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Abstract

State-of-charge and state-of-health of power lithium-ion batteries are two important state parameters for 
battery management system monitoring. To accurately estimate the state-of-charge and state-of-health of in real 
time, the ternary lithium-ion battery is taken as the research object, and a novel bias compensation recursive least 
square-multiple weighted dual extended Kalman filtering method is proposed innovatively. The noise variance 
estimation is introduced to compensate the parameters identified by the general least square method to realize the 
accurate identification. The estimation value is corrected by using the residual and Kalman gain at multiple times, and 
different weights are configured for each residual according to the amount of information contained. The data of 
different complex conditions are used to verify the feasi-bility of the proposed algorithm, the results show that the 
root-mean-square error of bias compensation recursive least square-multiple weighted dual extended Kalman 
filtering under dynamic stress test and Beijing bus dynamic stress test condition can be controlled within 1.62% 
and 2.70% in state-of-charge estimation, 0.17% and 0.81% in state-of-health estimation, which verifies that the 
proposed algorithm in this research has good running effect. The novel bias compensation recursive least square-
multiple weighted dual extended Kalman filtering method lays a theoretical foundation for the safe operation of 
electric vehicles.
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1 INTRODUCTION

With the rapid development of the industrial level in various countries, the development of clean and renewable energy 
has become a global issue due to the increasing shortage of resources and environmental pollution.1–3 In the process of 
the development of the automobile industry, pure electric vehicles have gradually become the main direction of the 
development of new energy vehicles because of their low noise,4 low pollution, simple structure, easy maintenance,
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and other advantages.5 The lithium-ion battery has become the best choice of electric vehicle power source and has 
been widely applied on account of its large energy density, lightweight, no memory effect, stable charge, and discharge 
voltage.6–8 State-of-charge (SOC) and state-of-health (SOH) are two extremely important state parameters of battery 
management system (BMS).9 High precision SOC estimation can effectively avoid battery overcharge and 
overdischarge,10 protect battery safety, and prolong service life.11 With the increase of battery charge and discharge 
times, SOH will gradually decay until the end of life.12 The performance of aging batteries is seriously degraded, and it 
is easy to cause a variety of safety problems.13–15 Therefore, real-time and effective monitoring of SOC and SOH status 
of power lithium-ion batteries is of great significance to the safety, reliability, and power performance of electric 
vehicles.

The commonly used SOC and SOH estimation algorithms at home and abroad include direct measurement method, 
data-driven method, and model-based method.16,17 Direct measurement is an open-loop estimation method, which 
usually includes the open-circuit voltage (OCV) method and Ampere-hour.18,19 In the OCV method, the OCV–SOC 
relationship is greatly affected by the working environment, and the OCV is the voltage of the battery in the steady 
state,20 which will take a lot of time to put the battery from the working state to the equilibrium state.21 Ampere-hour 
is widely used method for estimation of SOC, and it has simple calculation and easy implementation.22 However, it 
requires high accuracy of initial value, and the error of estimation will be larger and larger with the accumulation of 
time.23 The essence of data-driven method is also a kind of open-loop estimation method,24,25 which is developed with 
machine learning and artificial intelligence algorithm.26 But it needs a large amount of data and a high cost of calcula-
tion.27 The model-based method simulates the internal dynamic reaction process of lithium-ion battery by establishing 
equivalent circuit model,28 and the parameters of lithium-ion battery in real-time are taken as the input of the equiva-
lent circuit model, and then the SOC is estimated by combining with the filtering algorithm in the control theory.29

Xiong et al. use the Kalman filter (KF) algorithm to calculate SOC, which lays the foundation for the next 
research,30 but it cannot be applied to nonlinear systems because the state transition matrix A, and calculation mea-
surement matrix C in KF equation are linear. Extended KF (EKF) is proposed to estimate the SOC of the second-order 
battery model, which makes the algorithm keep high estimation precision under the circumstance of unknown noise 
and is suitable for nonlinear systems.31 In Zhi et al.,32 an extended KF-adaptive unscented KF (EKF-AUKF) algorithm 
is proposed creatively to estimate SOC of first-order RC battery and higher precision is obtained. An online SOH estima-
tion method based on dual unscented KF (DUKF) algorithm is proposed.11 Two independent unscented KFs (UKFs) 
were used to estimate battery SOC and internal resistance at the same time, and the estimation accuracy was higher 
than that of single UKF algorithm.

