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A B S T R A C T

This work shows the generation of an array of chirped compressed periodic waves with distributed gain in a
nonlinear fibre. In particular, with suitable tailoring of the gain to vary along the longitudinal distance while
the dispersion and nonlinearity parameters are kept constant. Exact analytical equations using the self-similar
analysis technique were obtained to describe this process. In addition, the stability of these generated periodic
waves is studied under finite perturbations.
1. Introduction

Dispersion and signal losses are some of the factors that limit
optical communication. Whereas, dispersion leads to pulse broadening
as different frequency components of the wave arrives at different
timing, fibre losses on the other hand leads to reduction in signal
intensity. It has been shown that these two factors can be reduced
by propagating optical signals at certain wavelengths (Agrawal, 2000,
2012). Specifically, the dispersion effect can be controlled by prop-
agating optical waves through specially designed fibres (Mori et al.,
2001). Furthermore, optical pulses can travel a distance without ex-
periencing broadening when there is a proper balance between the
group velocity dispersion (GVD) and nonlinearity as a result of self-
phase modulation (SPM). This phenomenon is referred to as soliton
communication (Kivshar and Agrawal, 2003). On the other hand, to
control the effect of fibre losses in optical communication, signals
need to be amplified periodically. Two of such schemes have been
utilised to achieve this purpose; distributed and lumped amplifica-
tion schemes (Agrawal, 2000). One distinct advantage the distributed
scheme has over the other is that, within the fibre link, there ex-
ist a lower build-up of noise and an improvement of the signal to
noise ratio (Hasegawa, 1984; Mollenauer et al., 1986). Gain tailoring
can be achieved in distributed amplifiers by using Raman amplifiers
which is one of the available distributed amplification systems. This
system comprise of a device that has been doped with phosphorus
or germanium to enhance its gain. In Raman distributed system, the
fibre used for transmission is also used for amplification, the input
signal is often pumped in the reverse direction and provides gain over
long distances (>20 km). One associated challenge with this system
is that lasers with very high power are needed for pumping. Another
alternative distributed amplification system for long haul light-wave
communication is Erbium-doped fibre amplifiers (EDFA). Here, the
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fibre core is doped during the manufacturing process with rare-earth
elements as a gain medium. In EDFA systems, the amplifier properties
such as gain bandwidth and the operating wavelength are determined
by the dopants rather than the silica fibre which only functions as a
host conveying medium. Most EDFAs provide 20–25 dB amplification
over a distance of ∼10 m through a high-density dopants of ∼500 parts
per million (Agrawal, 2012).

As a result of an exponential increase in the need for fast speed
signal processing and also, the eventual approach to the limits of
conventional lasers is gradually been reached. The development of an
alternative approach which relies on the beating of a dual-frequency
signal in a nonlinear fibre has been achieved (Chernikov et al., 1993;
Trillo et al., 1994; Pitois et al., 2002). Under the influence of nonlin-
earity, the propagated continuous wave signal degenerates into very
short array of optical pulses (Hasegawa, 1984; Tai et al., 1986). Using
this scheme, pulse train with very high frequencies can be obtained.
In this work, I analytically demonstrate the generation of a train of
optical pulses that get periodically amplified and their pulse widths
compressed during evolution. The profile of these array of periodic
pulses are described in the form of Jacobian elliptic function and
possess a linear chirp. By proper transformation, the results obtained in
this distributed gain amplification case can be shown to be equivalent
to the evolution of an optical pulse in a dispersion decreasing fibre with
a constant gain (Moores, 1996). Periodic trains can also be generated by
Akhmediev breathers and super-regulated breathers (Liu et al., 2017,
2018).

