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A Novel Multi-stage Residual Feature Fusion 
Network for Detection of COVID-19 in Chest

X-ray Images
Zhenyu Fang, Jinchang Ren, Calum MacLellan, Huihui Li, Huimin Zhao, Amir Hussain, and Giancarlo Fortino

Abstract—To suppress the spread of COVID-19, accurate
diagnosis at an early stage is crucial, chest screening with
radiography imaging plays an important role in addition to the
real-time reverse transcriptase polymerase chain reaction (RT-
PCR) swab test. Due to the limited data, existing models suffer
from incapable feature extraction and poor network convergence
and optimization. Accordingly, a multi-stage residual network,
MSRCovXNet, is proposed for effective detection of COVID-19
from chest x-ray (CXR) images. As a shallow yet effective classi-
fier with the ResNet-18 as the feature extractor, MSRCovXNet is
optimized by fusing two proposed feature enhancement modules
(FEM), i.e. low-level and high-level feature maps (LLFMs and
HLFMs), which contain respectively more local information and
rich semantic information, respectively. For effective fusion of
these two features, a single-stage FEM (MSFEM) and a multi-
stage FEM (MSFEM) are proposed to enhance the semantic
feature representation of the LLFMs and the local feature
representation of the HLFMs, respectively. Without ensembling
other deep learning models, our MSRCovXNet has a precision
of 98.9% and a recall of 94% in detection of COVID-19, which
outperforms several state-of-the-art models. When evaluated on
the COVIDGR dataset, an average accuracy of 82.2% is achieved,
leading other methods by at least 1.2%.

Index Terms—COVID-19, chest x-ray imaging, MSRCovXNet,
feature enhancement module, ResNet-18

I. INTRODUCTION

ON January 30, 2020, the World Health Organization
(WHO) formally announced the novel coronavirus pneu-

monia (COVID-19) as a global health emergency [1] , and
from March 31, 2020, this was declared as a pandemic [2].
With millions of infected cases and deaths reported in the
world [3], COVID-19 has rapidly spread to hundreds of coun-
tries and regions. As reported in [4], [5], it has caused more
deaths, than the previous coronavirus strains, for instance, the
Middle East Respiratory Syndrome (MERS) and the Severe
Acute Respiratory Syndrome (SARS). By the end of 2020, the
CVOID-19 pandemic has taken massive losses, with respect
to the population health [6] and economic recession [7],
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from many countries. Apart from the prediction model of
epidemiological trends [8], it becomes crucial to develop
useful tools for fast and effective diagnoses and triaging of
patients with suspected COVID-19 symptoms.

Currently, there are two ways in diagnosing of COVID-
19, i.e. polymerase chain reaction (RT-PCR) swab test [9]
and chest radiography imaging (CRI). RT-PCR swab test,
which detects the viral RNA from sputum or nasopharyngeal
swab, is now most popularly used for diagnosing COVID-
19. However, it may introduce false detections or missing
detections, regardless a lengthy waiting time for the results
to be released. Studies in [10] have found that false negative
rate of the RT-PCR swab test is high, which requires repeated
tests for a reliable diagnosis.

As a useful supplementary to the RT-PCR swab test,
CRI based diagnostic diagnoses the patients with suspected
COVID-19 symptoms through visual analysis of the tho-
racic lesions on the computed tomography (CT) or chest X-
ray (CXR) screening [11]. Compared with CXR imaging,
CT is found to be more suitable for COVID-19 detection
[12]. As CT imaging is generally more expensive and time-
consuming, CXR imaging is thus more popularly used in de-
tecting COVID-19, though with a loss of image resolution and
contrast [13]. For both CRI methods, however, key radiological
features found in COVID-19 cases, including ground-glass
opacities, bilateral involvement, peripheral distributions and
crazy-paving patterns, are also partially presented in MERS
and SARS [14]. Furthermore, clinical symptoms of COVID-
19, such as fever and cough, are similar to viral pneumonia
[14]. With a limited period to gain relevant experience, it is a
challenging task for the radiologists to discriminate COVID-19
from other pneumonias. With the increased cases of infections,
the pressure on health services keeps rising. It is therefore
essential to develop a robust and effective computer-aided
diagnosis systems to reduce the diagnostic period and alleviate
the burden on the clinical staff.