To better characterize the battery characteristics and estimate the battery state accurately, in this research, the 
second-order Resistor-Capacitance (RC) equivalent circuit model is constructed, the bias compensation recursive least 
square (BCRLS) algorithm which introduces noise variance to compensate the battery parameters is proposed innova-
tively to identify the parameters online precisely, SOC and SOH is co-estimated by the proposed novel multiple 
weighted dual extended Kalman filtering (MWDEKF) method.

2 MATHEMATICAL  ANALYSIS

The internal dynamic characteristics of lithium-ion batteries mainly depend on their chemical parameters, which 
cannot be measured by external instruments. Therefore, it is particularly essential to establish a suitable equivalent 
model for research needs and accurate online parameter identification.

2.1 Second-order RC equivalent circuit modeling

Thevenin model is based on the Rint model, adding an RC circuit to equivalent the internal polarization reaction of the 
battery, which simply distinguishes the dynamic and static characteristics, but ignores the different speeds of electro-
chemical polarization reaction and concentration polarization reaction. It is usually solved by adding a certain number 
of RC circuits. According to the above analysis, an RC circuit is added to the Thevenin model, which can characterize 
the charge–discharge characteristics of the battery precisely, and the calculation work is not heavy. Accurate modeling 
and simple calculation are considered comprehensively; the second-order RC equivalent circuit model is built, which is 
shown in Figure 1.
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where, [SOC U1 U2]
T is selected as the state variable.

2.2 Parameter identification based on BCRLS

Recursive least square (RLS) is an algorithm for parameter identification of model and data mining based on adaptive 
filtering theory. This method can be applied to the situation that the system model and parameters are greatly affected 
by external conditions by regularly correcting and updating the system parameters and can capture the real-time 
characteristics of the system accurately. The discrete equation of the model to be identified and the corresponding 
difference equation are shown in Equation 2.

G zð Þ¼ y zð Þ
u zð Þ¼

b1z�1þb2z�2þ���þbnz�n

1þa1z�1þa2z�2þ�� �þanz�n

y kð Þ¼�Pn
i¼1

aiy k� ið ÞþPn
i¼1

biu k� ið Þþ v kð Þ

8>>><>>>: ð2Þ

where a, b are the parameters to be estimated; y (k) is the k-time observation value of the system output; U (k) is the
k-time value of the system input; V (k) is the random noise with the mean value of 0.

In view of the noise signal in the battery measurement data, the traditional RLS cannot identify the battery model
parameters with high accuracy, and the accuracy of battery model parameters directly affects the estimation accuracy
of battery SOC and SOH. The BCRLS algorithm introduces the noise variance estimation, which can compensate the
parameters identified by the general RLS, and realize the accurate identification of the battery model parameters.
Parameter initialization of BCRLS is shown in Equation 3.

In Figure 1, the OCV is represented by UOC, the terminal voltage is represented by UL, the ohmic internal resistance is 
represented by R0, where R1 and R2 represent the electrochemical polarization resistance and concentration polariza-
tion resistance, C1 and C2 represent the electrochemical polarization capacitance and concentration polarization 
capacitance, respectively, and the current I is in the positive direction when discharging. Due to the consideration of 
Kirchhoff's law, the expressions of voltage and current of the equivalent circuit can be obtained by analyzing the 
second-order RC equivalent circuit model as shown in Equation 1.