The work of Serkin and Hasegawa (2000, 2002) showed that the
nonlinear Schrödinger wave equation (NLSE) with varying dispersion,
nonlinearity and gain parameters are integrable using the inverse scat-
tering transform (IST) technique among the list of system equations
investigated for different applications. One of such applications which
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is of interest to this study is that of a chirped soliton for dark and bright
solitons. For the first time, chirped soliton solution was obtained using
the self-similar transformation method by Moores (1996), Kruglov et al.
(2003, 2002) and the numerical analysis of this compression has been
studied (Mostofi et al., 1997). The generalise form of the NLSE is
used in the study of optical rogue waves (Solli et al., 2007). In our
previous work, we showed the generation and propagation of these
pulses with a fixed gain by using the Hirota bilinear transformation
approach (Atuba et al., 2016). The uniqueness of these pulses is that
they possess a linear chirp, also, during propagation, the pulses get
amplified while their pulse widths get compressed and that at long
wave limits, these so-called Jacobian elliptic functions degenerate to
the case of chirped solitary waves. Here, exact chirped periodic wave
equations were generated using self-similar analysis technique for the
given nonlinear Schrödinger wave equation (NLSE). I further placed a
constraint that the GVD and SPM parameters should be constant while
the gain changes along the longitudinal distance. The generated optical
pulses is shown to be stable, maintain their shapes and are robust.

2. Periodic wave solutions

Firstly, I start off from the generic inhomogeneous NLSE and then
simplify the equation to admit the case of a constant dispersion and
nonlinearity condition. The generic NLSE has the form;

𝑖 𝜕𝐴
𝜕𝑧

+ 𝑝(𝑧) 𝜕
2𝐴
𝜕𝑡2

+ 𝑞(𝑧)|𝐴|2𝐴 + 𝑖𝑔(𝑧)𝐴 = 0. (1)

where 𝐴 is the axial electric field. 𝑝(𝑧), 𝑞(𝑧) and 𝑔(𝑧) are dispersion,
nonlinearity and distributed gain of the amplifier, respectively.

The work of Kruglov et al. (2003) showed that Eq. (1) have solutions
as long as there exist a certain relationship between 𝑔(𝑧), 𝑞(𝑧) and 𝑝(𝑧).
The solution is realisable by noting that a similarity transformation
changes the system equation to a standard homogeneous form. Eq. (1)
has been shown to be integrable by the inverse scattering approach
(Serkin and Hasegawa, 2000, 2002), in addition, the governing equa-
tion can be mapped into a constant coefficient nonlinear Schrödinger
type equation (Özemir and Güngör, 2012).

According to Kruglov et al. (2003), 𝐴(𝑧, 𝑡) admits wave as,

𝐴(𝑧, 𝑡) = 𝑈 (𝑧, 𝑡) exp[𝑖𝜙(𝑧, 𝑡)], (2)

where 𝑈 is the amplitude and has the form.

𝑈 (𝑧, 𝑡) = 1
√

1 + 𝑐0𝐷(𝑧)
𝑀

[

𝑡 − 𝑡𝑐
1 + 𝑐0𝐷(𝑧)

]

exp (𝐺(𝑧)) . (3)

and a quadratic phase which is,

𝜙(𝑧, 𝑡) = 𝑎(𝑧) + 𝑐(𝑧)(𝑡 − 𝑡𝑐 )2 (4)

and this corresponds to a linear chirp. Here 𝑡𝑐 , 𝐷(𝑧) and 𝐺(𝑧) corre-
sponds to the pulse centre position, cumulative dispersion and cumula-
tive gain accumulated over the length of fibre 𝑧. The constant phase and
chirp along the fibre length are denoted as 𝑎(𝑧) and 𝑐(𝑧) respectively. 𝑀
is a function to be identified and in this work, periodic wave functions
in the form of a Jacobian elliptic function. The longitudinal varying
functions of 𝑎(𝑧), 𝑐(𝑧), 𝐷(𝑧) and 𝐺(𝑧) are defined by the expressions,

𝑐(𝑧) =
𝑐0

1 + 𝑐0𝐷(𝑧)
(5)

(𝑧) = 4∫

𝑧

0
𝑝(𝑧′)𝑑𝑧′ (6)

(𝑧) = 𝑎0 + 𝜆∫

𝑧

0

𝑝(𝑧′)𝑑𝑧′

[1 + 𝑐0𝐷(𝑧′)]2
(7)

𝐺(𝑧) = −
𝑧
𝑔(𝑧′)𝑑𝑧′. (8)
2

∫0 e
ere 𝑐0 is an input chirp parameter and 𝑎0 is an integration constant.
The self-similar transformation realised from the inhomogeneous NLSE
is only possible if the distributed parameters satisfy the condition in
Eq. (9) (Kruglov et al., 2003, 2005),

