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Abstract—Counterfactual explanations focus on “actionable
knowledge” to help end-users understand how a machine learn-
ing outcome could be changed to a more desirable outcome.
For this purpose a counterfactual explainer needs to discover
input dependencies that relate to outcome changes. Identifying
the minimum subset of feature changes needed to action an
output change in the decision is an interesting challenge for
counterfactual explainers. The DisCERN algorithm introduced
in this paper is a case-based counter-factual explainer. Here
counterfactuals are formed by replacing feature values from a
nearest unlike neighbour (NUN) until an actionable change is
observed. We show how widely adopted feature relevance-based
explainers (i.e. LIME, SHAP), can inform DisCERN to identify
the minimum subset of “actionable features”. We demonstrate
our DisCERN algorithm on five datasets in a comparative study
with the widely used optimisation-based counterfactual approach
DiCE. Our results demonstrate that DisCERN is an effective
strategy to minimise actionable changes necessary to create good
counterfactual explanations.

Index Terms—Explainable AI, Counterfactuals, Case-based
Reasoning

I. INTRODUCTION

Understanding a user’s explanation need is central to a sys-
tem’s capability of provisioning an explanation which satisfies
that need [1]. Typically an explanation generated by an AI
system is considered to convey the internal state or workings
of an algorithm that resulted in the system’s decision [2]. In
machine learning (ML) the decision tends to be a discrete label
or class (or in the case of regression tasks a numeric value).
Although explanations focused on the internal state or logic of
the algorithm is helpful to ML researchers it is arguably less
useful to an end-user who may be more interested in how their
current circumstances could be changed to receive a desired
(better) outcome in the future. This calls for explainable AI
(XAI) methods that focus on discovering relationships between
the input dependencies that led to the system’s decision.

Case-based reasoning (CBR) is a widely accepted method-
ology for problem-solving, where the use of “similar problems
to solve similar solutions” promotes an inherently interpretable
reasoning strategy [3]. The neighbourhood of similar problems
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is commonly harnessed in explainable AI [4]. A Nearest-
Like Neighbours (NLNs) based explainer, focuses on input
dependencies by identifying similarity relationships between
the current problem and the retrieved nearest neighbour [5].
Research has shown that when similarity computation is
focused on feature selection [6] and weighting [7], it can
significantly improve retrieval of NLNs. The prevailing CBR
approach to counterfactual generation harnesses similarity in
neighbourhoods to identify similar cases with different class
labels to the NLNs. Such neighbours, referred to as nearest
unlike neighbours (NUNs), forms the basis for generating
counterfactuals from neighbourhoods. Accordingly it would be
reasonable to expect that NUN-based explanation generation
would also benefit from the knowledge of feature importance.
Certainly having to focus on a few key “actionable” features in
domains with large numbers of features will be more desirable
from a practical standpoint, as well as reducing the cognitive
burden of understanding neighbourhood-based explanations.

Unlike NLN based explanations, a counterfactual explana-
tion focuses on identifying “actionable knowledge”; which
is knowledge about important causal dependencies between
the input and the ML decision. Such knowledge helps to
understand what could be changed in the input to achieve
a preferred (desired) decision outcome. Typically a NUN
is used to identify the number of differences between the
input and its neighbour, that when changed can lead to a
change in the system’s decision [8]. A key challenge that we
address in this paper is to identify the minimum subset of
feature value changes to achieve that needed decision flip - the
“actionable features”. Accordingly the paper has the following
contributions:

• Discover the minimum actionable feature changes using
feature relevance-based explainer methods like LIME [9]
or SHAP [10];

• Advances the case-based counterfactual generation re-
search by introducing our DisCERN algorithm; and

• Evidences the utility of DisCERN with results from
a comparative study with multiple datasets and the
optimisation-based DiCE [11] counterfactual approach.

The rest of the paper is organised as follows. Section II
investigates the importance of counterfactual XAI and dis-



cuss two key counterfactual methods and their evaluation
methodologies. Feature Relevance Explainers are discussed
and compared in Section III and Section IV presents our
DisCERN algorithm to improve the discovery of actionable
features in counterfactuals. Section V presents the evaluation
methodologies, datasets and performance metrics followed by
results in Section VI. Finally we draw conclusions and discuss
future work in Section VII.

