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Volatility leads to disruption in synchronism between generators of a continuous system. The 
frequency of the volatility is usually between a few tenths of Hz to several Hz. This volatility is 
sometimes divided into two types, local and interregional. Local volatility is the low-frequency 
volatility of a power plant unit or units of a power plant relative to the grid whereas interregional 
volatility is the volatility of the units of one area relative to the units of another area. The worst kind 
of low-frequency volatility occurs when the power system in a region has a short three-phase 
connection to the earth, creating a complete instability of the grid and operating protective systems. 
One of the ways to improve the dynamic stability and steady-state of the power system is to use power 
system stabilizers and FACTS devices in the system. In this paper, the stabilization of the power 
system stabilizers PSS and SSSC is done using the ant colony algorithm. Studies on a four-machine 
system with the three-phase error were performed in two scenarios and finally compared with the PSO 
method. The simulation results show that the proposed method produced more accurate performance.  
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1.   Introduction 

The stability of power systems has become an important area of study, this is mostly due 
to the integration of power systems. As a result, more advanced control equipment and 
stronger protection schemes have been added to the power system to increase stability. 
However, new stability issues have been posed and analysis becomes more difficult. Early 
in the development of power systems, instability issues were mainly due to the lack of 
synchronizing torque. Therefore, the purpose of stability enhancement was to limit the 
amplitude of the first rotor angle volatility in transient stability and to increase the steady-
state power transmission range. Significant improvement in the operation of the power 
system led to issues such as the stability of the small disturbance of the local volatility 
model, and low-frequency interregional volatility modes were revealed. Many factors can 
cause volatility in the grid, such factors include a short connection in the grid, sudden 
change of load or interruption of load or loss of transmission lines. These volatilities can 
occur in the normal operating state of the system. The ability of the power system to 
maintain stability depends largely on the stabilizing equipment available on the power 
system. One of these methods is the use of an auxiliary control loop on machine excitation, 
known as the power system stabilizer (PSS). The damping rate added through this is limited 
due to the time constant of the stimulation and saturation problems. In addition, in this 
method, a feedback state is taken from feedback and added to the stimulation and the effect 
of other state variables is not considered. To introduce the effect of other state variables, it 
is necessary to insert a signal composed of the linear combination of state variables into 
the stimulation system; to obtain the coefficients of the state variables, optimal control is 
used. 
Another way to improve the dynamic stability and steady-state of the power system is to 
use the flexible alternating current transmission system (FACTS) devices in the system. 
FACTS devices, as active and reactive power compensators in power systems, can improve 
reliability and efficiency due to their rapid response to disturbance and their flexible 
performance under normal system conditions [1]. FACTS technology provides new 
opportunities for controlling power and increasing the usable capacity of existing lines as 
well as new lines. The use of FACTS controller devices enables the control of power 
distribution within the lines under normal and unforeseen conditions. These opportunities 
are made possible by the ability of FACTS controllers to control the parameters that direct 
the performance of the transmission system in relation to each other; parameters such as 
series impedance, parallel impedance, current, voltage, voltage angle, and damping of 
volatility at different frequencies below the system nominal frequency [1]. Series static 
synchronous compensator (SSSC) is one of the best suggestions for damping power system 
volatility. A static synchronous generator that operates as a series compensator without an 
external power supply, and its output voltage is 90 degrees phase difference with the line 
current and can be controlled independently from the line current to increase or decrease 
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the total reactive voltage drop is used along the line to control the transmitted electrical 
power. SSSC may include a transient amount of energy storage or energy absorption 
devices to temporarily increase the power system's performance by compensating extra 
real power and temporarily increasing or decreasing the total actual voltage drop (resistive 
voltage drop) along the line. 
In recent years, numerous studies have been carried out on the different types of power 
system stability. In all these investigations, the researchers tried to improve the stimulation 
system and FACTS stimulation through stabilizer control in a stable way. A major share 
of this research is concerned with the design of PSS stabilizers or the control of FACTS 
devices in the power system or the context of the coordination between the power system 
stabilizer and the FACTS devices. Many methods and algorithms such as genetics, 
turbulence, bee colonies, particle consensus, etc. have been applied to the PSS stabilizer 
design, each of which has strengths and weaknesses. 
A genetic algorithm is used in [2] to find optimal parameters of power system stabilizers, 
i.e., Kstab, T1, T2, T3 and T4 coefficients. In this reference, the coefficients of participation 
are first used to determine the location of stabilizers and then using the genetic algorithm, 
the number of stabilizers is reduced and finally, the genetic algorithm presents the optimal 
model of the stabilizer. In [3], the particle swarm optimization (PSO) algorithm is used to 
optimally design the stabilizers as well as their placement in the power system to reduce 
interregional volatility. In [4], the particle aggregation algorithm of the power system 
stabilizer (PSS) parameters is used at the grid point. It is then carried out by the fuzzy 
system of the stabilizer in the power system. Stabilizers designed in the two-region, four-
machine standard system, have been used and it has been claimed that the volatility of 
