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Abstract. Inspection engineering is a highly important field in the Oil & Gas 
sector for analysing the health of offshore assets. Corrosion, a naturally occurring 
phenomenon, arises as a result of a chemical reaction between a metal and its 
environment, causing it to degrade over time. Costing the global economy an 
estimated US $2.5 Trillion per annum, the destructive nature of corrosion is evi-
dent. Following the downturn endured by the industry in recent times, the need 
to combat corrosion is escalated, as companies look to cut costs by increasing 
efficiency of operations without compromising critical processes. This paper pre-
sents a step towards automating solutions for real-time inspection using state-of-
the-art computer vision and deep learning techniques. Experiments concluded 
that there is potential for the application of computer vision in the inspection do-
main. In particular, Mask R-CNN applied on the original images (i.e. without any 
form of pre-processing) was found to be most viable solution, with the results 
showing a mAP of 77.1%.  
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1 Introduction 

Oil & Gas companies have come into a period of hardship in recent times following the 
decline of fossil-fuel prices1. This has led the industry to look for ways to save money 
and increase the efficiency of their operations without compromising the safety of es-
sential processes. Consequently, it has highlighted the need for the inspection process 
to be assisted by modern technology to leverage the abilities of the machine to minimise 
human input and boost productivity for the engineer. Implementing the proposed meth-
ods should save companies time and money. 
Currently, the most common subsea inspection methods used in this industry include 
smart pigging with video cameras and deploying a Remotely Operated Vehicle (ROV) 
that feed live video footage back to the controller [1]. An engineer can then examine 
the captured footage for signs of corrosion and implement the appropriate measures to 
correct the occurrence. This can be a laborious and tedious task, increasing both cost 

1  https://oilandgasuk.co.uk/oil-gas-uk-figures-show-impact-of-oil-price-downturn-on-jobs/ 
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and the risk of corrosion being overlooked due to human error. Such a task is well suited 
for automation, and image recognition may stand as the solution for this problem. 
Advancements made in deep neural networks since the turn of the century have en-
hanced the reliability and capabilities of image recognition. Systems are getting 
smarter, with the ability to make predictions quicker than ever before. New techniques 
have been developed to progress from detecting only presence of an object in an image, 
to localise objects, classify multiple instances of objects and segment such objects. 
These methods have seen success in applications such as in disease diagnosis [2], real-
time detection of helmets worn by construction workers [3], self-driving cars [4] and 
underwater imagery analysis [5]. A system that could detect, in real-time, the pixel-
perfect location of each instance of corrosion in an image would be ideal for this sce-
nario. Thus, this paper will investigate the application of state-of-the-art image recog-
nition algorithms in the corrosion inspection domain. A huge hurdle exists in the appli-
cation of computer vision underwater however, being the diminished quality of imagery 
below the water surface. The aquatic environment is extremely noisy, where problems 
such as light absorption and scattering can limit visibility by up to a few metres [6]. 
These factors, together with issues such as low contrast, diminished colours and blur, 
may suffocate the performance of subsea image recognition systems [7]. The applica-
tion of appropriate image pre-processing techniques will also be investigated in this 
paper and the effect they have on the accuracy of the trained recognition models will 
be evaluated.  

2 Related Work 

Before working with the images, related literature [5] suggests pre-processing them in 
a way that the areas of interest can be highlighted. In this section, we will firstly discuss 
the most popular approaches to that aim. Afterwards, we will briefly discuss the partic-
ularities and challenges posed by real-time detection and instance segmentation. 

 
2.1 Pre-Processing 

Contrast Correction. Enhancement of contrast is an essential player in the improve-
ment of visual quality for computer vision. In conditions such as those in the underwater 
environment, where overall luminescence is insufficient, the details of the images or 
video features will be obscured [8]. Global Histogram Equalisation (GHE) is one of the 
most common techniques for improving the effects of contrast in an image [9]. For 
context, an image histogram is a visual representation of the colour intensities within 
an image [10]. This equalization method involves redistributing grey levels within an 
image to achieve a uniform histogram [11]. It does this by efficiently distributing the 
most frequent contrast intensities across the histogram. However, GHE does not per-
form well when the contrast is not uniform across the image. When the picture contains 
patches significantly lighter or darker than others, the contrast enhancement is sub-op-
timal [12]. Marine imagery is not perfect when it comes to the balance of contrast, 
therefore GHE is assumed to be unsuitable for the underwater domain. Adaptive His-
togram Equalization (AHE) is a step forward to solve the aforementioned problems. 
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This new method differs from GHE as it generates several histograms for different lo-
cations within the image [13]. AHE enhances each pixel by transforming the histogram 
of sections in the image by comparing grey levels of that pixel with those in its sur-
roundings [12]. Although this technique solves the non-uniform contrast problem, it is 
common for this algorithm to amplify noise within an image, thus degrading the quality 
of the display [14].  