In recent years, deep convolutional neural networks
(DCNN) are validated as an effective tool for multiple medical
image processing tasks, such as classification, lesion segmen-
tation, and reconstruction. Before DCNN, traditional machine
learning (ML) models detect diseases based on extraction of
hand-crafted features, which is time-consuming and lack of
generalizability. Surpassing over traditional ML approaches,
DCNN enables automatic feature extraction during the train-
ing, hence it is more efficient on feature searching and more
robust on testing on the new data. For the sake of robustness
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and efficiency, DCNN has been successfully applied i n many 
tasks of medical image analysis, such as detecting retinal 
diseases [15], breast cancer lesions [16], and brain tumours 
[17]. For the applications in terms of thoracic imaging, one 
study [18] has empirically validated that the DCNN can 
outperform experienced radiologists on classification o f 14 
thoracic diseases. In the context of COVID-19 diagnosis, 
existing DCNN based methods can also well address this 
challenge by extending the depth of network [19] or adopting 
the model assembling [20].

Although increasing the number of layers (i.e. using a 
deeper network) can improve the capability of feature ex-
traction, this requires the dataset to be sufficiently l arge (e.g. 
millions of images, the similar scale as the ImageNet [21]). 
Due to the limited availability of the COVID-19 data, the effi-
cacy of the existing deep learning models is severely affected, 
resulting in less capable feature extraction and difficulty of 
network convergence and optimization. To tackle these issues, 
in this paper, a multi-stage residual network, MSRCovXNet, is 
proposed for effective detection of COVID-19 from the CXR 
images. We aim to derive highly discriminative features from a 
shallow network, where the number of samples are limited. To 
achieve this, a ResNet-18 [22] is used as the feature extractor, 
which is optimized by the fusion of features from multiple 
stages for improved classification and decision-making.

The major contributions of this paper can be summarized 
as follows:

i. Taking the ResNet-18 as the feature extractor, a shallow
yet effective COVID-19 classifier, MSRCovXNet, is
proposed for effective detection of COVID-19 under
limited training samples;

ii. A single stage feature enhancement module (SSFEM) is
proposed to enhance the feature representation of low-
level features, whilst a multi-stage feature enhancement
module (MSFEM) is proposed to obtain highly discrim-
inative features fused from multiple stages;

iii. Without ensembling other deep learning models, the
proposed MSRCovXNet has a precision of 98.9% and
a recall of 94% in the detection of COVID-19 cases,
achieving state-of-the-art performance on the COVIDx
dataset. When evaluated on the COVIDGR dataset, an
average accuracy of 82.2% is achieved, leading other
methods by at least 1.2%. When compared with other
CNN models trained on different datasets, the proposed
method still shows superior performance.

The remaining parts of this paper are organized as follows.
Section II briefly introduces the related work. The architecture
of the proposed method and the experimental results are
detailed in Section III and Section IV, respectively. Finally,
some concluding remarks are given in Section V.

II. RELATED WORK

Since the outbreak of the COVID-19, a number of DCNN-
based models have been developed for the detection of
COVID-19 from CT and CXR images. At first, many people
focused on a two-category classification, in which the COVID-
19 cases were distinguished from either healthy cases [31],

[32], or other lung infections diseases, such as viral pneumonia
[33], [34], [35], [36] and others [37], [38], [39], [40]. Most
of these methods report seem ingly impressive results, where
performances in the range of 90-100% are not uncommon.
However, since doctors not only need to determine whether
their patient has COVID-19 or not, but to also identify whether
a patient with suspected COVID-19 symptoms does indeed
have COVID-19 or a similarly presented infection, the two-
class approaches over-simplify the detection problem. Without
taking into account the possibility of patients having a healthy
image, or being unable to distinguish between various pneu-
monias, the proposed models most likely encourage a greater
degree of overfitting to the training data. As a result, there
has been an increased trend in the literature towards adopting
a three-class approach, where models are trained to detect
healthy patients, as well as discriminating between images of
COVID-19 from other pneumonias1. This will improve the
model’s diagnostic sensitivity, and additionally help doctors
have a better understanding of what separates COVID-19
images from other pneumonias presenting similar features.

For this reason, our work strives to contribute to the body
of work addressing the three-class problem for detecting
COVID-19 from CXR images, where many methods have
been proposed. In Wang et al. [41], a deep CNN model,
namely COVID-Net, is proposed, which is actually one of
the first three-class deep learning models on CXR diagnosis.
The three categories as defined in COVIDx dataset [41], [42]
include COVID-19, pneumonia, and healthy cases, respec-
tively. For performance assessment, the COVIDx dataset is
collected, which includes 8066, 5551 and 386 normal, bacterial
pneumonia (containing both viral pneumonia and bacterial
pneumonia), and COVID-19 patients, respectively. A F1 score
of 95.9% has been reported on the testing set.

In comparison to a single model used in Wang et al. [41],
Karim et al. [20] have proposed an ensemble of DenseNet-
161 and VGG-19 and form the DeepCOVIDExplainer model.
Experiments on a dataset with 11,896 images in total have
achieved a precision of 89.61% and a recall of 83% on 77
COVID-19 test samples, where the categories are the same as
in Wang et al.. In order to provide an interpretable evidence
to the clinical staff, the class-discriminating pixels on the test
images are visualized using the Grad-CAM++ method [43].

