
ALI-GOMBE, A., ELYAN, E., MORENO-GARCIA, C.F. and ZWIEGELAAR, J. 2021. Face detection with YOLO on edge. In 
Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Enginering applications of neural 

networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural 
Networks Society (INNS), 3. Cham: Springer [online], pages 284-292. Available from: https://doi.org/10.1007/978-3-

030-80568-5_24  

 
 
 
 

This is a post-peer-review, pre-copyedited version. The final authenticated version is available online at: 
https://doi.org/10.1007/978-3-030-80568-5_24.  This pre-copyedited version is made available under the 
Springer terms of reuse for AAMs: https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms.  

This document was downloaded from 
https://openair.rgu.ac.uk 

Face detection with YOLO on edge. 

ALI-GOMBE, A., ELYAN, E., MORENO-GARCIA, C.F. and ZWIEGELAAR, J. 

2021 

https://doi.org/10.1007/978-3-030-80568-5_24
https://doi.org/10.1007/978-3-030-80568-5_24
https://doi.org/10.1007/978-3-030-80568-5_24
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


Face Detection with YOLO on Edge ?

Adamu Ali-Gombe1, Eyad Elyan1, Carlos Francisco Moreno-Garćıa1, and
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Abstract. Significant progress has been achieved in objects detection
applications such as Face Detection. This mainly due to the latest devel-
opment in deep learning-based approaches and especially in the computer
vision domain. However, deploying deep-learning methods require huge
computational power such as graphical processing units. These computa-
tional requirements make using such methods unsuitable for deployment
on platforms with limited resources, such as edge devices. In this paper,
we present an experimental framework to reduce the model’s size system-
atically, aiming at obtaining a small-size model suitable for deployment
in a resource-limited environment. This was achieved by systematic layer
removal and filter resizing. Extensive experiments were carried out using
the “You Only Look Once” model (YOLO v3-tiny). For evaluation pur-
poses, we used two public datasets to assess the impact of the model’s
size reduction on a common computer vision task such as face detection.
Results show clearly that, a significant reduction in the model’s size, has
a very marginal impact on the overall model’s performance. These re-
sults open new directions towards further investigation and research to
accelerate the use of deep learning models on edge-devices.

Keywords: Deep Learning · YOLO · Face Detection.

1 Introduction

Face detection is a common task across many computer vision applications such
as face recognition systems [2], border control systems [16] and others. Early face
detector systems employed features engineering techniques such as SIFT [13] and
HOG [5], which are fast and lightweight with low computation requirements.
However, these models were limited and do not generalise well enough when
compared to more recent deep learning-based approaches. Although deep learn-
ing models are state-of-the-art as seen in many domains [14] [6], deploying them
in the real world is resource-intensive. Most of these models require Graphi-
cal Processing Units (GPU) and a large memory to achieve performance goals.
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In return, this hinders their use in a resource constraint environment, such as
a CPU only system. Therefore, there is an evident need to account for other
computational metrics, such as memory footprint, parameters, operation count,
inference time and power consumption [3].

Over-parametrisation is a major concern in deploying deep models [3]. This
leads to a significant increase in model size and inference time, thereby mak-
ing the algorithms less viable in constrained environments. Many approaches to
reducing the storage size and parameters of models have been proposed in the
literature. These include quantisation, pruning parameters/layers, neural archi-
tectural search, architecture parallelisation and others [1], [4]. While these ap-
proaches are effective, they are a trade-off between size and performance. More-
over, it is also difficult to ascertain the best approach due to varying benchmarks
and evaluation criteria. Again, these methods and some architectural choices can
produce the most compact model, but may not necessarily produce the best ac-
curacy.