interregional and within regional have been reduced. Another group of power engineers 
has been involved in the coordination of power system stabilizers as well as controlling 
FACTS devices. In [5], PSS and thyristor-controlled series compensator (TCSC), the PSO 
algorithm is used to coordinate them. Also, in [6], static VAR compensator (SVC) and 
TCSC compensator optimized by PSO algorithm in power system is used. 
Another algorithm used in recent articles is the bacterial foraging optimization algorithm 
(BFOA). This has been used more to find optimal points because of its high accuracy. In 
[7], synchronization between the stabilizers of the PSSs power system and SVC is 
performed by the bacterial foraging optimization algorithm. Finally, with the coordination 
of the controllers in the power system, interregional volatility obtained acceptable 
damping. Also, in [8], this algorithm was used for the optimal design of the power system 
stabilizer. In [9], a modified version of the bacterial foraging optimization algorithm was 
used to optimally design the PSS stabilizer and TCSC line compensator. The authors 
claimed that the modified version of the BFOA algorithm has high convergence accuracy 
and speed. In [10–12], the combination of PSO and BFOA was used to precisely design a 
power system stabilizer. In these papers, it is claimed that the hybrid algorithm has higher 
accuracy than the PSO algorithm and is not trapped in local optimal points. In [13-18], 
various applications of Blockchain in the computing system are discussed. 
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In [19], the duck pack algorithm is used to determine the stabilizing parameters of the post-
phase and pre-phase power systems. In the paper, the objective function is defined based 
on the displacement of the eigenvalues, and the algorithm attempts to provide the stability 
of the power system over a wide range of generator operating conditions by the 
replacement of the eigenvalues. The results obtained by the duck pack algorithm are 
compared with the results of the particle aggregation algorithm. In [20], the duck pack 
algorithm is used to design stabilizers in a three-machine power system and its results are 
compared with a system optimized by the genetic algorithm. The results show that the 
duck pack algorithm performs better than the genetic algorithm. In [21-25], the benefits 
and applications of the Internet of Things in improving the system are discussed. In [26], a 
hybrid algorithm based on the bee colony algorithm is used to optimally design power 
system stabilizers. Also in [27], the author has used the Multi-objective Modified Honey 
Bee Mating Optimization algorithm to solve the problem of dynamic stability of the power 
system. In [27], the integral square time square error (ISTSE) criterion, as well as the 
eigenvalues, is considered objective functions. In this algorithm, like the multi-objective 
particle swarm optimization (MOPSO) algorithm, the dominant responses are obtained in 
the Pareto front. The curve of the angular velocity variations obtained from the simulation 
before the error has the volatility that can be attributed as an error in the results of the paper. 
In [28], the search optimum algorithm (SOA) has been used to optimally design PSS 
stabilizers and coordinate them with static synchronous series compensator (SSSC). In [28] 
a new objective function is proposed. The proposed objective function is a function with 
the weighted coefficients from the two ISTSE objective functions and a combined function 
of overshoot, undershoot and settling time. In the paper, it is claimed that the stabilizer 
designed by minimizing the proposed objective function is more accurate than other 
methods. In [29], power system stabilizers have been coordinated to reduce interregional 
mode volatility by a hybrid method of optimization and sensitivity analysis of eigenvalues. 
This combination allows for a different PSS stabilizer design where the target function 
reaches its minimum value. To prove the robustness of the proposed method, the stabilizers 
designed in the 69 generator system were used. A detection system for rumours was 
discussed in [30]. In [31], a hybrid algorithm of particle swarm and gravitational search 
algorithm (GSA) were used to design the stabilizer of the PSS power system as well as the 
coordination between the power system stabilizer and the SSSC compensator. The hybrid 
algorithm has higher accuracy than both PSO and GSA. The simulation results on the 
multi-machine system indicate the robust performance of the control system designed in 
damping low-frequency volatility. The optimal tuning of PSSs and FACTS devices for 
power system stability enhancement has been also addressed in [32–35]. In [33], the 
optimal combination of TCSC, SVC and PSSs has been investigated for the suppression of 
LFOs where the parameters of controllers are optimized based on eigenvalue analysis. Dey 
et al. [34] have studied the contribution of SVC and TCSC on the small-signal stability of 
a power network incorporating wind farm, where eigenvalue analysis and time-domain 
simulation (TDS) have been conducted for various disturbance scenarios. A 
comprehensive study of the impacts of PSS and unified power flow controller (UPFC) for 
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the enhancement of power system stability has been presented in [35]. In other studies, the 
optimal allocation of FACTS devices along with the optimal coordination between these 
devices and PSSs regulators has been investigated [36, 37]. In [38] is proposed a new 
optimized interval type-II fuzzy set (T2FS) based on PSS to increase the stability margin 
of the well-known four-machine power system of a wind farm. In [38] the MOPSO 
algorithm is employed to design and optimize the membership functions of the proposed 
stabilizers when integral square error until settling (ISEUS) and figure of demerit (FD) 
criteria are considered as objective functions. 
In all these proposed studies, the issue that has great importance is the adjustment of the 
PSS and SSSC parameters. In this paper, the ant colony optimization algorithm will be 
used to coordinate the power system stabilizers and the SSSC. ACO algorithm with high 
convergence and acceptable accuracy can be a good way to solve the problem of stabilizer 
coordination and SSSC. In the second part of this paper, the modeling of the problem is 
discussed. The objective function of the problem is stated in this section. Section 3 briefly 
describes the ACO optimization algorithm. The simulation results are presented in the form 
of two scenarios in Section 4. Finally, this paper concludes by presenting the results in 
Section 5. 