Contrast Limited Adaptive Histogram Equalisation (CLAHE) was originally de-
signed for the improvement of medical images where contrast is insufficient [15]. The 
success of applying this algorithm in the subaqueous domain was documented by Hitam 
et al. [16]. CLAHE builds on from AHE by introducing the concept of contrast limiting 
to combat the noise amplification problem. This concept limits the magnification of 
noise in an image by ‘clipping’ the histogram at a user-defined value [17]. A lower 
clipping value outputs a smoother image but with contrast enhancement becoming min-
imal. Whereas a higher clipping value offers a more detailed image, the picture becomes 
distorted due to higher levels of noise. Clipping, therefore, gives the power to the user 
to decide trade-off between contrast and noise. Enhancing contrast in a coloured image 
using histogram equalisation is a more complex task than that of grey images, due to 
the three colour components Red, Green & Blue [18]. To produce an enhanced colour 
image, CLAHE can be applied to each colour component individually, then once com-
bined, the desired results are achieved such as in Figure 1 below. 

 
Fig. 1. Original image (Left) and image with CLAHE Applied (Right). 

Colour Normalisation. Underwater images usually have a blue or green tint due to the 
presence of a high percentage of blue pixels, followed by green, and lastly, red [19]. 
Unfortunately, achieving a high-quality image requires an equal distribution of these 
colours across the image – a luxury not provided by the underwater environment [20]. 
This is due to the absorption properties of water, where light of increasingly longer 
wavelengths is absorbed at deeper depths underwater. Without correcting the image 
defects caused by this problem, there may be difficulty training image recognition mod-
els using these images [21]. One of the simplest colour equalisation algorithms availa-
ble is called ‘Grey World’. It assumes that the average of all red, green and blue pixels 
in an image is grey [22]. By taking the average of the three components independently 
in the colour-casted image, this method can find the illumining colour (i.e., the colour 
tinting the image). Then, it uses the difference between the illumining and grey values 
to scale each of the RGB components to fit the original assumption [23]. Ancuti et al. 
[24] explored the use of this algorithm in the subaquatic scenario. They found that the 
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method worked reasonably well for bringing balance to reasonably distorted underwa-
ter images and can improve performance of segmentation tasks. However, as the image 
quality deteriorates, so too does the effectiveness of the strategy. Their investigations 
also uncovered that this algorithm was prone to welcoming artefacts of red into the 
image, due to over-compensation of the low levels of red pixels. 

 
Fig. 2. Original image (Left) and image with ‘Gray World’ Applied (Right). 

Colour constancy theory is the notion that a colour should appear the same, even under 
different coloured illuminations [25]. For example, under both conditions of white light 
from a Light Emitting Diode (LED), or red light during a sunset, an apple to humans 
will always appear to be red. Retinex theory [26] explains the ability for the human eye 
to achieve colour constancy through the retina and cortex’s perception of luminance 
and colour. Success has been noted in mimicking Retinex theory to counter the effects 
of illumination caused in digital images. Its application in the subsea domain has been 
proven to be successful [27], and NASA have implemented Retinex processing at near 
real-time speeds [28]. Retinex algorithms profit from the chance of removing undesir-
able illumination effects and enhancing image edge [29]. Single Scale Retinex is the 
most basic algorithm in the Retinex chain. In SSR the illumination is estimated by ap-
plying a linear low-pass filter for an input colour image. The enhanced image is then 
produced by subtracting the 2D convolution of Gaussian surround function and original 
image of ith component [30]. 

 
Fig. 3. Original image (Left) and image with Retinex Applied (Right). 

2.2 Real-time Detection 

Humans can simply glance at an image and instantly recognise objects within, while 
understanding how they interact with each other. The human visual system is both fast 
and accurate, allowing us to do complicated tasks, such as driving, without considerable 
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conscious thought. Processing time is limited for real-time applications such as ROV 
inspection, further increasing the difficulties of object detection [31]. Replicating the 
speed and performance of the human visual system in computer algorithms could bring 
a host of benefits such as increasing the autonomy of underwater robots for the inspec-
tion domain [32]. The Faster Region Based-Convolutional Neural Network (Faster R-
CNN) [33] is the de facto real-time object detection algorithm. Faster R-CNN is an 
ensemble method, combining a Region Proposal Network (RPN) and a Fast R-CNN 
network. The RPN is a Deep Convolutional Neural Network that proposes regions of 
interest. Fast R-CNN then uses these regions to make predictions using bounding boxes 
to classify objects. Both of the networks share the same convolutional layers, greatly 
reducing the computational costs of producing region proposals [34]. As a result, the 
network almost achieves real- time prediction speeds, at 5 fps.  