In this paper, we present a reconfiguration of the You Only Look Once
(YOLO) v3-tiny architecture to achieve reduced model storage sizes and param-
eters. We target the model size because the amount of computations directly
affects the inference time, which is crucial in real-world application [3]. Different
light models were also evaluated, with each model trading a slight performance
for size. This was achieved through systematic filters resizing and trimming
large layers that contribute to large parameters. Filter resizing was inspired by
SqueezeNet [11], and trimming was based on experimentation. While similar re-
searches such as [19], [10] and [7] were conducted on general object detection,
our experiments are focused on face detection task. Furthermore, we compare
different lighter model versions to a YOLO v3-tiny baseline on two different
datasets and using several metrics. Our experiments showed that we are able to
make the model 16 times smaller and still maintain comparable performances.

The rest of the paper is organised as follows. In Section 2, related literature is
reviewed and discussed. Section 3 presents the model used in this work. Section 4
discusses in details experimental set-up and the datasets used. Findings are
discussed in section 5. Finally, we conclude and suggest future directions in
Section 6.

2 Literature

A common approach to size reduction is pruning, which focuses on removing
redundant connections after training. This technique finds a sub-network within
the model, with performances similar to the large model. Weight removing is
based on magnitude [8] or even a learning criterion [17]. Salvi et al. [1] provided
an in-depth analysis among these approaches, and highlighted that pruning pro-
duces sparse matrices which may not necessarily be optimised. Efficient convolu-
tion and activations also reduce parameter sizes. For instance, SqueezeeNet [11]
achieved AlexNet level performance with 50 times less parameters and a model
size of about 0.5 MB, by replacing 3 × 3 with 1 × 1 filters in convolution layers.
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Other approaches use network distillation in an ensemble with a large teacher
to guide a smaller student using a hint layer [9].

YOLO v3-tiny model was proposed as a lighter version of the original YOLO
v3 model [15]. This was built to target embedded systems and scenarios with
computation and memory constraints. However, at 33 MB, the model may not
scale well for restrictive systems like mobile devices and client-web applications.
This has lead to many research extension to the original and tiny YOLO frame-
works. These extensions target either speed in terms of Frames Per Second
(FPS), storage size, or the number of operations.

YOLO Nano [19] extended the original YOLO v3 with a more compact archi-
tecture, using a human-machine collaborative design strategy. This model em-
ploys customisable module-level microarchitecture to a specific task. The net-
work contains stacked convolution layers with short-cut connections between
some layers and outputs bounding box, class and confidence in the final layer.
An interesting extension was the use of generative synthesis to determine the
optimal macro and microarchitecture designs from the human-specific require-
ments and constraints. This set up was found to reduce the model size(≈ 4.0
MB) and computational cost (4.57 BFLOP) without compromising performance.

YOLO LITE [10] focused on speed only in terms of how much FPS could the
model achieve in a constrained environment (ignoring both size and weights). By
speeding up, this alternative prunes some layers and, along with batch normali-
sation, significantly improves speeds up to 21 FPS. From YOLO v2-tiny with 9
convolution layers, 3181 filter and 6.97 BFLOPS, the LITE version had only 7
layers with 749 filters and 482 MFLOP in the best model version.

Tinier-YOLO [7] was presented as an optimised YOLO v3-tiny with the
aim of achieving a smaller, faster and more accurate model in a constrained
environment. This was achieved by adding a fire module to the SqueezeNet
backbone for reduced parameters without losing significant accuracy. That is,
tinier-YOLO keeps the first five layers of v3-tiny but replaces the middle and
final part. After that, the authors presented a model size of 8.9 MB compared
with 25.1 FPS on Jetson TX1.

Fast-Yolo [18] targeted real-time object detection in embedded devices. The
new framework introduced motion-adaptive inference to improve the inference
frequency. In this setup, not all of the frame sequences are processed. Thus, a
motion probability map is produced by stacking frames with a reference frame
using 1× 1 convolution. This is used to determine if the frame is unique enough
before a new inference is generated. It also leads to reduced power consumption
at the expense of a slower running time per frame. The authors also applied
an evolutionary deep intelligence framework on YOLO v2 by synthesising the
Fast-YOLO architecture. Fast-YOLO is 3.3 times faster than YOLO v2 and 2.8
times more compact.
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3 Method