2.   Problem Modeling 

The precise coordination of stabilizers in the power system is an optimization problem that 
requires the use of an appropriate objective function. Both the ISTSE criteria and the FD 
have been used as objective functions for designing stabilizers and for coordinating. The 
ISTSE criterion is defined in Equation 1. The smaller the value of this criterion, the better 
the condition of the dynamic stability of the system; the volatility also damps with a lower 
range and shorter time. 
 

2 2 2 2
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simt

ISTSE t w t w t w t w dt= ∆ + ∆ + ∆ + ∆∫                          (1) 
 
In the above equation, Δw12, Δw13, Δw14 are the rotational angular velocity changes of the 
first generators to the second, third and fourth generators, respectively. Also, Δw34 is the 
angular velocity difference of the third and fourth generators located in the second region. 
In Equation 1, the operator t represents the time and t_sim of the simulation time equal to 10 
seconds. The simulation time should continue until the volatility dampens. 
The FD criterion is defined as Equation 2. 
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In Equation 2, FD is the criterion of minimization of the volatility of each generator 
individually, OS are the maximum amplitude of volatility, US is undershooting and Ts is 
time settling, and NG is the number of generators. It can be stated that ISTSE is a suitable 
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criterion for damping interregional volatility while FD minimizes the volatility of each 
generator separately. 