YOLO is a true real-time algorithm, which excels in super-fast recognition of objects 
[35]. An acronym for ‘You Only Look Once’, this algorithm vastly outperforms the 
standard region-based networks in terms of prediction speed. The name derives from 
the algorithm’s ability to need just one glance at an image to be able to identify and 
locate objects within it, bringing us closer to the replication of human vision. YOLO 
has obtained classification speeds of up to 67 frames-per-second in newer versions [36]. 
This type of network is very good at generalising. For example, when trained on natural 
images, the network can learn to detect these objects in artwork [33]. One of the major 
drawbacks of YOLO, however, is the difficulty it has detecting small objects that are 
grouped together [36]. This should not be a problem for corrosion as it would be okay 
to class several, small patches of rust as one instance. YOLO is a relatively simple 
concept to comprehend. The first step in this method is to resize the image to a grid of 
dimensions 𝑆𝑆 × 𝑆𝑆. Within each grid square, the network draws several bounding boxes 
that differ in shape. A prediction is then made on each bounding box using a single 
convolutional neural network. Predictions above a certain threshold value are used to 
classify the objects within the images [33]. 

2.3 Instance Segmentation 

Humans are efficient machines for localising patterns and grouping them into mean-
ingful fragments. Using the power of the modern computer, scientists seek to mimic 
this grouping ability that humans possess, giving rise to the field of image segmentation 
[37]. Semantic image segmentation offers precise region boundaries, where basic box 
boundaries may be insufficient. For example, this technique is heavily used in the self-
driving car industry. It would be dangerous if cars drove according to an approximate 
boundary of a road or obstacles, such as from a bounding box. Precise outlines of ob-
jects provided by segmentation algorithms are vital here to ensure cars know exactly 
how objects relate to each other to drive safely around their surroundings [38]. Instance 
segmentation offers both the pixel-wise classification abilities of semantic segmenta-
tion and the ability to detect different instances of the same class of object such as in 
classic boundary-box object detection. This means that where semantic segmentation 
can only display the presence of a particular class, instance segmentation can further 
split this up to tell us more about the frequency of a class [39]. Mask R-CNN [40], 
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which stands for Mask Regional Convolutional Neural Network, is the de facto method 
for instance segmentation and combines the segmentation abilities of the Fully Convo-
lutional Network (FCN) [41] with the fast object recognition capability of Faster R-
CNN [32]. This new concept extends Faster R-CNN by adding a branch to its network 
to predict segmentation ‘masks’ for each Region of Interest (RoI), in parallel with the 
task of classifying the objects and drawing boundary boxes. A small FCN is applied to 
each RoI to handle the generation of segmentation masks. According to the original 
paper, this additional step in the network only adds a small additional overhead to the 
Faster R-CNN, allowing it to still run at 5 fps. Instance segmentation would maximise 
information gained from predictions during inspection as a pixel-perfect outline of each 
individual instance of corrosion can be drawn. By using Mask R-CNN, this may be 
achieved in almost real-time standards. 

3 Methodology 

Our experimental framework consists of a pipeline where we will test all possible com-
binations between pre-processing methods and instance segmentation algorithms to dis-
cover the best approach. In addition, we will test all segmentation methods using the 
original images (i.e., no pre-processing). For pre-processing, CLAHE, Gray World and 
Retinex were used. In the segmentation phase, YOLO, Mask R-CNN and a standard 
CNN were chosen to explore the effectiveness of image classification, bounding-box 
object recognition and instance segmentation. Figure 4 depicts the workflow taken dur-
ing experimentation.  

 
Figure. 4. Workflow representation. 