To cope with the high degree of imbalance within the
categories of the collected COVID-19 samples, Bassi et al.
[23] have applied the transfer learning to pretrain the proposed
CheXNet [18] on the dataset of 112,120 CXR images with
14 thoracic diseases, including the pneumonia samples. For
easy adopting of the pretrained model on the target dataset,
the output of the last fully-connected layer is reduced to 3 to
coping with the three categories of cases. The dataset used
for training in [23] contains 127, 1285 and 1281 COVID-19,
pneumonia, and normal CXR images, respectively. With the
help of data augmentation, an average classification accuracy
of 97.8% on a testing set of 180 images is achieved.

1In this case, viral and bacterial pneumonias are grouped into a single
’pneumonia’ class for comparing with images of the COVID-19 and healthy
patients to give the three classes.
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TABLE I: Summary of methods and findings for three-class (normal, pneumonia, and COVID-19) approaches on Chest X-ray
images.

Reference Dataset Method Results

Wang
[19]

COVID-19 386
Pneum. 5551
Normal 8066

CNN 95.9% (F1 score)

Karim
[20]

COVID-19 259
Pneum. 8614
Normal 8066

DenseNet, ResNet, VGG19 (ensemble)
89.1% (Prec.)
83.0% (Rec.)

Bassi
[23]

COVID-19 219
Vir. Pneum. 1345

Normal 1341
Pre-trained CheXNet (DenseNet-121) 98.3% (Acc.)

Zhang
[24]

Training Testing
COVID-19 258 60

Pneum. 2306 n/a
Normal 8154 885

Semi-supervised domain adaption.
93.0% F1 score

Kim
[25]

COVID-19 184
Pneum. 4245
Normal 1579

Ensemble three ResNets
94% (Prec.)
100% (Rec.)

Yamac
[26]

COVID-19 462
Bact. Pneum. 2760
Vir. Pneum. 1485

Normal 1579

Pre-trained CheXNet (DenseNet121)
95.6% (Acc)
93.9% (Rec.)
95.8% (Spec.)

Chawki
[27]

COVID-19 231
Bact. Pneum. 2780
Vir. Pneum. 1493

Normal 1583

Inception-ResNetV2 92.2% (Acc)

Rahimzadeh
[28]

COVID-19 180
Pneum. 6054
Normal 8851

Xception, ResNetV2 (ensemble)
99.5% (Acc. COVID-19)
91.4% (Acc. all classes)

Togacar
[29]

COVID-19 295
Pneum. 98
Normal 65

MobileNetv2, SqueezeNet
SVM as classifier

100.0% (Acc. COVID-19)
99.3% (Acc. Normal and Pneum.)

Lv
[30]

Dataset 1
Bact. Pneum. 2772
Vir. Pneum. 1493

Normal 1591

Dataset 2 COVID-19 125
other viruses 316

Cascade network of SEME-ResNet50
and SEME-DenseNet169.

97.1% (Acc. COVID-19)
85.6% (Acc. Pneum.)

In [24], Zhang et al., domain shift between datasets, namely
COVID-DA, is attempted to improve the classification accu-
racy under a semi-supervised framework, where both labelled
and unlabelled data are utilized for learning the model. The
training set is composed of 8154, 2306 and 258 normal, pneu-
monia, and COVID-19 CXR images, respectively. However,
the testing set has only two categories, i.e. 885 normal and 60
COVID-19 images, respectively, where an F1-score of 92.98%
and AUC of 0.985 are reported.

In [25], similar to Karim et al., a three ResNets were en-
semble with each subnet being trained for classifying a single
category, dividing the three-category classification task into
three binary classification tasks. The three binary classifiers
are first trained using normal (1579 cases) vs diseased (4429

cases), pneumonia (4245 cases) vs non-pneumonia (1763
cases), and COVID-19 (184 cases) vs non-COVID-19 (5824
cases), respectively. Afterwards, the three ensembled ResNets
are fine-tuned on another dataset with 1579 normal, 4245
pneumonia, and 184 COVID-19 cases, respectively. Eventu-
ally, a precision of 94% and a recall of 100% are achieved.

In Chawki et al. [27], the pneumonia is split into bac-
terial pneumonia and viral pneumonia before conducting a
comprehensive study on several popularly used models, such
as VGG, ResNet, DenseNet, Inception-ResNet, Inception-V3,
and MobileNet-V2. The dataset used contains 1583 normal,
2780 bacterial, 1493 viral, and 231 COVID-19 cases, where
80% of the samples are used for training and the remaining
20% for testing. Finally, they have found that the Inception-
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Fig. 1: Architecture of the proposed MSRCovXNet.