3.   Ant Colony Optimization Algorithm 

The ant colony optimization algorithm, abbreviated as ACO, is known as the ant colony 
algorithm and ant colony optimization. This method is derived from the ant real movement 
in nature, which was first introduced in Dr Marco Drigo's thesis in 1990 entitled Ant 
System. The behavior of ants in their colonies is more to maintain colony survival. 
One of the most important and interesting research on the behavior of living things such as 
ants (animals that are blind) is how they find food and the shortest route from their colonies 
to food sources. This sort of behaviour has a kind of mass intelligence that has been 
considered by scientists recently. In the ant colony algorithm, the seeker particles are a 
limited number of synthetic ants that exploit the Stigmage correlation, i.e., a form of 
indirect relation that is used by the environment to construct the answers to the problem. 
After thoroughly observing the ant's behaviour and carrying out the necessary practical 
investigations, it was concluded that all the ants leave substances called pheromones when 
walking. The secretion rate of this substance is completely determined and evaporates after 
a time. The ants can detect pheromones through their sense of smell. They also choose a 
path that has a higher pheromone concentration between the two paths. Suppose there are 
two paths between an ant's nest and a food source, one path to be shorter than the other. 
One of the ants goes through the shorter path and the another through a longer path and 
these choices are completely random. Both ants leave their pheromones in the path. 
Certainly, an ant that has gone the shorter path, gets to the food source first, picks up some 
food and returns to the nest. When he reaches the nest, he places the food in the nest and 
goes back to the food source. But the ant that has gone the long way may still be on its way 
to the food source, so it will probably come back to the nest later than the ant that took the 
shorter path. So, the shorter path will have more pheromones, therefore, other ants looking 
for a way to find the food source will choose the shorter path because the pheromone 
concentration is higher on that path. Likewise, after a certain amount of time, most ants go 
through the shorter path. Following the features mentioned for the ants, the structure of the 
ACO algorithm will be discussed [39]. 

3.1.   Ant Colony Algorithm  

An ACO problem can be described as follows: 
Suppose the ant colony contains N ants. The ants started moving from the house as shown 
in Figure 1. In each iteration or period, each ant will travel from the first layer to the last 
layer to reach its destination (food). Each ant in each layer can only select one option with 
probability Pij according to the following equation. 
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Where τij is the intensity of the pheromone left on the path in ij. α indicates the importance 
of pheromone. Ni shows the number of neighbouring locations for the k ant. And j is the 
next place of ant k. 
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Figure 1: How to find the path between the nests to the source of food in a multivariate problem by ants 

 
At the beginning of the optimization process, all pathways have an initial pheromone 
concentration. As shown in Figure 1, the ants began to move from their nest and randomly 
searched for a variable in each layer. In each iteration, each ant will traverse a response 
vector (the path traversed by the ant) consisting of search variables that are between the 
nest and the food. This search will continue until the maximum iteration. The value of each 
variable is selected as the optimal component of the answer vector based on the path that 
has the most pheromones. And in the end, almost all ants choose the best path that has the 
most pheromones. The k ant when in place i uses Tij value to select the next location (j) 
which will calculate the probability of choosing each location from Equation 4. The 
selected points along the path by each ant are the candidate to answer the problem. For 
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example, a path traversed by the k ant is illustrated in Figure 1, where the answers x12, 
x23, x31, x45, x56, x64 form a complete path between the nest and the food source. Each 
ant leaves some pheromone in its path. The following formula shows the increase in 
pheromone concentration after each ant crosses between i and j locations [39]. 

( ) ( ) ( )1 k k k
ij ijτ τ τ−

← + ∆                                                                                      (4) 

When ant k moves in a path, the pheromone will be evaluated in all directions by the 
following formula: 

( ) ( )1 ρ             ,ij ij i j Aτ τ← − ∀ ∈                                                     (5)  

Where ρ is the evaporation coefficient and a value in the range of [0,1]. A is the path from 
the nest to the feed source. Considering that the evaporation factor causes the weaker 
answers to be omitted, this will make the search process to be more dynamic, as there may 
be other shorter paths. An iteration of the search process involves ants moving, pheromone 
evaluation, and pheromone residual value. Upon return of all ants, the pheromone nest will 
be updated according to the following formula: 

( ) ( )

1

1
N

k
ij ij ij

k

τ ρ τ τ
=

= − + ∆∑                                                                                                             (6) 

Where ∆τij (k) is the amount of pheromone left on the arc ij by the superior ant k. The 
pheromone left on the ij path is obtained by the best ant: 

( )k
ij

k

Q
L

τ∆ =                                                                                                                      (7) 

Where Q is a constant value and Lk is the length of the path traveled by the k ant (in the 
case of traveling from one city to another in the problem of itinerant sale). Equation 7 can 
be executed as follows: 

( ) ( );           ,  

0;                                           

best
k
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f
if i j globalbest tour

f
otherwise

τ


∈∆ = 



û
                                                           (8)                                     

Where fworst is the worst value and fbest is the best value of the objective function among 
paths traversed by N ant, and ℶ is a parameter to control the pheromone update scale. The 
greater this value, the more pheromones will accumulate on the best global path, and the 
better algorithm will search for local optimizations, find the true optimization and will not 
be caught in local optimizations. The step-by-step ant colony algorithm for solving a 
minimization problem is summarized as follows [39]:  

First step: 
Suppose that there are N ants in a colony and that for each n variable, the locations contain 
discrete values to be determined. The allowed discrete values of the variable xi are 
expressed as xi1, xi2, ..., xip (i = 1,2, ..., n). Suppose τij 

(1) is the initial pheromone value in 
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all the paths of Figure 2, superscript τij expresses a repetition number. For example τ_ij

(1) = 
1 can be included for all paths in the first iteration. 