II. RELATED WORK

Like many explanation methods, counterfactual explana-
tions are rooted within the study of human psychology. Coun-
terfactual thinking is a mental exercise where we attempt to
isolate the specific actions which contributed to a (usually
undesirable) outcome, with the goal of identifying how we
could alter these facts to reach an alternative (and often more
desirable) outcome [12]. In this manner we derive a form of
causal explanation for the outcome that was actually achieved,
allowing us to reason about how a different outcome could
be achieved in future [13]. To clarify, consider the following
fictitious example of a runner who was placed third in a race:
“I won the bronze medal for my race (actual outcome), but I
would have won the gold medal (desired outcome) if I hadn’t
tripped (causal action which changed outcome)”. Through this
thought process, the runner has derived what they believe to be
a causal action that led to receiving the bronze medal. With
that knowledge inferred, the runner can then reason that in
order to achieve a better outcome, they should run a similar
race again, but avoid tripping. Likewise with a counterfactual
explanation we aim to explain why the system generated a
specific outcome instead of another, by inferring important
relationships (causal or otherwise) between input features [2].

Case-based Reasoning (CBR) [8] and optimisation tech-
niques [11], [14] have been the pillars of discovering coun-
terfactuals from data. Recent work in CBR has shown how
counterfactual case generation can be conveniently supported
through the case adaptation stage, where query-retrieval pairs
of successful counterfactual explanation experiences are used
to create an explanation case-base [8]. Unlike the CBR
approach to counterfactual generation, DiCE [11] trains a
generative model using gradient descent optimisation to output
multiple perturbed diverse counterfactuals. This optimisation
upholds two key requirements of a good counterfactual which
are: maximising the probability of obtaining the desired
class (i.e. discovered counterfactual class is different from
query class); and minimising the distance to the query (similar
to discovering NUN). Additionally the DiCE optimisation also
maximises the distance between multiple counterfactuals to
ensure that they are diverse. With the CBR approach additional
counterfactuals can be identified by increasing the neighbour-
hood. This ability to provide multiple counterfactuals to end-
users has been found to improve end-user’s mental model.
In our work we also adopt CBR’s NUN method to find
counterfactuals but instead of the adaptation CBR step or the
DiCE optimisation, we opt for feature relevance explainers
to inform us about actionable features. In doing so we avoid

the need to create similarity-based explanation case-bases, yet
maintain the advantage of locality-based explanations which
ensure valid counterfactuals that are often harder to guarantee
with optimisation methods.

Discussions regarding user acceptability and satisfiability of
explanations has dominated XAI research in recent years [15].
Quantitative evaluation of counterfactual explanations focus on
measures that can ascertain properties of good counterfactuals.
In case-based counterfactual research, an explainer CBR sys-
tem’s ability to solve future “explanation queries” is measured
by explanatory competency [8]. This measures the fraction of
queries that are currently explained by the explainer CBR sys-
tem - coverage of the counterfactual cases. Authors claim that
a good counterfactual will have at most two feature-differences
(although this is not guaranteed by the explainer CBR system)
and thereby maintain minimum plausible changes by operating
within a local neighbourhood. Other related work also confirm
the importance of measuring nearness and minimal changes
to evaluate counterfactual explanations through proximity and
sparsity measures [11]. Measures such as validity and diversity
are also used with generative counterfactual XAI methods.
However these are not applicable to our work, as case-based
counterfactuals have the advantage of formulating plausible
feature changes using valid cases in the case-base. Accordingly
in our evaluation strategy, we use proximity and sparsity to
compare counterfactual methods and also measure efficiency
of actionable feature discovery.

III. FEATURE RELEVANCE EXPLAINERS

Feature relevance weights conveys the extent to which a
feature contributes to a model’s output - i.e. greater weight
indicates greater relevance of that feature to model decision-
making. Features with the largest weights can therefore be
used to explain the contributory input values that resulted in
the output decision. In DisCERN, relevance weights are used
to partially order features for actionable feature discovery. In
the rest of this section we discuss and compare two widely
used feature relevance explainers; LIME and SHAP.