Fig. 2: Architecture of the proposed multi-stage feature en-
hancement module.

ResNet-V2 can outperform all others with an overall accuracy
and F1-score of 92.18% and 92.07%, respectively. In [44], an
ensemble of DNNs is proposed for COVID-19 prediction.

In a recent study [45], a quantification method is proposed
for quantifying the level of COVID-19 infection severity,
which is adopted from a previously defined Radiographic
Assessment of Lung Edema (RALE) score [46]. By measuring
the extent of the lesion features on each lung, the severity is
quantified in a range of 0 to 8, based on which the severity is
further defined in 4 levels, i.e. Normal 0, Mild 1-2, Moderate

3-5 and Severe 6-8 [47]. A two-class COVIDGR dataset is
collected, containing 426 Normal images and 426 COVID-19
images, in which the positive cases include 76 Normal-PCR+,
100 Mild, 171 Moderate, and 79 Severe cases, respectively.
Specifically, Normal-PCR+ indicates that the radiologist does
not find any visual lesion regions, although the PCR test is
positive. By conducting a 5-fold cross-validation testing with
5 runs on the COVIDGR, an average accuracy of 81.00% can
be achieved by the proposed COVID-SDNet [47].

For a more concise comparison of the three-class CXR liter-
ature, we have listed the discussed literature along with other
relevant papers, together with their respective methods and
results, in Table I. There have also been similarly conducted
studies implementing deep learning-based classifiers on CT
images [48], [49], [50], [51] and lung ultrasonography [52],
however we forego discussing them in any detail since our
focus is with CXR-based models. A more detailed review of
recent CT based deep learning models can be found here [13],
[53].

In this paper, we aim to improve the feature representation
for a shallow network, which is suitable for training on a small
number of samples, without using the ensemble strategy.

III. PROPOSED METHOD

In this section, we will discuss the proposed method in
details, including, the architecture of the proposed MSRCov-
Xnet, especially the implementation of the multi-stage feature
enhancement module, which is proposed for improving the
feature representation. After that, the training hyperparameters
will also be introduced.

A. Network Architecture

The overall architecture of the proposed MSRCovXNet is
shown in Fig. 1. At the current stage, as shown in Table
I, there is no large dataset (as the ImageNet) for COVID-
19 classification. Under limited samples, a shallow network
may perform better than a deep network [22], which is also
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verified by the experiments in this paper. Thus, the ResNet-
18 [22], which is pretrained on the ImageNet [21], is used
as the feature extractor. We denote the output of the blocks
”conv2 x”, ”conv3 x”, ”conv4 x”, and ”conv5 x” as ”C2”,
”C3”, ”C4” and ”C5”, respectively, where the total stride with
respect to these four blocks are 4, 8, 16, and 32. The prediction
Y of the original ResNet can be expressed as below

Y = fc( gap( C5 ) ); (1)

where fc( ) and gap( ) are the fully connected layer (FC) and
the global average pooling layer (GAP), respectively.

To enhance the capability of feature extraction, feature
maps derived from multiple stages, rather than a single stage
as the original ResNet-18, are combined in our model. In
this paper, we adopt both the C4 and C5 blocks for the
lateral classification procedure. Feature maps before C4 are not
utilized, simply because the object (”lung” for this task) in the
x-ray image is still too large in the previous blocks. As low-
level features are sensitive to small objects [54], this affects
their impact on the classification task, which is also verified by
the experimental results in this paper. For the feature map C4,
a single-stage feature enhancement module (SSFEM), which
is a subnet with L convolution layers of size 3×3, is assigned
to enhance the lower-level feature extraction (denoted by green
rectangles in Fig. 1). The size of C4 is reduced, with the
number of channels doubled, in the last layer of the subnet
to keep the size of the output (denoted as ”C4E”) the same as
C5.

The capability of feature extraction can be further enhanced
by using a feature fusion module [55], [56], which is applied
to fuse features from different stages. Thus, we present a
multi-stage feature enhancement module (MSFEM) to further
enhance the extracted feature, which is shown in Fig. 2. The
architecture of MSFEM will be detailed in the next subsection.
In the end of the network, the enhanced multi-stage feature
will be fed to a global average pooling layer, and the final
prediction is conducted by a fully connected layer, which is
the same as the previous methods [22], [57], [58]. In summary,
the prediction Y of the proposed method can be expressed as
below:

Y = fc( gap( C45E ) ); (2)

where C45E is the feature map extracted using the proposed
SSFEM (ssfem()) and MSFEM(msfem()):

C4E = ssfem( C4 );

C45E = msfem( concat( C4E, C5 ) );
(3)

where concat is the short of concatenation.