YOLO is an anchor-based detector that uses a set of pre-computed bounding
boxes to refine detection. YOLO is one of the most widely used detectors and a
fast unified detector that outputs bounding box coordinates without the need for
region proposals and proposal networks. Detection starts by dividing the image
into grids. These grids could be on the scale of 52×52, 26×26 and 13×13 in the
original YOLO architecture. Each grid cell outputs four predictions; the confi-
dence (class probability or objectness), the centre of the object (x, y), the height
and the width of the bounding box (w, h). Figure 1 summarises the YOLO pre-
diction pipeline. YOLO v3-tiny is a reduced version that targets improved speed
and reduced size at the expense of model accuracy. The YOLO v3-tiny has nine
convolution layers and uses 26× 26 and 13× 13 grids to perform detection. The
YOLO loss is calculated using Equation 1. YOLO uses a convolution network
backbone, that is, a set of convolution layers with a fully connected layer for
prediction.
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2

+λnoobj

s2∑
i=0

B∑
j=0

lnoobj
ij (Ci − Ĉi)
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(1)

where lobji denotes the presence of object in cell i, lobjij the jth bounding box in
cell i, C is a set of classes with p(c) probability, B is the set of bounding boxes,
S2 is the grids and x, y, w, h are coordinates.

4 Experiment

All experiments were carried out using the original YOLO repository from Dark-
Net, keeping the same hyper-parameter settings.

4.1 Dataset

The first dataset considered is WiderFaces dataset [20], which is a popular public
face detection benchmark. The dataset contains face samples across 61 scenarios
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(a) (b) (c)

Fig. 1: YOLO detection pipeline. The image on the left shows the input image
divided into grids, the second figure is the image after prediction and the right-
most figure shows the image and the location face location after post-processing.

under varying conditions such as high occlusion, pose angle and illumination.
WiderFaces contains 32, 203 images, with 393, 703 labelled faces. The dataset is
split into a train, validation and a test set (40-10-50 split). For each experiment,
the training set was used to train detectors, and the validation set was kept as
a hold out set for evaluation.

The second dataset is the Face Detection Data Set and Benchmark (FDDB) [12].
FDDB contains 2845 images with a total of 5171 annotated faces. The dataset is
created from faces in the wild, and images are less complex compared to Wider-
Faces. FDDB images are a mixture of a front-facing facial pose, different view
angles, multiple faces per images with occasional half and tiny faces. All images
in this dataset were used to evaluate models trained on WiderFaces.

4.2 Models

The base model we used is the YOLO v3-tiny, which we refer to as 33m-YOLO
in these experiments. The model can be divided into two parts. The first part
contains 10 convolution layers. The first six layers of this part are succeeded
with 2 × 2 max-pooling layer. All convolution layers have 3 × 3 filters except
for the eighth and the tenth layer. This part ends with the first output layer of
13 × 13 grid predictions. The second part contains a 1 × 1 convolution, followed
by a 2× up-sample layer, a convolution layer with 3×3 filters and a convolution
layer with a 1 × 1 filter. This section ends with a final 26 × 26 output layer.
The 33m-YOLO is 34.8MB in size and has 8, 676, 244 parameters with 5.448
BFLOPS.

The first model was generated by removing the seventh, eighth and ninth
convolution layer along with the last max-pooling from the first part. These
are the layers with the largest number of filters and parameters. We refer to
this model 10m-YOLO in our experiments, with a size of 10.1 MB, 2, 508, 692
parameters and 3.365 BFLOPS. The second model was build from the first model
by introducing a 1×1 convolution in the sixth layer. The number of filters in the
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sixth layer was also changed from 512 to 256. We refer to this model 5m-YOLO
with a size of 5.7 MB, 1, 388, 948 parameters 2.987 BLOPS. The final model in
this experiment is the 2m-YOLO. This was generated by using 1 × 1 filters in
all convolution in the second section. 2m-YOLO has a size of 2.7 MB, 602, 516
parameters with 1.924 BFLOPS.