UL ¼ UOC � I tð ÞR0 �U1 �U2
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_

θc 0ð Þ¼ θ 0ð Þ¼ ε

J 0ð Þ¼ 0

P 0ð Þ¼ δI0

8><>: ð3Þ

bθwhere c 0ð Þ is the initial value of the bias compensation parameter, θ(0) is the initial value of the identification
parameter by RLS, J(0) is the initial value of error criterion function, and P(0) is the initial value of covariance matrix.
δ is generally a large positive number, and I0 is the identity matrix. The prediction output of the model and estimation
error is shown in Equation 4.



by kð Þ¼ϕT kð Þθ k�1ð Þ
e kð Þ¼ y kð Þ�by kð Þ

(
ð4Þ

where φT(k) = [�y(k � 1), �y(k � 2), …, �y(k � na), u(k � 1), …, u(k � nb)], which is a collection of system samples;
θ(k) is parameter vector to be identified. In each iteration, the algorithm uses the difference between the calculated
value of the system observation and the actual observation value as well as the gain K to correct the final estimated
value. The calculation of gain matrix K and parameter estimation of battery are shown in Equation 5.

K kð Þ¼ P k�1ð Þϕ kð Þ 1þϕT kð ÞP k�1ð Þϕ kð Þ� ��1

θ kð Þ¼ θ k�1ð ÞþK kð Þe kð Þ

(
ð5Þ

The error criterion function J(k) calculation and noise variance σ2(k) estimation are shown in Equation 6.

J kð Þ¼ J k�1ð Þþ e2 kð Þ 1þϕT kð ÞP k�1ð Þϕ kð Þ� ��1

σ2 kð Þ¼ J kð Þ
k 1þθc k�1ð Þθ k�1ð Þ½ �

8><>: ð6Þ

The update of the covariance matrix P(k) and the parameters θc(k) of the battery model after bias compensation are
shown in Equation 7.

P kð Þ¼ I�K kð ÞϕT kð Þ� �
P k�1ð Þ

θc kð Þ¼ θ kð Þþkσ2 kð ÞP kð Þθc k�1ð Þ

(
ð7Þ

The battery model is transformed into the least square mathematical form as shown in Equation 8.

UOC ¼ULþ R1

R1C1sþ1
þ R2

R2C2sþ1
þR0

� �
I ð8Þ

Let the time constant τ1 = R1C1, τ2 = R2C2, and a = τ1τ2, b = τ1 + τ2, c = R0 + R1 + R2, d = R1τ2 + R2τ1 + R0(τ1 + τ2).
s = [x(k) � x(k � 1)]/T is substituted into Equation 8 for discretization, where T means the sampling time, which is
shown in the first part of Equation 9. The parameters are abstracted as shown in the second part of Equation 9.

UOC kð Þ�UL kð Þ¼ �bT�2a
T2þbTþa

UL k�1ð Þ�UOC k�1ð Þ½ �þ a

T2þbTþa
UL k�2ð Þ�UOC k�2ð Þ½ �

þcT2þdTþaR0

T2þbTþa
I kð Þþ�dT�2aR0

T2þbTþa
I k�1ð Þþ aR0

T2þbTþa
I k�2ð Þ

UOC kð Þ�UL kð Þ¼ k1 UL k�1ð Þ�UOC k�1ð Þ½ �þk2 UL k�2ð Þ�UOC k�2ð Þ½ �
þk3I kð Þþk4I k�1ð Þþk5I k�2ð Þ

8>>>>>>><>>>>>>>:
ð9Þ
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The identification parameter vector is θ = (k1, k2, k3, k4, k5)
T. Let k1 = (�bT�2a)/(T2+bT+a), k2 = a/(T2+bT + a),

k3 = (cT2+dT+aR0)/(T
2+bT+a), k4 = (�dT�2aR0)/(T

2+bT+a), k5 = aR0/(T
2+bT+a). After the identification, the

actual parameters are obtained by Equation 10.

R0 ¼ k5
k2

R1 ¼ τ1cþ τ2R0�dð Þ= τ1� τ2ð Þ
R2 ¼ c�R1�R0

C1 ¼ τ1=R1,C2 ¼ τ2=R2

8>>>>><>>>>>:
ð10Þ

2.3 Multiple weighted calculation

EKF algorithm transforms nonlinear problems into linear ones by Taylor expansion of nonlinear systems. However, if 
the nonlinearity of the system is very strong, using the EKF algorithm directly will violate the assumption of local linear 
approximation. With the iteration of the algorithm, it is easy to cause the accumulation of errors. To improve the adapt-
ability of EKF in a nonlinear system, the scalar innovation is extended to innovation matrix, and an innovation-based 
identification theory and method is established.