B. Multi-stage Feature Enhancement Module

As shown in Fig. 2, The proposed MSFEM adopts the
residual learning [22] for feature fusion and feature refinement,
which can be mathematically expressed by:

C45E = M( C45concat ) + C45concat; (4)

where M() and C45E are respectively present the convolution
layers in the proposed MSFEM and the feature concatenation
of C4 and C5.

First of all, two 1× 1 convolution layers are applied to C5
and C4E for adjusting the number of channels, which can be
expressed as below:

C4Enorm = F1×1( C4E );

C5norm = F1×1( C5 );
(5)

where F1×1() indicates the two 1 × 1 convolution layer.
As to the number of layers in terms of C4E and C5 are
the same, the weights of two 1 × 1 convolution layers are
shared for reducing the number of training parameters. The
effectiveness of such implementation is also validated during
our experiments: compared with non-weight-sharing, the F1
score of the newtork using weight-sharing could be slightly
increased by about 0.1%. As suggested in [58], [59], [60],
multi-scale representations, which are acquired in a large
range of receptive fields, bring benefits for more accurate
prediction. Thus, we utilize multiple subnets, consisting of
a variety range of convolutional layers, to achieve multi-
scale receptive fields in the proposed MSFEM. However, it
will remarkably increase the number of training parameters,
if directly taking the fused feature maps as the input of
those subnets. As presented above, this will then increase the
difficulty of the network optimization, causing the reduction
on the detection accuracy. It is also validated in the Section
IV, where the proposed outperforms methods with deeper
networks. Thus, in the proposed MSFEM, only a part of input
channels is fed to each subnet, instead of all channels. To
achieve this, after normalizing the number of channels, feature
maps from C4E and C5 are divided into N splits. Let featk
be the kth channel in terms of the input feature map feat
(feat ∈ {C4Enorm, C5norm}). The ith split S− i can be the
acquired by:

S − i = concat(feat1+(i−1)×(512\\N),

feat2+(i−1)×(512\\N),

. . .

feat(512\\N)+(i−1)×(512\\N)) (i = 1, 2, 3, 4)
(6)

as suggested in Res2Net [58], we assign N = 4 as the
number of splits and utilize the number of channels with
respect to each split as 208 in this paper. Splits from C4E and
C5 are concatenated by orders, which can be mathematically
expressed as follows:

Xi = concat(S4− i, S5− i) (i = 1, 2, 3, 4) (7)

where S4−i, S5−i are the splits from C4Enorm and C5norm,
respectively; concat is the short of concatenation; Xi is the
input split of the following Densely connected block [57].

For each split Xi, the input is the concatenation of all the
outputs from the previous layer, as well as the Xi, which can
be represented as:

Yi = F (concat(Xi, Yi−1, Yi−2, ..., Y1)) (i = 2, 3, 4) (8)
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TABLE II: Data distribution of the COVIDx dataset

Normal Pneumonia COVID-19 Total

Train 7966 5451 286 13703

Test 100 100 100 300

TABLE III: Selection of feature stages

Blocks
F1 score(%)

Normal Pneumonia COVID-19

C5 93.5 93.1 95.3
C5+C4 94.6 94.4 95.9
C5+C4+C3 92.6 94.0 95.9

TABLE IV: F1 scores in terms of the SSFEM layer numbers

Number of L
F1 score(%)

Normal Pneumonia COVID-19

1 94.6 94.4 95.9
2 94.1 93.0 95.9
4 93.3 94.4 96.4
6 93.5 94.1 96.4

TABLE V: Ablation study of the MSFEM layer

F1 score(%)

Normal Pneumonia COVID-19

ResNet-18
+SSFEM (c=1) 94.6 94.4 95.9

ResNet-18
+SSFEM (c=1)
+MSFEM

94.2 95.4 96.4

where Yi is the output with respect to Xi, F (.) denotes the
convolution layer. Specially, for Yi, the input is Xi, because
there is no output ”Y0” before it. In the end, the splits are
re-concatenated, and the number of channels is adjusted via
a 1 × 1 convolution layer. For the ResNet-18 based network,
the number of channels are 1024 (C5:512, C4E:512) [22].

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Dataset: Experiments in this paper are conducted on the
COVIDx dataset [41], which is currently the largest publicly
available dataset with respect to the number of COVID-19
cases. COVIDx dataset consists of 13703 images for training
and 300 images for testing, where the COVID-19 samples
are collected from more than 266 COVID-19 patients. Images
in the COVIDx dataset are labeled in three classes: normal,
non-COVID19 infection (pneumonia), and COVID-19. The
training and testing sets are randomly divided according to the
patient ID, which means for a particular patient, the associated
data will be used either for training or testing, hence there
is no overlapped data in this context. Details of the sample
distribution in terms of each class are shown in Table II.
We train our models on the training dataset and evaluate the
performance on the testing dataset.