A. Local Interpretable Model-agnostic Explanations (LIME)

LIME [9] is a model-agnostic feature relevance explainer
which creates an interpretable model around a data instance
to estimate how each feature contributed to the black-box
model outcome. LIME creates a set of perturbations within
the instance’s neighbourhood and labels them using the black-
box model. This newly labelled dataset is used to create a
linear interpretable model (e.g. a weighted linear regression
model). The resulting surrogate model is interpretable and
only locally faithful to the black-box model (i.e. correctly
classifies the input instance, but not all data instances outside
its immediate neighbourhood). The new interpretable model
is used to predict the classification outcome of for the data
instance. Thereafter an explanation of the predicted class is
formed by obtaining the weights that indicate how each feature
contributed to the outcome.



TABLE I: Comparison of Feature Relevance Explainers

Property LIME SHAP
Explainer Type Post-hoc Post-hoc
Model dependency Model-agnostic Model-agnostic
Explainability Linear Game Theory
Principal Approximation Inspired
Local Accuracy
Missingness
Consistency -

B. SHapley Additive exPlanation (SHAP)

SHAP [10] is a model-agnostic feature relevance explainer
with theoretical guarantees about consistency and local accu-
racy from game theory and based on the shapley regression
values [16]. Shapley values are calculated by creating linear
models using subsets of features present in a case-base, X
(i.e. a set of data instances). More specifically, a model is
trained with a subset of features of size, m′, and another model
is trained with a subset of features of size, m′ + m̂. Here,
m′ + m̂ <= m, and the second model additionally includes
a set of features, m̂, selected from the set of features that
were left out in the first model. A set of such model pairs are
created for all possible feature combinations. For a given data
instance that needs to be explained, the prediction differences
of these model pairs are averaged to find the explainable
feature relevance weights.

C. Feature Relevance Explainer Properties

LIME and SHAP are Post-hoc, model-agnostic feature
relevance explainers (see Table I). Shapley values are con-
sidered to be consistent (i.e the same query results in the
same relevance explanation), unlike LIME which discovers
relevance weights using perturbed data. Both SHAP and Lime
guarantees local accuracy (i.e. the surrogate model and black-
box model predicts the same outcome for a data instance); and
missingness (i.e. ensures that there there is no weight contribu-
tion from a missing feature). Both provide a feature relevance
weights vector, for any given query. In our counterfactual work
the magnitude of the relevance weights, focus the search for
the minimal subset of feature value changes that are likely to
bring about a class change for a given query.

IV. METHODS

DisCERN algorithm uses feature relevance to identify the
minimum subset of changes needed to form a counterfactual
explanation from a retrieved NUN. Here we formalise the
NUN counterfactual approach and thereafter discuss how
weights from, feature relevance explainers, can be used in
DisCERN to discover minimal number of actionable features.

A. Nearest-Unlike-Neighbour Counterfactual

The goal of a counterfactual explanation is to guide the end-
user to achieve class change (i.e. actionable), with a focus
on minimising the number of changes needed to flip the
decision to a more desirable outcome. Given a query instance,
x = {x1, x2, ..., xm}, with m features, its counterfactual,

Fig. 1: Nearest Like and Unlike Neighbours in 2D space

x̂ = {x̂1, x̂2, ..., x̂m}, is identified as the NUN in the case-
base, X [2], as follows:

x̂← arg min
x′∈X

d(x, x′); x, x′, x̂ ∈ X; y 6= y′ (1)

Figure 1 illustrates a neighbourhood for a binary classed
problem in two dimensional feature space (m = 2). It shows
for a given query, how a NUN appears close to its decision
boundary. In theory the closer it is to the boundary the fewer
actionable changes are likely to be needed to flip the decision.
However in practice certain types of feature changes (even if
small) may be harder, or in some cases, even impossible to
action (e.g. features related to demographics). Such discoveries
may still be useful to unearth, because they can point to
unethical or unfair practices.

Paired distances between the query and candidate NUNs
(i.e. other data instances with a different class to that of the
query) are computed using Euclidean distance (Equation 2).

d(x, x̂) =

√√√√√ m∑
i=1

(xi − x̂i)2 (2)

The optimal NUN will have the smallest distance to the
query. Both the query’s and NUN’s feature values are used by
DisCERN to formulate the counterfactual explanation. Here
we identify two challenges: discovering the minimal number
of actionable features (from a maximum of m potential feature
changes) and minimising the amount of change required for
each feature. We address these challenges using relevance
weights.