𝑔(𝑧) =
2𝑐0𝑝(𝑧)

[1 + 𝑐0𝐷(𝑧)]
− 1

2

[

𝑞(𝑧)
𝑝(𝑧)

]

𝑑
𝑑𝑧

(

𝑝(𝑧)
𝑞(𝑧)

)

(9)

The works of Kavian and Weissler (1994), Kruglov et al. (2002) show
that the pulse energy ∫ ∞

−∞ ∣ 𝐴(𝑧, 𝑡) ∣2 𝑑𝑡 is preserved under the
ransformation of Eq. (2). For the unique case of a distributed gain
ith the dispersion and nonlinearity parameters being constant, Eq. (1)
ecomes,

𝜕𝐴
𝜕𝑧

+ 𝑝 𝜕
2𝐴
𝜕𝑡2

+ 𝑞|𝐴|2𝐴 + 𝑖𝑔(𝑧)𝐴 = 0. (10)

he gain in Eq. (9) becomes,

(𝑧) =
2𝑐0𝑝

1 + 4𝑐0𝑝𝑧
(11)

This is the compatibility condition for this periodic case. Here, when
𝑐0 < 0 in the anomalous case and vice versa, the fibre amplifier gain
increases along the propagation distance.

The phase and chirp parameters 𝑎(𝑧) and 𝑐(𝑧) given by Eqs. (5) and
(7) can be expressed as

𝑎(𝑧) = 𝑎0 + 𝜆
[

𝑝𝑧
1 + 4𝑐0𝑝𝑧

]

(12)

𝑐(𝑧) =
𝑐0

1 + 4𝑐0𝑝𝑧
(13)

For definiteness, the phase factors of the periodic waves are obtained
by substituting respectively in Eq. (12). When 𝑝𝑞 < 0, I obtained two
periodic solutions,

• when 𝜆 = (2 − 𝑘2)∕𝑡20

𝑈 (𝑧, 𝑡) = 𝑘𝐴𝑐 (𝑧) cn
(

𝑡 − 𝑡𝑐
𝑊 (𝑧), 𝑘

)

, (14)

• when 𝜆 = (2𝑘2 − 1)∕𝑡20

𝑈 (𝑧, 𝑡) = 𝐴𝑐 (𝑧) dn
(

𝑡 − 𝑡𝑐
𝑊 (𝑧), 𝑘

)

, (15)

here 𝑘 is the elliptic modulus constant, the scaling peak amplitude
𝑐 (𝑧) and the pulse width 𝑊 (𝑧) are

𝑐 (𝑧) =

√

2𝑝
𝑞

1
𝑡0(1 + 4𝑐0𝑝𝑧)

, (16)

𝑊 (𝑧) = 𝑡0(1 + 4𝑐0𝑝𝑧). (17)

or 𝑝𝑞 > 0 and 𝜆 = −(1 + 𝑘2)∕𝑡20, the amplitude of the wave is

(𝑧, 𝑡) = 𝑘𝐴𝑐 (𝑧) sn
(

𝑡 − 𝑡𝑐
𝑊 (𝑧), 𝑘

)

, (18)

As seen in Eq. (17), the pulse width decreases down the fibre for
he normal dispersion case when 𝑐0 < 0 and also for the anomalous

case when 𝑐0 > 0. It is important to note that the pulse width for
the normal dispersive case tends to zero at a propagation distance 𝑧 =
−(4𝑐0|𝑝|)−1. This provides the condition for optimal pulse compression
in the absence of higher order nonlinear terms in Eq. (1). During this
process, these pulse train preserve their shape and linear chirp.