Tabik et al. [47] argued that the majority COVID-19 cases
in COVIDx dataset is at severe level. It is therefore essential

TABLE VI: Results comparison in terms of F1 score (%) with
several state-of-the-art deep learning models on the COVIDx
test dataset.

Methods
F1 Score(%)

Normal Pneumonia COVID-19

ResNet-18*
[22] 93.5 93.1 95.3

ResNet-50*
[22] 93.3 93.9 95.9

Res2Net-50*
[58] 93.7 94.9 96.4

ChexNet*
[23] 94.2 94.9 95.9

COVID-Net
[41] 92.5 91.6 95.9

MSRCovXNet
(proposed) 94.2 95.4 96.4

∗ Trained by author with 5 runs

Fig. 3: Confusion matrix for the proposed MSRCovXNet on
the COVIDx test dataset. Precision and recall of each class is
shown in Table VIII

to validate the proposed MSRCovXNet on another dataset for
validating the performance in early-stage diagnosis. To this
end, we also evaluated the proposed MSRCovXNet on the
COVIDGR 1.0 dataset [47]. As a two-class dataset, COVIDGR
includes 426 samples in each class. The severity distribution
of the positive cases is: 76 Normal-PCR+, 100 Mild, 171
Moderate, and 79 Severe, respectively.

2) Implementation details and evaluation metrics: The pro-
posed method is implemented on PyTorch [63]. The input im-
age is resized to 480×480 for efficiency. Following the settings
in [41], [25], [26], [30], we adopt the Adam optimizer [64]
for its promising performance on weight optimization. The
initial learning rate is set to 1e-4, which is decreased via the
cosine annealing schedule [65]. The batch size is set to 60 on
3 GPUs. The network is trained by 22 epochs. Moreover, we
adopt the data augmentation methods as suggested in COVID-
Net [41] for a fair comparison, which include: intensity shift,
translation, rotation, horizontal flip, and random resizing. For
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TABLE VII: Results comparison in terms of F1 score (%) with methods trained on other datasets

Methods
Number of images for training Number of images for testing F1 Score (%)

Normal Pneumonia COVID-19 Normal Pneumonia COVID-19 Normal Pneumonia COVID-19

Karim
[20] 5647 6030 182 2419 2584 77 86.5 84.5 81.6

Zhang
[24] 8154 2306 258 885 0 60 n/a n/a 93.0

Kim ∗

[25] 1422 3821 166 157 424 18 92.2 94.4 96.6

Rahimzadeh
[28] 2000 1634 149 6851 4420 31 93.2 89.1 49.1

Togacar ∗∗

[29] 46 69 207 19 29 88 95.3 96.5 99.5

MSRCovXNet
(proposed) 7966 5451 286 100 100 100 94.2 95.4 96.4

MSRCovXNet-s
(proposed) 100 100 100 7966 5451 286 90.0 90.0 80.0

∗A slightly higher F1 in COVID-19 cases than ours due to a very small number of test samples in COVID-19 yet the F1 scores for the other
two classes are much lower.
∗∗Relatively better performance is due to too limited training and testing samples used, where the higher number of COVID-19 cases than
others seems impractical in real scenarios.

TABLE VIII: Precision and recall of the proposed MSRCov-
XNet

Normal Pneumonia COVID-19

Precision (%) 90.7 96.9 99.0

Recall (%) 98.0 94.0 94.0

performance evaluation, we report the results using the F1
score (%), as it considers both the recall and precision for an
overall assessment of false alarms and missed detections.

When training on the COVIDGR dataset, we decrease the
training epoch to 15, while all other hyperparameters remain
the same as on the COVIDx dataset. Images are cropped to
normalize the position of lung as suggested in [47]. Following
the same evaluation method in COVIDGR, we conducted 5
different 5-fold cross validations with multiple metrics, in-
cluding the sensitivity, specificity, precision, F1 and Accuracy.
Results of each metric are reported using the average values
and the standard deviation over the five runs. As the Normal-
PCR+ may impede the overall performance [47], such cases
are excluded in our experiments.

B. Ablation Study

In this section, we conduct an ablation study to examine how
each proposed component within our MSRCovXNet affects
the final performance in the detection of COVID-19.

1) Selection of feature stages: In this section, the selection
of feature stages will be discussed. As suggested in the feature
pyramid network [66], a single convolution layer is applied as
a replacement of the single-stage feature enhancement module
(SSFEM). Meanwhile, multi-stage feature enhancement mod-
ule (MSFEM) is not utilized.