B. Feature weights from a Feature Relevance Explainer

For an arbitrary data instance, p, the output of a fea-
ture relevance explainer, Rel, is a list of weights, w =
(w1, w2, . . . , wm), where wi is a real-valued weight assigned
to feature, pi:

Rel(p)→ {w | w ∈ Rm} (3)

A positive weight (wi >= 0) indicates that the corresponding
feature contributes positively and a negative weight (wi < 0)
contributes negatively towards the predicted outcome. These
relevance weights are used to define an ordering constraint R
on features. Given a weights vector, w, the overall value, w(.),



(a) Query Relevance (QRel) (b) NUN Relevance (NRel)

Fig. 2: Actionable Feature Discovery with QRel and NRel

is the weight lookup of a feature included in p. This is used
to define the ordering � on features:

pi �R pj ⇐⇒ R :: w(pi) ≥ w(pj) (4)

C. Actionable Feature Discovery with Feature Relevance Ex-
plainers

The number of feature changes, n, required to achieve a
class change, can range from 1 to m (1 ≤n≤m). We propose
two methods to discover actionable features, with the goal
of minimising the number of feature changes (n) needed to
form a counterfactual explanation. The first method replaces
values of the most important features in the query with the
corresponding feature values from its NUN; or a second
alternative is to identify the most relevant features of the NUN
and copy those feature values to modify the query instance.

Figure 2 shows a query with five features being adapted to
form a counterfactual using two alternative value replacement
methods: QRel in Figure 2a; and NRel in Figure 2b. With
both methods, values are copied from the NUN, but the
exact features selected for replacement change based on the
instance parameter used in Rel(.). In QRel, the query features
are ordered by their feature weights and the most important
features are replaced by the respective NUN feature values.
That is, QRel, uses Rel(p = x) to obtain feature weights. With
NRel, the NUN features are ordered by their feature weights
returned by Rel(p = x̂), and the most important features are
reused by the query. Since each method imposes a different
feature ordering, the number of changes needed to form the
final counterfactual is likely to be different. In our example
QRel and NRel achieve class change with 2 and 3 feature
replacements respectively in Figure 2.

D. DisCERN Algorithm

Algorithm 1 brings together methods from Sections IV-A
through IV-C to form NUN counterfactuals. Here, y = F(x),
is the (black-box) classifier prediction for the query and,
ŷ = F(x̂), is the class prediction for the NUN. Relevance
weights from Section IV-C are identified in reference to either
the query or the NUN, which we have denoted as p; and the
Order method (from Equation 4) provides a list of feature

Algorithm 1 DisCERN [Rel, p]

Require: (x, y): query and label pair
Require: (x̂, ŷ): NUN and label pair
Require: F : classification model
Require: p: either x or x̂ . as described in Section IV-C
Require: Rel: Feature Relevance Explainer

1: w = Rel(p) . see Equation 3
2: ŵ = Order(w) . see partial order Equation 4
3: Initialise y′ = y; x′ = x . init counterfactual as query
4: for wi ∈ ŵ do
5: if x′i 6= x̂i then . i is the index of wi

6: x′i ← x̂i . copy NUN feature value
7: y′ = F(x′) . class prediction for counterfactual
8: if y′ 6= y then
9: Break

10: end if
11: end if
12: end for
13: return x′

indices ranked by the relevance weights. Feature values are
iteratively replaced until the actionable change condition is
met (i.e., F(x′) = y′ ∧ y 6= y′) or the query is completely
changed to the NUN (which is guaranteed to result in class
change). Here the fewer the iterations needed the better the
actionable features discovered. Once class change is achieved
DisCERN returns x′ as the counterfactual.

V. EVALUATION

The goal of this evaluation is twofold. Firstly to investigate
different relevance feature explainers discussed in Section III
with a view to finding which is best for feature weighting
with DisCERN. Secondly to conduct a comparative study to
determine the effectiveness of the DisCERN counterfactual
explanation method (in Section IV-D) with the widely-used
DiCE [11] and the baseline random feature ordered counter-
factual creation methods.