Second step: 
A) Calculating the probability of choosing the next path or the discrete value for the 
variable xij 

( )

( )
1

;   1, 2, , ;  1, 2, ,
l

ij
ij p l

ijm

p i n j p
τ

τ
=

= = … = …

∑
                                                                                  (9) 

The above equation is similar to Equation 3 where α = 1. Larger values are also used for α. 
B) In the next step, the cumulative probability will be calculated by using Equation 9 and 
can randomly select the best local position using the k roulette-wheel method. This will be 
done as follows: 
N numbers are randomly generated r1, r2, r3, …, rN in the range (0,1) per ant. It is compared 
with the cumulative probabilities and the cumulative probabilities that are greater than the 
number generated are selected and the relevant position will be considered as the best local 
position. 

Third step: 
A) Step 2b repetition for all variables i = 1,2, ..., n. 
B) Evaluating the objective function by the values corresponding to a complete path (vector 
X (k) or xij values for all variables by the ant k): 

  (10)              𝑓𝑓𝑘𝑘 = 𝑓𝑓(𝑋𝑋(𝑘𝑘));    𝑘𝑘 = 1,2, … ,𝑁𝑁 
The best and worst Route selected path among the N path by ants: 

(11)     𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓𝑘𝑘}             𝑘𝑘 = 1,2, … ,𝑁𝑁 
(12)  𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓𝑘𝑘}             𝑘𝑘 = 1,2, … ,𝑁𝑁 

Fourth step: 
Convergence occurs if almost all ants choose the best path. If convergence is not achieved, 
it is assumed that all ants will return home and begin their food search again. In this case, 
an iteration will be added (l = l + 1). And pheromone (or discrete values for variables) on 
paths will be updated as follows: 

 (13)  𝜏𝜏𝑖𝑖𝑖𝑖(𝑙𝑙) = 𝜏𝜏𝑖𝑖𝑖𝑖(𝑤𝑤𝑙𝑙𝑜𝑜) + ∑ ∆𝜏𝜏𝑖𝑖𝑖𝑖(𝑘𝑘)𝑁𝑁
𝑘𝑘=1 

Where τij
(old) is the pheromone value in the previous iteration (here the (l-1) iteration), 

which will be derived from the following formula: 
(14)  𝜏𝜏𝑖𝑖𝑖𝑖(𝑤𝑤𝑙𝑙𝑜𝑜) = (1 − ρ)𝜏𝜏𝑖𝑖𝑖𝑖(𝑙𝑙−1) 

And ∆𝛕𝛕𝐢𝐢𝐢𝐢(𝑘𝑘) is the pheromone left by the top ant k on its path and the sum of the pheromone 
on all paths by the top ants (if multiple ants provide top similar paths) will be considered. 
Note that the top path for variable i is only one path. The evaluation rate or evaporation 
coefficient ρ is in the range from 0.5 to 0.8. 
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Figure 2: General Flowchart of Ant Colony Algorithm 

 
The algorithm returns to the second step with the new value τij

(l). Stages 2, 3 and 4 will be 
repeated until convergence. Convergence is achieved when all ants choose a path as the 
best path. In some cases, the repetition will stop after the maximum number of replications 
(l_max). Figure 2 shows the general flowchart of the ant colony algorithm. 