It was shown that by transformation, the solution of the solitary
wave results to the dynamics of an optical wave having a constant gain
with its dispersion decreasing exponentially (Moores, 1996). The exact
periodic wave solutions for distributed amplification when dispersion
and nonlinearity are both constant for the cn, dn and sn type waves are
hown in Eqs. (19), (20) and (21). These equation satisfies the system
quation i.e. Eq. (1). Finally, Figs. 1, 2 and 3 show the initial input and
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Fig. 1. Intensity profile of initial (dashed lines) and amplified output (solid lines)
f the cn-periodic wave through a fibre for Eq. (19). The physical parameters are
= −0.0553713 ps2/m, 𝑞 = 0.006794 W−1m−1, 𝑡0 = 1 ps, 𝑡𝑐 = 0.01 ps, 𝑎0 = 0.03,

0 = 0.03 Hz/ps, 𝐿D = 9.822 m, 𝑧 = 2𝐿D and 𝑘 = 0.7.

Fig. 2. Intensity profile of initial (dashed lines) and amplified output (solid lines)
f the dn-periodic wave through a fibre for Eq. (20). The physical parameters are
= −0.0553713 ps2/m, 𝑞 = 0.006794 W−1m−1, 𝑡0 = 1 ps, 𝑡𝑐 = 0.01 ps, 𝑎0 = 0.03,

0 = 0.03 Hz/ps, 𝐿D = 9.822 m, 𝑧 = 2𝐿D and 𝑘 = 0.7.

mplified output of these waves. It is seen from these figures that for a
istance of ∼20 m, an input pulse width of 1 ps gets compressed to an
utput value of 0.87 ps.

𝐴(𝑧, 𝑡) = 𝑘

√

2𝑝
𝑞

1
𝑡0(1 + 4𝑐0𝑝𝑧)

cn
(

𝑡 − 𝑡𝑐
𝑡0(1 + 4𝑐0𝑝𝑧)

)

×

exp

{

𝑖𝑎0 + 𝑖

(

2𝑘2 − 1
𝑡20

)

[

𝑝𝑧
1 + 4𝑐0𝑝𝑧

]

+
𝑖𝑐0(𝑡 − 𝑡𝑐 )2

1 + 4𝑐0𝑝𝑧

} (19)

𝐴(𝑧, 𝑡) =

√

2𝑝
𝑞

1
𝑡0(1 + 4𝑐0𝑝𝑧)

dn
(

𝑡 − 𝑡𝑐
𝑡0(1 + 4𝑐0𝑝𝑧)

)

×

exp

{

𝑖𝑎0 + 𝑖

(

2 − 𝑘2

𝑡20

)

[

𝑝𝑧
1 + 4𝑐0𝑝𝑧

]

+
𝑖𝑐0(𝑡 − 𝑡𝑐 )2

1 + 4𝑐0𝑝𝑧

} (20)

𝐴(𝑧, 𝑡) = 𝑘

√

2𝑝
𝑞

1
𝑡0(1 + 4𝑐0𝑝𝑧)

sn
(

𝑡 − 𝑡𝑐
𝑡0(1 + 4𝑐0𝑝𝑧)

)

×

exp

{

𝑖𝑎0 − 𝑖

(

1 + 𝑘2

𝑡20

)

[

𝑝𝑧
1 + 4𝑐0𝑝𝑧

]

+
𝑖𝑐0(𝑡 − 𝑡𝑐 )2

1 + 4𝑐0𝑝𝑧

} (21)
3

Fig. 3. Intensity profile of initial (dashed lines) and amplified output (solid lines)
of the sn-periodic wave through a fibre for Eq. (21). The physical parameters are
𝑝 = −0.0553713 ps2/m, 𝑞 = 0.006794 W−1m−1, 𝑡0 = 1 ps, 𝑡𝑐 = 0.01 ps, 𝑎0 = 0.03,
𝑐0 = 0.03 Hz/ps, 𝐿D = 9.822 m, 𝑧 = 2𝐿D and 𝑘 = 0.7.

It is established that optical signals experience reshaping when
travelling in a lossy nonlinear optical fibre. A quick way of boosting this
propagated signal up is by periodically amplifying the signals as they
evolve. Following this, the spacing distance between consecutive am-
plifiers is key, for this process, the idea of a guiding-centre was initiated
(Hasegawa and Kodama, 1991). Practically, this works well when the
spacing distance is small in comparison with the soliton period between
the reshaped pulse that is produced by the fibre amplifier (Mollenauer
et al., 1991). Large spacing is realistic with femtosecond pulses which
normally requires a nonlinear crystal or a lasing medium (Malomed,
1994). Recently, intensity of about 1 TW/cm2 was generated with
less than 60 fs having a high amplification gain of more than a 1000
(Vampa et al., 2018).