Experimental results are shown in Table III. By fusing the
feature maps of C4 and C5, the F1 scores are increased by

0.9%, 1.3% and 0.6% on normal class, pneumonia class and
COVID-19 class, respectively. However, after adding the C3,
the F1 scores on normal and pneumonia are dropped by 1.2%
on average. This indicates that the low-level feature maps
(C2 and C3) does not bring benefits to this task. Thus, we
only adopt C4 and C5 for feature fusion in the proposed
MSRCovXNet.

2) Number of layers in the single-stage feature enhance-
ment module: In this subsection, the number of layers in the
SSFEM is discussed. According to the results shown in Table
IV, as the number of layers increases, the F1 score of COVID-
19 increases by 0.5% on maximum. However, the F1 scores
on normal and pneumonia classes decrease. Take L = 6 for
example, the F1 scores on normal and pneumonia classes are
reduced by 0.9% and 0.3%, respectively. This is mainly caused
by the size of the dataset. i.e. the complexity of models, where
L > 1, is overfitting for normal, and pneumonia classes in
COVIDx. As the training accuracies are ranged between 97%
and 100% for the models in Table IV, we deduce that the
performance of SSFEM with deeper layers could be further
improved by adding more available samples with more variants
in the future. Thus, in this paper, we select L = 1 for the
following experiments.

3) Effect of the multi-stage feature enhancement module:
In this subsection, we will verify the effect of the MSFEM.
Experimental results are shown in Table V. As seen, though
the F1 score on normal cases decreases by 0.4%, the F1 scores
on the pneumonia and COVID-19 classes increase by 1% and
0.5% respectively. Overall, the performance has been further
improved with the MSFEM.

C. Compared with the State-of-the-art Methods

1) Result comparison on the COVIDx dataset: Here we
compared the proposed MSRCovXNet with the state-of-the-art
deep learning models. First of all, the proposed MSRCovXNet
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TABLE IX: Result comparison (%) to state-of-the-art methods on the COVIDGR 1.0 dataset. Spec., Prec., and Sens. are the
abbreviation of specificity, precision and sensitivity, respectively.

Class Metric Methods

COVID-Net [41] COVID-CAPS [61] FuCiTNetz [62] COVID-SDNet [47] MSRCovXNet
(proposed)

N
Spec. 83.42± 15.39 65.09± 10.51 82.63± 6.61 85.20 ± 5.38 82.35± 6.49
Prec. 69.73± 10.34 71.72± 5.57 79.94± 4.28 78.88± 3.89 85.12 ± 4.07
F1 74.45± 8.86 67.52± 5.29 81.05± 3.44 81.75± 2.74 83.46 ± 3.13

P
Sens. 61.82± 22.44 73.31± 9.74 78.91± 5.88 76.80± 6.30 82.01 ± 5.76
Prec. 79.50± 11.47 68.40± 5.13 82.43± 5.43 84.23 ± 4.59 79.73± 5.04
F1 65.64± 15.90 70.20± 4.31 80.37± 3.16 80.07± 0.04 80.60 ± 2.83

Accuracy 72.62± 7.6 69.20± 3.61 80.77± 3.15 81.00± 2.87 82.20 ± 2.83

is compared with the other methods that are trained on the
same COVIDx dataset. Experimental results are shown and
compared in Table VI, and the confusion matrix is visualized
in the Fig. 3. As seen, the proposed MSRCovXNet has
achieved state-of-the-art performance in all three classes.

2) Result comparison with methods trained on other
datasets: Due to the limited number of image samples, some
of the existing methods are trained and evaluated on a subset
of the COVIDx dataset [20], [24], [28], [29] or self-collected
dataset [23], [25]. However, as the classification task in these
datasets are the same, it is worthy to compare the performance
with these methods as well. Results are shown in Table VII.
Here we compared with methods that used the same classes
(normal, pneumonia, and COVID-19) as our methods. Meth-
ods with different classes are not compared, e.g. the method
in [27] which classified four categories: bacterial pneumonia,
coronavirus, COVID-19, and normal.

As seen, the proposed MSRCovXNet outperforms most of
the methods in all the three classes, except Togacar [29] and
Kim [25]. When compared with Kim, the number of COVID-
19 samples is less than 20% of COVIDx. However the F1 score
on COVID-19 cases only outperforms by 0.2%, along with
a degradation of 2% and 3% on the normal and pneumonia
cases, respectively. Therefore, it is hard to say it actually
outperformed the proposed MSRCovXNet. For Togacar [29],
as the total number of test images is only 136, this is also
highly imbalanced for the three classes. As a result, we deduce
that the difference on performance is mainly caused by the
small size and imbalanced samples of the test set.