4.   Simulation and Analysis of Results 

In this section of the paper, we examine the results of simulation in the MATLAB software 
environment. Studies have been conducted to evaluate the effect of the presence of power 
system stabilizers and converter type series compensator in the transmission line (SSSC) 
under different loading conditions. For this purpose, a standard two-regional power system 
with two synchronous generators in each area is selected as the sample system. The single-
linear block diagram is given in Figure 3. Generators in each area have nominal values of 
900 MVA and 20 KV. A 900 MVA transformer with a conversion ratio of 20/230 KV was 
used for each unit. The two zones are connected by two lines [40-42]. 
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Figure 3: Single-linear block diagram of the system under study 

 
In the studied system, the loads are modeled as constant impedances. In the system under 
study, the G1 generator is considered as the reference generator. In the stimulation system 
of each of the generators, there is a stabilizer of the pre-phase and post-phase power system. 
It is also used in one of the communication lines between the two areas of the SSSC 
compensator. It should be noted that the SSSC compensator is installed in 110 kilometers 
from bus 7 and in the middle of the communication line between the two regions. The 
studies were repeated in two loading conditions where the active and reactive power output 
values of each generator are summarized in Table 1. 

Table 1: System loading conditions (per-unit) 

Second scenario First scenario  

Q P Q P Generator 
0.26 1 0.15 0.78 G1 
0.42 0.08 0.26 0.77 G2 
0.15 0.75 0.14 0.78 G3 
0.27 0.77 0.22 0.77 G4 

 
To coordinate the parameters of the power system stabilizers as well as adjust the controller 
parameters in the SSSC compensator, the particle swarm algorithm, as well as the ant 
colony proposed algorithm, have been used. The parameters of these two algorithms are 
summarized in Table 2. The simulations will be repeated in the loading conditions referred 
to in Table 1 in the form of two scenarios. In each scenario, a comparison will be made 
between the controllers designed by the ACO and PSO algorithms, and finally, a 
comparison will be made between these methods. In Table 3, the optimal values of the 
SSSC stabilizer and controller parameters obtained by the ACO and PSO algorithms are 
presented. 
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Table (2): Parameters of ACO and PSO Algorithms 

Vmax Vmin W C1=C2 Repetition Population  
PSO 0.9 0.4 0.7 2 50 100 

 Ρ β α Repetition Population  
ACO  0.7 0.2 0.8 50 100 

Table (3): Parameters optimized by ACO and PSO algorithms 

T4 T3 T2 T1 K Gen  
 
 

ACO 

0.39 0.76 0.36 0.42 18.32 G1 
0.63 0.51 0.86 0.21 28.4 G2 
0.63 0.47 0.17 0.32 20.36 G3 
0.94 0.39 0.76 0.89 23.71 G4 

   Ki Kp  
SSSC    0.7 1.8 

T4 T3 T2 T1 K Gen  
 
 

PSO 

0.64 0.34 0.74 0.14 17.23 G1 
0.74 0.27 0.54 0.42 21.36 G2 
0.36 0.76 0.37 0.23 23.14 G3 
0.27 0.54 0.49 0.36 20.84 G4 

   Ki Kp  
SSSC    0.65 1.64 

 
To more accurately investigate the results of the simulations, the maximum values of the 
range of volatility, the damping time and the ISTSE and FD criteria were calculated. It 
should be noted that the settling time is calculated at 4% of the final value. 

4.1.   First scenario 

In this scenario, the output power of the generators is adjusted according to Table 1. In 
these loading conditions, a three-phase error to the ground with 250 ms occurred at the 
communication line between the two shins 7 and 8 in the second. After optimal 
coordination of the stabilizers by PSO and ACO algorithms, their performance in the power 
system was evaluated. For this purpose, the angular velocity variations of the generators 
are presented below. 
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Figure 4: The angular velocity variations of the generators in the first scenario 

 
In Figure 4, the angular velocity variations of the generators when using the PSS stabilizer 
alone are shown in red dots and when using the stabilizers with the SSSC compensator 
optimized by the PSO and ACO algorithms in blue and black lines, respectively. The 
objective function value (ISTSE) obtained for each of the control methods in Figure 5 is 
shown as a bar graph. 
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Figure 5: Objective function values in the first scenario 

