sliding

�15 �27 6 98 Brake

72.5 135 9 107 Accelerate

92.5 174 6 113 Rapid acceleration

37.5 69 21 134 Accelerate

4.5 9 16 150 Sliding

�15 �27 6 156 Brake

72.5 135 9 165 Accelerate

92.5 174 6 171 Rapid acceleration

37.5 69 21 192 Accelerate

4.5 9 16 208 Sliding

9 217 Brake�35

�15

�66

�27 6 229 Brake

4.5 9 71 300 Parking



Wherein, Ph (kW) is the output power under the starting acceleration condition. Since the 
experiment is carried out on the battery cell, the data onto Pc (W) is obtained by reducing Ph (kW), 
which is used for the experimental test. The time of one complete experimental test is 300 seconds 
and the BBDST is performed 20 times for the battery, according to which the experimental result is 
obtained. To analyze the estimation effect of the proposed algorithm when the current is abrupt, a 
piecewise CC test is designed and compared with the references, in which the initial discharging current 
rate is 1 C. Thus, the battery operating current is mutated into 0.5 C after 20 minutes discharging 
maintenance, which is then changed into 0.3 C after 25 minutes discharging maintenance. The output 
voltage tracking effect of the time-varying current condition is shown in Figure 8.

(A) Current variationfor the long-term test (B) Corresponding CCV variation to the current change

(C) Corresponding energy variation to the current change (D) Corresponding capacity variation to the current change
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FIGURE  8  The experimental test under time-varying Beijing bus dynamic stress test current working conditions 
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FIGURE  9  The 
experimental results for the 
urban dynamometer driving 
schedule working conditions

As can be known from the experimental results, the proposed algorithm has good prediction 
performance when the current is abrupt. It has strong convergence that approaches quickly to the theory 
less than 10 seconds. The maximum estimation error of this prediction algorithm is 2.27% and the mean 
error is 0.80% for the complex varying-current BBDST working conditions, which realizes the residual 
energy state estimation effectively. The UDDS working condition is then designed to verify its robust 
characteristics and the results can be obtained as shown in Figure 9.

As can be known from the experimental results, the proposed available energy prediction method 
has good accuracy for lithium-ion batteries under different working conditions. A comparative study is 
conducted for a three-model-based algorithm of estimating the battery available energy, which has 
high accuracy and low computational burden even with the extreme pulse-current charge-
discharge working condition compared with the experimental results reported in References.42, 43. 48 
It has high accuracy with a maximum error of 1.83% and its maximum voltage traction error is 
3.28% for the UDDS working conditions. The available energy prediction curve has a small variation 
and error value that can realize the state monitoring with high accuracy in its management system. 
The available energy prediction results are consistent with the technical reports,49-52 in which it 
is diagnosed according to its surface temperature variation by correcting the actual initial value in the prediction 
process.

CONCLUSION

An improved SP-UKF method is proposed and introduced into the remaining power prediction 
process, which can obtain the available energy value accurately. Combined with the integrated available 
energy prediction method, it works well and realizes the onboard endurance capability monitoring effectively. 
Different current rates and temperature experiments are carried out, according to which the available 
energy prediction performance is validated by various working condition tests. For the complex varying-current 
BBDST working conditions, the proposed SP-UKF prediction algorithm has a maximum estimation error of 
2.27% and an average error of 0.80%. Under UDDS working conditions, the available energy prediction method 
has high accuracy with a maximum estimation error of 1.83% and voltage traction error of 3.28%. As for the 
battery energy state estimation, it achieves an accurate available energy prediction, providing an effective 
method for the residual energy prediction of the high-power lithium-ion batteries. As the proposed prediction 
method is suitable for the online state estimation with high accuracy and low calculation amount 
requirement, more experimental tests will be conducted for its adaptive characteristic verification, so that its 
sub-module will be improved as well for real-time energy management.
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NOMENCLATURE

UL(k)
UOC

Uδ

R0

I(k)
Rp1

Cp1

Ts1

Rp2

Cp2

Ts2

Rcd

closed-circuit voltage
open-circuit voltage
consistency reverse voltage
battery internal resistance
total current
first-order polarization resistance
first-order polarization capacitance
first-order time constant
second-order polarization resistance
second-order polarization capacitance
second-order time constant
differential charge-discharge resistance

c1 to c5
S (k-1)
ηT
Qn

Cp
Up
Rp
U1
U2
U3
U4
U5
Up1
Up2
y
k
S
(kjk-1)

functional-coefficient parameters
available energy value at time point k-1
efficiency factor influenced by the temperature
rated battery capacity
polarization capacitance
terminal resistance-capacitance voltage
polarization resistance
pulse discharging start time point voltage
pulse discharging stable time point voltage
pulse charging start time point voltage
pulse charging stable time point voltage
stable closed-circuit voltage
first-order resistance-capacitance voltage
second-order resistance-capacitance voltage
functional output
discrete-time point variable
predicted available energy at time point k from

ηI
Ts
P

k-1
efficiency factor influenced by the current rate
sampling time interval
error covariance
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