No publicly available datasets were found for corrosion, let alone for subsea inspection. 
Search engines also highlighted the scarcity of data surrounding subsea inspection do-
main, as very minimal images were returned for queries of this type. Therefore, a new 
dataset2 was generated using publicly available sources for general corrosion, not lim-
ited to that of the subsea domain. A Python script was used to scrape online image 
repositories on Google and Bing using corrosion-related search terms. Each scraped 
image was automatically downloaded on the naïve assumption that it was relevant. 
Manual pruning was then conducted to remove any erroneous samples. An additional 
set was generated using the same method but for the negative class, ‘no rust’, and using 
                                                        
2 The dataset can be downloaded from https://drive.google.com/drive/fold-
ers/1dbOVdg5x75brUAwuI2X6voIMEwJzfiYX?usp=sharing 



7 

search terms such as ‘metallic objects. This was necessary for CNN, but not for Mask 
R-CNN and YOLO as they do not make use of the negative class. 
For CNN, images were annotated by placing them inside ‘corrosion’ and ‘no corrosion’ 
directories. A Python tool called ‘labelImg’ was used to draw bounding-boxes around 
objects in each image in YOLO format. VGG Image Annotator (VIA) is an HTML tool 
that was used to draw polygonal outlines of each object for Mask R-CNN. The final 
training set was composed of 1,272 images in total with a 1,106 corrosion and a 166 
no-corrosion split. A train-test split of 70:30 was used for all 3 classifiers. An under-
water corrosion validation set was compiled of 24 images, downloaded manually from 
Google Images. The same annotation methods were repeated as for the training set. 
Each set was duplicated once for each pre-processing method applied. The parameters 
used in the three instance segmentation algorithms are: 
CNN. Batch_size = 128, Epochs = 15, IMG_HEIGHT=150, IMG_WIDTH=150, 
Conv2D(16,3,padding=’same’,activation=’relu’,input_shape=(IMG_HEIGHT, 
IMG_WIDTH,3)), MaxPooling2D(), Dropout(0.2), Conv2D (32,3, padding=’same’, 
activation=’relu’), MaxPooling2D(), Dropout(0.2), Flatten(), Dense(512,activa-
tion=’relu’), Dense(1) 
YOLO. Classes=1, Filters=18, Batch =24, Subdivisions=8  
Mask R-CNN. Detection_min_conf = 0.9, IMGS_PER_GPU=2, NUM_CLASSES=2 
(1 for back-ground, 1 for rust), STEPS_PER_EPOCH=1 

4 Results 

Tables 1 and 2 below refer to the calculated precision returned during testing of each 
classifier on each dataset. For CNN this is standard precision, but for YOLO and Mask 
R-CNN, the mean Average Precision (mAP) is used. Moreover, we measured the total 
time to predict a sample, yielding 0.05 (CNN), 0.69 (YOLO) and 12.63 (Mask R-CNN) 
seconds respectively3. Finally, in Figure 5 we show an example of the behaviour of all 
combinations in a single image. 

Table 1. Precision of Classifiers (%). 

Dataset CNN YOLO Mask R-CNN 
Surface 90.9 7.1 57.0 

Underwater 75.0 9.0 77.1 
 

Table 2. Precision of Pre-Processing Methods (%). 

Pre-Processing CNN YOLO Mask R-CNN 
None 75.0 9.0 77.1 

Gray World 75.0 14.2 69.8 
Retinex 16.7 0.3 44.7 
CLAHE 70.8 9.3 66.6 

                                                        
3       Experiments were run on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 processor, 
8 GB 2133 MHz LPDDR3 memory and an Intel Iris Plus Graphics 640 1536 MB graphics card.  
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Fig. 5. Sample predictions for each pre-processing method and classification algorithm 