Since DisCERN is a combination of a feature relevance ex-
plainer, Rel, and an actionable feature discovery method based



TABLE II: Dataset Properties

Datasets Moodle Loan-2015 Alcohol Income Credit
Features 95 77 5 15 15
Continuous Features 95 68 3 7 6
Categorical Features 0 9 2 8 9
Classes 2 2 2 2 2
Classification Accuracy 83% 97% 99% 84% 77%

on Rel(p = x) or Rel(p = x̂); we use the abbreviated notation
DisCERN [Rel, p] to refer to these configuration combi-
nations, where Rel ←(RND|LIME|SHAP|LIMEC |SHAPC);
and p ←(QRel|NRel). For example DisCERN [LIME, QRel]
denotes the combination of LIME weights with the QRel
actionable feature discovery method for counterfactual cre-
ation. Note that RND refers to random selection of actionable
features and therefore does not depend on either the query
or NUN for parameter p, and is denoted as DisCERN [RND,
Null].

A. Datasets

Datasets used in this paper are summarised in Table II, and
used to carry out experiments as follows:
• comparative study of relevance feature explainers for

feature weighting uses the Moodle dataset with results
analysed in Section VI-A; and

• the counterfactual creation experiment is conducted using
the Moodle dataset and four further datasets: Loan-2015,
Alcohol, Income and Credit datasets. These results appear
in Section VI-B.

Accuracy for each dataset is reported using a RandomForest
classifier of 500 trees, which we found had better performance
over several other black box models (including neural nets) in
an initial set of fine-tuning experiments (with stratified 3 fold
validation) For convenience with explanation experiments, we
assume that the black box model has correctly predicted the
outcome, and hence it made sense to work with the model
with highest dataset accuracy. In this paper all features are
considered candidates for actionable features1. Details of how
each dataset is preprocessed and used in a counterfactual
explanation scenario are discussed next.

1) Moodle Dataset: is constructed from records of student
footprints on the Moodle Virtual Learning Environment (VLE)
for a single class delivered within Robert Gordon University,
UK (RGU). VLE interactions help to capture vital touchpoints
that can be used as proxy measures of student engagement.
The dataset consists of 74 students enrolled on a Computer
Science class during Semester 1 of 2020/2021 at RGU. It
contains 95 features, where each feature is a learning resource
stored on the Moodle VLE and the feature value is the number
of times it was accessed by a student.

The ML task is to predict if a student gets a higher or
a lower grade based on their Moodle footprint. This task is

1In practice this is unlikely to be always possible. For instance features
such as income, home ownership and length of employment in the Loan-
2015 dataset are naturally non-actionable; and so are demographic features.

based on the assumption that there is some (causal or other)
relationship between the Moodle access and the final grade of
a student. We consider grades A and B as Higher grades and
C, D, E and F as Lower grades. Grades were consolidated as
Higher and Lower to mitigate the comparably lower number
of data instances and class imbalance. This formed a dataset
of 74 instances for a binary grade classification task, based
on the Moodle footprint. The explanation intent relevant to
this dataset is of the type Why student A did not receive a
higher grade X? instead of Why did student A receive grade Y?
The latter can be explained using a feature relevance explainer
presenting the contribution of the most important features for
the predicted grade; and the former Why not type questions
are better explained through a counterfactual explanation with
actionable features to guide the student to achieve a more
desirable outcome in the future.

2) Loan-2015 dataset: is the subset of 2015 records from
the Lending Club loan dataset on kaggle2. We limit the
dataset to records from 2015 to create the loan-2015 dataset
of 421,095 data instances with 151 features. The ML task is to
predict if a loan will be paid in full or not, and this outcome is
used to accept or reject future loan requests. We apply data pre-
processing steps recommended by the data providers to obtain
a dataset with 342,865 instances and 115 features to perform
binary classification. The desirable outcome for an end-user
is that his/her loan request is accepted (i.e. similar users
successfully re-paid their loans). For example an explanation
intent here can trigger a question such as Why person A did
not receive the loan? with a counterfactual pointing to those
features in need of adjustments, before a desirable outcome is
possible in the future.