Based on the multiple innovation theory, the innovation e(k) = UL(k) � Ckx(kjk � 1) is extended to the innovation 
matrix E(p,k) as shown in the first part of Equation 11. To adapt to the compatibility of calculation, the extended KF 
gain K(k) is extended to the filter gain matrix K(p,k) as shown in the second part of Equation 11.

E p,kð Þ¼ e kð Þ e k�1ð Þ � � � e k�pþ1ð Þ½ �T
K p,kð Þ¼ K kð ÞK k�1Þ� � � K k�pþ1ð Þð �½

(
ð11Þ

When the innovation matrix e(p,k) and filter gain matrix K(p,k) are introduced into the standard extended KF
algorithm, the state update equation is shown in Equation 12. Where p is the time step.

bx¼bx kjk�1ð ÞþK p,kð ÞE p,kð Þ ð12Þ

Although the multiple-extended Kalman filtering (M-EKF) algorithm introduces the innovation scalar of multiple
times to form the innovation matrix e(p,k), which makes the accuracy of M-EKF for nonlinear system, state estimation
has been improved compared with EKF, but it is still not accurate enough. Because the innovation e(k) of different
times in innovation matrix is different from the current time, it is generally considered that the amount of information
contained in it is also different, so we cannot simply treat all innovations as the same. Therefore, different weight
factors should be configured as shown in Equation 13.

5

β1 ¼ 1

β2 ¼ β3 ¼ ���βp ¼
a

p�1

8<: ð13Þ

where p is the innovation data width and a is the allocation coefficient which is equal to 1.98. The weighted multiple
innovation matrix and state update equation are shown in Equation 14.

eE p,kð Þ β¼ 1e kð Þ β2 ðe k�1Þ βk p� � � � þ1e k�pþ1ð Þ
h Ti

xb¼bx kjk�1ð ÞþK p,kð ÞeE p,kð Þ

8<: ð14Þ

To sum up, the principle of multiple weighted calculation is shown in Figure 2.



2.4 Multiple weighted dual extended Kalman filtering

The capacity of the battery will gradually decrease with the increase of battery life, and the decrease of capacity will 
lead to the decrease of SOH, so the change of battery capacity can predict the change of SOH. Therefore, capacity is 
selected as the state variable of SOH estimation, which is shown in Equation 15.

SOHQ ¼ Qnow

Qstart
ð15Þ

Dual extended KF (DEKF) algorithm uses two KFs to estimate battery capacity and SOC, respectively. One of the
KFs uses EKF to estimate SOC, which takes SOC as the only state variable and battery capacity as a constant. Another
KF uses EKF algorithm to estimate the battery capacity, which takes SOC as the input value and battery capacity as the
state variable. The change of battery SOH can be obtained by predicting the attenuation of capacity. Therefore, DEKF
algorithm can jointly estimate SOC and SOH. In the process of combination, the parameters in the model are updated
and calculated by the observed variables to improve the estimation accuracy of the algorithm.

The state equation and system observation equation of DEKF algorithm can be written in the form of Equation 16.

SOCkþ1

U1,kþ1

U2,kþ1

2664
3775¼

1 0 0

0 e�Δt=τ1 0

0 0 e�Δt=τ2

2664
3775

SOCk

U1,k

U2,k

2664
3775þ

�Δt
Qk

R1 1� e�Δt=τ1
� �

R2 1� e�Δt=τ2
� �

2666664

3777775Ikþwk

Q kþ1ð Þ¼Q kð Þþ r kð Þ

UL,kþ1 ¼UOC,kþ1�U1,kþ1�U2,kþ1� IR0þ vk

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð16Þ
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Since the capacity of the battery will decay with the increase of the number of battery cycles, an external noise R is
added to the state equation to estimate the capacity to simulate the attenuation process of the battery capacity. The
coefficient matrix of state equation and observation equation are shown in Equation 17, respectively.