CNN proved to have learned considerably well on the corrosion dataset, obtaining a 
precision of 90.9% on the surface validation set. It was shown that CNN could transfer 
the knowledge gained from the surface dataset into the underwater dataset, claiming a 
precision of 75%. The drop-in precision was expected, as the subsea data was not in-
cluded in the training images due to lack of availability, meaning that CNN was not 
familiar with the aquatic environment. CNN is also shown to meet expectations in terms 
of prediction speed, due to the absence of regional layers that are present in object de-
tection algorithms. The main drawback of the CNN was that no information regarding 
the location and frequency of object is included in predictions – meaning more work 
for the engineer. 
True real-time object recognition was shown to be unachievable using YOLO for cor-
rosion inspection. When tested against both the surface and sub-surface datasets, the 
model appears to have struggled to learn patterns associated with rust. This is likely 
due to the problem noted in [36] where the algorithm can have difficulty detecting small, 
close together objects. It may also be the case that due to corrosion being a property of 
an object, rather than an object in its own right, YOLO struggles to learn features con-
nected with rust. When the confidence threshold was adjusted down, YOLO began to 
output predictions of some degree of precision. However, it was inconsistent, and the 
threshold value had to be altered manually for each individual image before a prediction 
was shown, defeating the purpose of using the algorithm for automation. What the al-
gorithm failed to achieve in prediction ability, it made up for in prediction times. The 
algorithm met expectancies by classifying objects in less than a second, making it the 
quickest of both object detection algorithms and bringing the project the closest to real-
time recognition.  
Performance was unmatched to the Mask R-CNN algorithm, which achieved a prom-
ising 57% mAP value. Mask R-CNN defies expectations as it appears to improve per-
formance when tested on the underwater dataset, reaching an admirable 77.1% mAP 
precision. Inspecting the sample prediction above, it is clear that the model can cope 
with corrosion in the foreground and can segment most of the propeller, but the back-
ground corrosion is mostly ignored. Instance segmentation, as demonstrated by the 
Mask R-CNN, is shown to be the most useful of the studied algorithms for corrosion 
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inspection. The machine can now inform the inspecting engineer of not only the pres-
ence of rust or its location but of the extent of which corrosion covers an area in an 
image. This means that the user can focus less on the laborious task of finding corrosion 
and instead divert their attention immediately on the more expert task of implementing 
the measures to treat the instance of rust found. The drawback of this method, however, 
was that prediction times were an order of magnitude slower than that of YOLO and 
CNN, which may be an issue for ROV automation. The Gray World pre-processing 
technique shows to hold some degree of promise for increasing the precision of the 
trained networks. To the human eye, Gray World is shown to demonstrate stark miti-
gation of the undesirable effects of the underwater domain. It can be seen that the blue 
tint that distorts the image is reduced, making it more natural in appearance. Although, 
the over-compensation effect described by [24] was observed as some images were no-
ticed to have an unnatural red tint. Numerically, the algorithm shows that, on average, 
it increases model precision by 18.7%. However, when taking a closer look, it is shown 
to have no effect on CNN overall and actually harms the prediction process of Mask 
RCNN by 10.5%.  
Retinex was predicted to be the best performing pre-processing technique but the con-
verse was found to be true. Visually, Retinex carries out an outstanding task of nullify-
ing the effects of the aquatic environment on the image. Nonetheless, this does appear 
to be at the cost of the overall quality of the image. The product becomes obviously 
artificial, with a dramatic increase in contrast and a loss of colour depth, making it 
harder to identify rust within. Further testing supports the human evaluation of Retinex, 
with each network demonstrating an average loss of predictive ability when coupled 
with the algorithm. CLAHE was another algorithm thought to potentially boost the pre-
diction capability of the trained neural networks. Using this method was found to not 
affect the colour of the overall image, but a considerable improvement was made re-
garding the image contrast. Altering the image in this way brings out more details in 
the image, making the edge of objects clearer and more definitive. Visibility within an 
image is subsequently improved, as detail in the background can now be identified more 
clearly. The machine interpretation of CLAHE was different, as it was found that ap-
plying this technique reduced prediction performance by 1.2%. Only YOLO suggests 
having benefited from this type of pre-processing, whereas CNN and Mask RCNN 
show a decline in precision. 

5 Conclusion & Future Work 

This paper demonstrates that computer vision techniques can learn to recognise corro-
sion in the underwater environment and the results are encouraging. The research con-
ducted compares three state-of-the-art deep learning algorithms - CNN, YOLO and 
Mask R-CNN, to identify which is most appropriate for assisting the corrosion inspec-
tion process. Ultimately, the investigation found Mask R-CNN as the most suitable 
computer vision algorithm to recognise instances of corrosion in underwater images. 
The selected method obtained a precision of 77.1% mAP in a time of 12.63s when 
tested in the subsea domain. To support the machine at test-time, three established pre-
processing techniques were trialled, and their assistance was documented. Enhancing 
images according to the Gray World assumption in pre-processing before prediction 
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found to hold the most promise, with an average net increase of 18.7% in mAP across 
the four models. However, on the selected deep learning network, Mask RCNN, no pre-
processing technique was found to help, and Gray World was seen to reduce the effec-
tiveness of Mask RCNN by 10.5%. The outcome of this work may be appealing to the 
industry to alleviate pressures experienced as a result of the downturn. However, more 
work must be done to further understand how image recognition can be applied to in-
spection domains and to determine their true performance. The scarce supply of under-
water data meant that it was impossible to train models on true domain-specific 
knowledge, and alternative measures had to be introduced. In future research, a repos-
itory of underwater images should be compiled, perhaps with the assistance of Gener-
ative Adversarial Networks (GANs) to create more data. The experiments should be 
then repeated using the underwater dataset during training in order to properly evaluate 
the ability of the machine to learn in this context. Pre-processing experiments should 
also be re-run, with the potential for the techniques to also be optimised and used during 
training.  
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