Training on small dataset size. Specifically, we trained the
proposed method on the testing set of COVIDx, and test on
the training set, which is to further evaluate the efficacy and
robustness of the proposed approach in distinguishing COVID-
19. In this case, the number of training images are 100 for each
class. Results are shown in Table VII as ”MSRCovXNet-s”.
As seen, when the testing set is far larger than the training set,
which is similar to the real-life situation, the proposed method
can still achieve comparable results to other methods. This
validates the effectiveness of the MSRCovXNet on a small
training set.

Evaluating on COVIDGR. Results comparison on the
COVIDGR dataset from different approaches are listed in

Table IX. As seen, even with many early-stage cases included,
the proposed MSRCovXNet can still achieve the state-of-the-
art performance, surpassing the COVID-SDNet by 1.2% on the
average accuracy. This has validated the effectiveness of the
proposed method on detecting the early-stage COVID-19. For
comparison, although COVID-Net achieves a high F1 score on
the COVIDx, the F1 score on the COVIDGR dataset is only
65.64%, which is 15% lower than the proposed method. This
has again validated the robustness of the proposed methodol-
ogy in detection of COVID-19 in CXR images.

As discussed by Tabik et al. [47], the majority of COVID-19
cases in the COVIDx dataset is at the severe level. Methods
reported on this dataset have achieved quite high accuracy
on detecting COVID-19, due mainly to the low detecting
difficulty. This can be also observed in our experiments, see in
Table IX, where an accuracy of 82.2% was achieved. However,
the classification accuracy drops by 19.27% when the same
method is trained and tested on the COVIDGR dataset. This
has clearly indicated potential issue of data quality, which may
affect the detection accuracy in this context. A lesson herein
will be that it is unsuitable to only apply the easy samples for
training and testing, where hard samples at less severe levels of
COVID-19 would be beneficial. By training on the dataset with
uniformly distributed four severity levels, the discrimination of
detecting the early-stage cases can be further strengthened.

3) Visualization of the class-discriminating regions: It is
important to know the decisive regions on the image where the
pixels contribute most to the final decision. This is because it is
able to verify the reliability of the diagnostic decision made by
the CNN, which can help the clinical doctor to gain a better
understanding of the proposed deep learning model. It also
benefits them to find out the diseased regions on the image.
In this paper, the class-discriminating regions are highlighted
using gradient-guided class activation maps (Grad-CAM++)
[43], which is shown in Fig. 4. As expected, the proposed
method predicts based on regions with pathological features
in the lungs, which also validates the high reliability of the
proposed method in effective detection of COVID-19 from
other cases.
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(a) Normal

(b) Pneumonia

(c) COVID-19

Fig. 4: Decision visualization using Grad-CAM++ with the
input label: (a) Normal, (b) Pneumonia, and (c) COVID-19.
Images are all from the COVIDx dataset.

V. CONCLUSION

In this paper, we proposed a novel COVID-19 classifier,
namely MSRCovXNet, for the detection of COVID-19 from
chest x-ray (CXR) imaging. To tackle the challenging problem
of insufficient training samples, the ResNet-18 is used as
the feature extractor. In order to improve the discriminative
capability of the extracted features from this shallow network,
the proposed MSRCovXNet fuses the features from multiple
stages rather than adopting the feature map from the last
stage for decision making. With a VGG-style subnet struc-
ture, the proposed single stage feature enhancement module
(SSFEM) has effectively enhanced the feature representation
of low-level features. Meanwhile, the proposed multi-stage
feature enhancement module (MSFEM) has improved the
performance by varying the range of the receptive fields
to obtain highly discriminative features fused from multiple
stages. The performance of the proposed MSRCovXNet has
been validated on the COVIDx dataset, by far the largest
publicly available dataset for COVID-19 detection from CXR
images. Thanks to the proposed feature enhancement modules,

our MSRCovXNet has demonstrated superior performance
over several state-of-the-art deep learning models, under a
small number of training samples and without any ensembling
models. When compared with models which are trained on
other datasets, the proposed MSRCovXNet still obtains a
promising performance.

Future work will focus on further enhancement of the
features using ResNet-style skip connections [22], [67], [58]
as the VGG style subnet is suboptimal. In addition, fusion of
multiple CXR images will also be utilized as the supplemen-
tary information in between can improve the discriminative
capability of the learnt features. Finally, we may also explore
other deep learning models and also effective methods in
addressing imbalanced learning in detection of COVID-19
from CXR and other image data.
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[47] S. Tabik, A. Gómez-Rı́os, J. L. Martı́n-Rodrı́guez, I. Sevillano-Garcı́a,
M. Rey-Area, D. Charte, E. Guirado, J. L. Suárez, J. Luengo, M. A.
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