Ax
k ¼

1 0 0

0 e�Δt=τ1 0

0 0 e�Δt=τ2

2664
3775

Bx
k ¼

�Δt
Qk

R1 1� e�Δt=τ1
� �

R2 1� e�Δt=τ2
��

2666664

3777775
Ak
Q ¼ 1

Cx
k ¼

∂UOC

∂SOC
�1 �1

� 	
Ck
Q ¼� iΔt

Q2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ



Among them, Ak
x, Bkx, and Ck

x are state equation coefficient matrix and observation equation coefficient matrix for 
SOC estimation, Ak

Q and Ck
Q are state equation coefficient matrix and observation equation coefficient matrix for 

battery capacity estimation. w(k) is the process noise of SOC estimation at k, and r(k) is the process noise of capacity 
estimation at k. w(k) and r(k) are Gaussian white noise with zero mean and w and r variance, respectively. v(k) is the 
measurement noise with zero mean and v variance. w(k) and r(k) are not related to v(k).

The flow chart of DEKF algorithm using two filters to estimate SOC and capacity is shown in Figure 3.
The BCRLS algorithm for online parameter identification is combined with the multiple weighted algorithm and 

DEKF algorithm to form a novel BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF) 
algorithm for joint estimation of battery SOC and SOH.

3 EXPERIMENTAL  ANALYSIS

To verify the working effect of the proposed algorithm in this research, the dynamic relationship between each 
parameter and SOC is obtained through online identification and applied in the algorithm. The experimental verifica-
tion was carried out under different complex operating conditions such as DST (dynamic stress test), BBDST (Beijing 
bus dynamic stress test) and the proposed algorithm is compared with other algorithms to get better verification.

3.1 Test platform construction

Experimental data used for algorithm verification need to be obtained through experiments of battery. Lithium-ion 
aluminum shell cell with rated capacity of 50AH and nominal voltage of 3.7 V produced by Delip Battery Technology 
Co., Ltd. is used for experiment, BTS200-100-104 battery testing equipment provided by Shenzhen Yakeyuan 
Technology Co., Ltd. is used as the experimental platform. The lithium-ion battery used in the experiment is shown in 
Figure 4A, the experimental equipment that can charge and discharge, monitor and record the current and voltage state 
in real-time is shown in Figure 4B.

3.2 Online parameter identification results

According to the definition of OCV, it can only be measured when the battery gets stabilized. OCV–SOC curve can be 
obtained by experiment which can be described as follows: The battery is fully charged, then it is discharged to a
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specific SOC at constant current, and the battery is waited until reaching a stable state. At this time, the OCV value 
corresponding to this SOC value is measured. The process is repeated by discharging the battery from 0.9 to 0.8 SOC 
until the battery is discharged to 0 SOC to obtain the discharge OCV–SOC curve. It can be seen from Figure 5A that the 
OCV is 3.9443 V when SOC is 0.8. To consider the hysteresis effect of the battery, the battery is charged in the same 
way. Generally, the OCV–SOC curve of charge and discharge is not coincident, but a group of banded hysteresis 
structures with the gap between the ends will be formed. The OCV–SOC curve obtained in the charging process will be 
slightly higher than that obtained in the discharge process, which is shown in Figure 5B. Uoc1 represents the charge 
OCV curve, and Uoc2 represents the discharge OCV curve. Then the accurate OCV is obtained by averaging.

The hybrid pulse power characterization (HPPC) working condition data at room temperature are selected for 
online parameter identification of the model. The HPPC experiment steps are as follows:

1. The battery is charged with constant current and constant voltage at a voltage of 4.2 V and a current of 1C until it is
fully charged. The basic current is 50 A.

2. The battery is placed for 40 min, then is discharged at 1C constant current for 10 s, and then the battery is placed for
40 s. To recover the power of the battery before discharge, the battery is charged with 1C constant current for 10 s,
and then is put aside for 3 min after charging.

3. Step 2 is the whole process of one pulse charge and discharge. After that, the battery is discharge at 1C constant
current for 6 min to reduce the capacity by 10%. Steps 2 and 3 are repeated for 10 times.