5 Results and Discussion

Figures 2 shows some sample detections from the trained models, and Table 1
shows the performance of the models on different detection metrics. Results
were obtained by using the official YOLO evaluation script with 0.5 detection
threshold.

Table 1: Models performances on WiderFaces dataset.

dataset model TP FP FN avg. IoU mAP precion recall F1-score size(MB)

WiderFaces

33m-yolo 14196 13043 25509 0.38 0.34 0.52 0.36 0.42 34.8
10m-yolo 13660 14628 26045 0.35 0.31 0.48 0.34 0.40 10.1
5m-yolo 12650 10499 27055 0.40 0.31 0.55 0.32 0.40 5.7
2m-yolo 13057 12822 26648 0.36 0.30 0.50 0.33 0.40 2.4

FDDB

33m-yolo 2785 2265 2386 0.38 0.44 0.55 0.54 0.54 34.8
10m-yolo 2566 2173 2605 0.38 0.36 0.54 0.50 0.52 10.1
5m-yolo 2219 2025 2952 0.35 0.27 0.52 0.43 0.47 5.7
2m-yolo 2147 2143 3034 0.33 0.30 0.50 0.42 0.45 2.4

All three model versions, 10m-YOLO, 5m-YOLO and 2m-YOLO have sizes
significantly smaller than the original 33m-YOLO model. It is worth mentioning
that this was at the expense of a small loss in performance. However, the trade-off
in performance is not always symmetric to reduction in model size. For instance,
on WiderFaces, the 2m-YOLO is about 16 times smaller than 33m-YOLO, but
the mean Average Precision (mAP) is only 4 points off. This is arguably man-
ageable for none critical applications. Again, this was achieved with lower false
positives across all models than the original.

The results on FDDB are better, with a noticeably higher F1-score across
all models. This is not surprising, given that this dataset is not as challenging
as WiderFaces. However, there is a distinctly high false positively in this experi-
ment. This issue was investigated, and it was found that it had more to do with
the nature of the FDDB dataset. More precisely, the models were detecting half
faces correctly. These faces were not part of the ground-truth. For instance, the
sample in Figure 2 has four ground-truth faces, and it can be seen that the mod-
els detected five or more faces. Therefore, these additional faces were counted
as false positives by the evaluation script, since no annotations are provided for
these faces. Nonetheless, we consider that these detections are desired, as these



Face Detection with YOLO on Edge 7

(a) 33m-YOLO (b) 10m-YOLO

(c) 5m-YOLO (d) 2m-YOLO

Fig. 2: Samples from FDDB detection.

characteristics are required in an uncontrolled environment where faces may be
occluded due to a number of different reasons.

In terms of speed, we ran the models against a pre-recorded one minute video
on core i5 MacBook pro-2019. The video was recorded at 720p×1080p resolution
with a 30 frame rate camera. Unsurprisingly, there was also an improvement in
the speed of detection. 2m-YOLO was fastest at 25.9 FPS, followed by 5m-YOLO
at 23.5 FPS. Meanwhile, 10m-YOLO was running at 23.3 FPS and the lowest
was 33m-YOLO at 19.3 FPS.

Removing layers typically reduces model size while affecting performance
significantly. Using 1 × 1 convolution filters works well, but there is an obvious
hard limit without a rigorous architectural search. In our experiments, we found
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that these two approaches can complement each other to give a reduced model
with minimal performance loss possible.

6 Conclusion

In this paper, we propose a reduced YOLO v3-tiny model for face detection in
resource-constrained environments, such as CPU only systems or edge devices.
Extensive experiments were carried out using public benchmark datasets, namely
WiderFaces and FDDB. Performance was evaluated on different face detection
metrics. The results showed models produced comparable performances with
a significant reduction in model sizes. These also indicated that the proposed
approach is effective in reducing the model size with improve speed, but at the
expense of some performance loss. In the future, we intend to combine these
approaches with other techniques, such as quantisation and parallelisation, to
further reduce the model size. There is also the need for an extensive architectural
search to regain some of the performances lost.
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