 
The objective function value (ISTSE) for the power system with stabilizer without SSSC 
is 0.0041, whereas this value is much lower using SSSC. The ISTSE value for the control 
system designed by the ACO algorithm is 0.0021 and if designed with the PSO algorithm, 
this value is 0.0023. These two values are approximated to each other, indicating a 
relatively similar performance of both algorithms. On the one hand, given the curves shown 
in Figure 4, we can properly consider the performance of each control method. For 
example, the maximum range of variations for a system using only a stabilizer is 0.186, 
which is the highest value. The maximum range of variations for the control system 
optimized by ACO and PSO algorithms is calculated to be 0.11 and 0.12, respectively. It 
should be noted that the maximum variation of all the curves in Figure 4 is chosen. This 
value is related to the angular velocity variations between generators one and four, i.e., 
Δw14. 
Another result of the simulation is the damping time of the volatility in the power system. 
In the power system, the more the stability, the volatility caused by disturbances damps 
faster and the system condition improves in terms of performance. For power systems with 
stabilizer and without SSSC, the settling time was calculated to be 5.64 seconds. Whereas 
the damping time for the power system with stabilizer and SSSC optimized by PSO and 
ACO algorithms were 4.46 seconds and 4.07 seconds, respectively. To calculate this 
criterion, like the maximum range criterion, the highest value was obtained among the four 
curves. The results show that the proposed control system has a lower damping time and 
range of lower volatility than the other two systems and it has been able to increase the 
stability of the system to a higher degree. The FD value for each control system is shown 
in Figure 6. 
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Figure 6: FD values in the first scenario 

 
The FD value for the system with PSS stabilizer is 78, while for power systems in the 
presence of the SSSC line series compensator, this value is calculated as 27 and 24, 
respectively. The smaller FD value is the final confirmation of the performance of the 
proposed control system. 

4.2.   Second scenario 
In the second scenario, the performance of the designed stabilizers is evaluated by changing 
the system loading conditions and increasing the output power of the generators. The active 
reactive power values of each generator in this scenario are presented in Table 1. In the 
loading conditions defined in the second scenario, as in the first scenario, a three-phase 
error to ground with 250 ms occurred in the communication line between the two regions. 
After optimization, the angular velocity curve of the generators is shown in Figure 7. 
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Figure 7: Angular velocity variations of generators in the second scenario 

 
As in the first scenario, the values of the objective function are calculated as shown in 
Figure 8 as bar diagrams. 

 
Figure 8: Objective function values in the second scenario 

 
As it can be seen from the results, the control system designed using the ACO algorithm 
has a higher accuracy than the system designed by the PSO algorithm. This indicates the 
accuracy of the proposed ACO algorithm over other algorithms. Also, the value of the 
objective function in the presence of the SSSC series compensator is much lower than the 
system without the compensator. The lower the value of the objective function, the control 
system will be able to make volatility damping in less time and with less range. 
The angular velocity variation curve indicates that the control system proposed in this paper 
has less volatility than the other two control methods. The maximum amplitude of variation 
for the three control methods was 1.52, 0.91 and 0.73, respectively. Damping time of 
volatility for these three systems were 7.26, 5.68 and 5.12, respectively. The damping time 
of the power system in the presence of the PSS stabilizer and the SSSC compensator has a 
smaller value. In terms of dynamic stability, it can be said that the lesser the settling time, 
the more stable the system becomes. The FD criterion for the second scenario was then 
calculated. Figure 9 shows the bar diagram. 
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Figure 9: FD values in the second scenario 

It should be noted that the lower the criterion value, the volatility dampens with lower 
range and in the shorter time. This is due to smallness of the FD criterion of the optimized 
control system in comparison to two other control systems when overshooting and 
undershooting or settling time in the system. 

5.   Conclusion 
In this paper, the stability of a multi-machine power system is studied. For this purpose, a 
standard four-machine power system was selected as the study system. PSS stabilizers with 
SSSC series compensator were used in this system. Coordination of power system 
stabilizers and SSSC compensator parameters is optimized by PSO and ACO optimization 
algorithms and finally, under different loading conditions, studies were repeated. 
Simulations are performed by applying three-phase error to earth and the performance of 
the designed control systems is evaluated. To compare the performance of each of the 
proposed systems, the maximum overshoot, settling time, and FD criteria have been 
calculated. Knowing these values helps us to think about each system fairly; lower values 
indicate the better performance of the control system. Meanwhile, the FD criterion can be 
the best criterion for comparisons. Because at that time, the settling time, overshooting and 
undershooting are considered. 
The results show that in the presence of series compensator, the stability margin of the 
system is increased and the criterion values are much lower than when no series 
compensator was used. If the PSS and SSSC are used simultaneously, the power system 
has a better condition and has been able to make volatility in different operating conditions 
with less amplitude and in a shorter damping time. The more the damping increases, the 
stability of the system increases, and the lines are able to transfer more power with the 
appropriate stability margin. 
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