The BCRLS algorithm is validated by the experimental data obtained from HPPC to obtain the dynamic changes of 
internal parameters of lithium-ion battery at different times, and the identification results of ohmic resistance R0, 
polarization resistance R1 and R2, and polarization capacitance C1 and C2 at different SOC stages are obtained; the 
dynamic parameter identification results are shown in Figure 6.

The online parameter identification results are used as the input of the model to get the simulated voltage and then 
compared with the measured voltage to analyze the accuracy of parameter identification. The experimental results are 
shown in Figure 7.

In Figure 7A, U1 represents the measured voltage value, U2 represents the simulation voltage value corresponding 
to offline identification based on curve fitting, U3 represents the simulation voltage value identified by RLS, and U4 
represents the simulation voltage value identified by BCRLS. In Figure 7B, Err1 � Err3 represent the simulation voltage 
error curve corresponding to U2 � U4. It can be seen that in each cycle, the simulation error of battery charging and 
discharging part at the moment of current mutation is relatively large, which is related to the violent chemical reaction 
inside the lithium-ion battery. The estimation error of BCRLS is controlled within 0.0131, less than 0.311%. The 
experimental results show that the BCRLS algorithm can obtain high-precision online parameter identification results, 
which can be used in the subsequent SOC and SOH co-estimation.

3.3 Experimental verification under DST operating condition

To verify the operation effect of SOC and SOH co-estimation of the proposed algorithm for lithium-ion batteries under 
complex application conditions, the self-defined DST experimental data are used for verification. The battery is charged 
with 1C rate constant current until the upper limit termination voltage is 4.2 V. After charging, the battery is shelved 
for 30 min to stabilize the battery voltage. Constant current discharge and constant current charge were carried out at
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0.5C rate for 4 min, and then constant current discharge was carried out at 1C rate for 4 min. These three steps are 
cycled until the end of discharge. The optimal value of innovation data width p should be determined according to 
many times of debugging, and the estimation effect under different values should be compared. In this case, p = 4. The 
simulation results of RLS-DEKF, BCRLS-DEKF, and BCRLS-MWDEKF under DST operating condition are shown in 
Figure 8.

According to Figure 8B, in the early stage of discharge, the estimation accuracy of BCRLS-MWDEKF is not too high, 
compared with the other two algorithms, it does not show obvious advantages. However, in the middle and late stages 
of discharge, the error of RLS-DEKF changes more smoothly, and the estimation accuracy of BCRLS-DEKF improves 
significantly, which reflects the huge improvement of parameter identification accuracy by adding bias compensation 
in the algorithm, thus indirectly improving the SOC estimation accuracy. The convergence of BCRLS-MWDEKF is nice, 
it can track the real value well and achieve good estimation accuracy, which reflects the promotion of multiple 
weighted algorithm of the SOC estimation. According to Figure 8D, in the later stage of discharge, the SOH estimation 
value of the battery fluctuates greatly, resulting in the accumulation of errors, which is related to the strong chemical 
reaction inside the battery itself. However, in this case, BCRLS-MWDEKF still has a good estimation accuracy, and the 
maximum error is only 0.31%. The estimated value of BCRLS-DEKF is relatively stable in the early stage, but the error 
increases in the later stage. RLS-DEKF has a strong divergence and cannot track the real value accurately. By compar-
ing the estimation results of SOC and SOH, it shows the superiority of the proposed BCRLS-MWDEKF algorithm. The 
estimation results of the three algorithms are compared through the maximum error, mean absolute error (MAE), and 
root-mean-square error (RMSE) under DST working condition as shown in Table 1.