Optical pulses can experience both amplitude amplification and
spectral broadening with the use of dispersion decreasing fibres
(Chernikov et al., 1993; Atuba et al., 2016). Distributed fibre losses
along the fibre can be overcome with the use of distributed Raman
amplifiers, this allows dual flexibility and tunability options in the
frequency and pulse width regime. With this, one can realise gain at
any wavelength by selecting a suitable pump wavelength (Headley and
Agrawal, 2005).

3. Stability analysis

One distinguishing characteristics of periodic wave evolution is
its stability against small perturbations, this is because, only stable
(or weakly stable) can be experimentally observed and finds useful
practical applications (Choudhuri et al., 2016). Therefore, it is pertinent
to analyse the stability of the generated nonlinearly periodic waves
with respect to finite initial perturbations. This could appear in the
form of random noise, slight alteration of the parametric conditions
or amplitude perturbations (Choudhuri and Porsezian, 2012). In this
work, I investigated the stability of the generated chirped periodic wave
solutions using two direct numerical simulations, which are, amplitude
perturbation and initial white noise (Zhang et al., 2012; Yang et al.,
2005). First, the amplitude of the initial periodic wave is perturbed by a
numerical value of 10%. The numerically obtained results are shown in
Figs. 4 (a), (c) and (e), this can be compared with the exact unperturbed
numerical solutions in Figs. 1, 3 and 2. Second, a 30 dB signal-to-noise
ratio (SNR) additive white noise is added to the initial wave and the
numerical results are shown in Figs. 4 (b), (d) and (f). From these
generated outputs, it can also be observed that the additive white noise
did not alter the structure or character of the solutions. More plots

were obtained to check the stability of these waves in Figs. 5 with



Results in Optics 5 (2021) 100136S. Atuba
Fig. 4. The numerical evolution of (a) cn-wave, (c) sn-wave, (e) dn-wave under the
influence of a 10% amplitude perturbation; (b) cn-wave, (d) sn-wave, (f) dn-wave of
exact solutions under the perturbation of 30 dB SNR additive white noise. The physical
parameters are 𝑝 = −0.0553713 ps2/m, 𝑞 = 0.006794 W−1m−1, 𝑡0 = 1 ps, 𝑡𝑐 = 0.01 ps,
𝑎0 = 0.03, 𝑐0 = 0.03 Hz/ps, 𝐿D = 9.822 m, 𝑧 = 2𝐿D and 𝑘 = 0.7.

Fig. 5. The numerical evolution of (a) cn-wave, (c) sn-wave, (e) dn-wave under the
influence of a 10% amplitude perturbation; (b) cn-wave, (d) sn-wave, (f) dn-wave of
exact solutions under the perturbation of 30 dB SNR additive white noise. The physical
parameters are 𝑝 = −0.07 ps2/m, 𝑞 = 0.008 W−1m−1, 𝑡0 = 1 ps, 𝑡𝑐 = 0.01 ps, 𝑎0 = 0.03,
𝑐0 = 0.03 Hz/ps, 𝐿D = 9.822 m, 𝑧 = 2𝐿D and 𝑘 = 0.7.

different values of dispersion and nonlinearity as compared to Figs. 4.
This further shows that the wave can evolve stably under amplitude
4

perturbations and finite initial perturbations of the additive white noise
type, therefore, one can deduce that the generated periodic waves of
the Jacobian cn, sn and dn-types studied in this work are stable.

4. Conclusion

In this work, I have generated a train of chirped compressed peri-
odic wave and exact periodic wave solutions in the form of Jacobian
elliptic profiles of sn, cn and dn for the case of distributed amplification
that has a fixed nonlinearity and dispersion parameters. At long wave
limits, these chirped periodic waves degenerate to the case of chirped
solitary waves. With the help of numerical simulations, I have further
investigated their stability under the finite initial perturbations. The
obtained results show that the expected character of the solutions are
not altered under the finite input perturbations of the amplitude and
additive white noise type.
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