3.4 Experimental verification under BBDST operating condition

BBDST working condition is obtained from the real data collection of the Beijing bus dynamic stress test, including the 
data of the bus in the start, taxiing, acceleration, rapid acceleration, and other operations, which is authentic and 
dynamic. The practical application condition of high-power lithium-ion batteries is complex and changeable. It will be 
more convincing to use BBDST experimental data to verify the feasibility of the proposed algorithm. In this case, the 
innovation data width p = 4. The simulation results of RLS-DEKF, BCRLS-DEKF, and BCRLS-MWDEKF under 
BBDST operating condition are shown in Figure 9. 
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Figure 9B shows the error of SOC estimation, the convergence of RLS-DEKF is poor and the error accumulation 
phenomenon is obvious, the maximum error is up to 2.44% at the end of discharge. The estimation accuracy of BCRLS-
DEKF is higher than that of RLS-DEKF, but it fluctuates sharply in the early stage. BCRLS-MWDEKF has the best 
performance, and the simulated value always deviates from the real value in the whole process of the experiment. The 
experimental results in Figure 9D show that the SOH maximum error estimated by the three methods is 2.69%, 2.28%, 
and 1.89%, respectively. In this complex condition, BCRLS-MWDEKF still has the best accuracy. The estimation results of 
the three algorithms are compared through the maximum error, MAE, and RMSE under BBDST working condition as 
shown in Table 2.

Through the comparison of the above experimental results, it can be concluded that the BCRLS-MWDEKF 
algorithm has good accuracy and performance.

4 CONCLUSIONS

Accurate SOC and SOH estimation of high-power lithium-ion batteries is of great significance to the development of 
new energy vehicles. In this research, the second-order RC model is applied to characterize the state and characteristics 
of the battery, and the BCRLS method is applied for online parameter identification. To improve the accuracy of battery 
state estimation, a novel multiple weighted dual extended Kalman filtering method which can make full use of multiple 
time information and realize the collaborative estimation of SOC and SOH is proposed. The experimental data of DST 
and BBDST operating conditions are used for verification based on three different algorithms for comparison. The 
results show that the RMSE of the novel BCRLS-multiple weighted dual extended Kalman filtering under DST and 
BBDST condition can be controlled within 1.62% and 2.70% in SOC estimation and 0.17% and 0.81% in SOH estimation; 
the accuracy and performance are greatly improved. The research has positive significance to improve the accuracy of 
state estimation of lithium-ion batteries and promote the further development of new energy vehicles.
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FIGURE  1  Second-order RC equivalent circuit model.

FIGURE  2  The principle of multiple weighted calculation.

FIGURE  3  The process of SOC and SOH co-estimation by DEKF.
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F  IGURE  4  Experimental equipment. (A) Lithium-ion battery used in the experiment. (B) BTS200-100-104 battery testing equipment.
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FIGURE  5  Hysteresis characteristic curve of battery OCV. (A) OCV when SOC is 0.8. (B) OCV–SOC curve.

FIGURE  6  Online parameter identification results. (A) Parameter identification results of R0, R1, and R2. (B) Parameter identification 
results of C1 and C2. 
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FIGURE  7  Parameter identification results under HPPC working condition. (A) Comparison of parameter identification results 
under HPPC working condition. (B) Parameter identification error under HPPC working condition
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FIGURE  8  SOC and SOH co-estimation results under DST operating condition. (A) Comparison between estimated and reference SOC.
(B) SOC estimation error. (C) Comparison between estimated and reference SOH. (D) SOH estimation error.
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TABLE  1  Comparison of SOC and SOH co-estimation results of different algorithms under DST working condition.

Estimation method RLS-DEKF BCRLS-DEKF BCRLS-MWDEKF

SOC maximum error 4.05% 3.81% 3.61%

SOC MAE 3.08% 2.80% 2.58%

SOC RMSE 3.11% 2.91% 2.70%

SOH maximum error 1.34% 0.47% 0.31%

SOH MAE 0.54% 0.21% 0.13%

SOH RMSE 0.69% 0.28% 0.17%

TABLE  2  Comparison of SOC and SOH co-estimation results of different algorithms under BBDST working condition.

Estimation method RLS-DEKF BCRLS-DEKF BCRLS-MWDEKF

SOC maximum error 3.17% 4.21% 2.82%

SOC MAE 2.09% 1.55% 1.30%

SOC RMSE 2.49% 1.82% 1.62%

SOH maximum error 2.69% 2.28% 1.89%

SOH MAE 1.22% 0.80% 0.59%

SOH RMSE 1.48% 1.06% 0.81%
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FIGURE  9  SOC and SOH co-estimation results under BBDST operating condition. (A) Comparison between estimated and reference 
SOC. (B) SOC estimation error. (C) Comparison between estimated and reference SOH. (D) SOH estimation error.
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