3) Alcohol Dataset: is the Blood Alcohol Concentra-
tion (BAC) dataset which consists of 127,800 data instances
with 7 features [17]. It includes features such as gender, if
a meal was taken, the duration between the meal and BAC
test. The ML task for this dataset is to predict if the BAC
is over a regulatory limit. Accordingly, in a pre-processing
step the dataset is converted in to a binary classification
task by recognising the two classes with the BAC regulatory
limit as the decision threshold. In common with the previous
two datasets, one of the outcomes is more desirable than
the other; which is of having the BAC below the acceptable
threshold for driving. Accordingly, counterfactual explanations
are sought by individuals who have a BAC above the threshold
and are looking to understand how they might keep their
BAC below the threshold by better managing one or more
actionable features (e.g. such as periods between meal and
alcohol consumption).

4) Income Dataset: contains 45222 data instances of per-
sonal data based on US 1994 Census database3. There are 15
features including demographic, educational, and other per-
sonal properties to predict their yearly income in US Dollars.
The ML task for this data set is to predict, if the income

2https://www.kaggle.com/wordsforthewise/lending-club
3https://archive.ics.uci.edu/ml/datasets/adult



of a person is above or below 50k per year. Accordingly, in
a pre-processing step the dataset is converted in to a binary
classification task by setting the two classes to be less than
or equal to 50k, and above 50k; with the latter being the
desirable class. A counterfactual explanation is sought out by
an individual with a salary below 50k and seeking to change
one or more of their circumstances (such as their educational
or demographic attributes) to acheive the higher salary class.

5) Credit Dataset: is a credit card application approval
dataset with 653 data instances4. There are 15 anonymised
features describing an applicant with the class indicating if
the credit card application was approved or not. In this binary
classification task the the model predicts if an applicant should
be approved or not. For an applicant the desirable outcome is
an “approved” credit card application. Accordingly, applicants
who seek counterfactual explanations would have typically
“failed” their credit card application and are looking to change
this to an “approved” outcome by identifying necessary feature
changes.

B. Performance Measures

Four quantitative performance measures (validity, proximity,
sparsity and diversity) for evaluating counterfactuals were
introduced in [11]. Proximity measures the mean feature-wise
distance between a query and its counterfactual explanation.
Sparsity refers to the number of features that are different
between a query and its counterfactual explanation. Validity
measures if the counterfactuals presented by the method actu-
ally belongs to the desirable class (i.e. not the same class as the
query). Diversity measures the heterogeneity between multiple
counterfactuals. Both validity and diversity are not relevant
for our work because: 1) by selecting a NUN we ensure
100% validity; and 2) by selecting the most similar NUN
counterfactual there is no requirement to measure diversity.
In this paper we present two measures which correspond to
sparsity and proximity respectively, but are not identical to the
measures in [11].

1) Mean number of feature changes (#F ): required to
achieve class change is calculated as follows:

#F =
1

N ×m

N∑
j=1

m∑
i=1

1[x̂i 6=xi] (5)

Here the number of features with different values between
the counterfactual (x̂) and the query (x) are calculated and
averaged; where N refers to the number of query instances,
and m is the number of features.

2) Mean amount of feature changes ($F ): required to
achieve class change is calculated as follows:

$F =
1

N ×#F

N∑
j=1

m∑
i=1

(|x̂i − xi|) (6)

Here the sum of feature differences are average over #F and
the number of query instances (N ). All continuous features

4https://archive.ics.uci.edu/ml/datasets/Credit+Approval

TABLE III: Comparison of feature ordering strategies

#F $F

DisCERN [Rel↓, p→] QRel NRel QRel NRel
LIME 8.14 8.61 0.2642 0.2726
LIMEC 11.41 10.38 0.2308 0.2524
SHAP 7.69 8.32 0.2660 0.2454
SHAPC 10.28 10.18 0.2085 0.2068
Chi2 12.27 0.2700

are min/max normalised and therefore, continuous feature
differences are between 0 and 1 whereas categorical feature
differences are always 1 (using the overlap distance). Accord-
ingly, datasets with more categorical features will have higher
$F , which means that the $F measure is not comparable
across datasets. Note that smaller values of #F and $F are
desirable.

VI. EXPERIMENTAL RESULTS

A. Comparison of Weights from Relevance Feature Explainers
For the first study we compare the following relevance

feature explainers for DisCERN:
1) LIME: feature weights from the local feature relevance

explainer discussed in Section III-A.
2) SHAP: feature weights provided by Shapley values

discussed in Section III-B.
3) Chi2: global feature weights from the Chi-Squared test

for feature selection.
4) LIMEC and SHAPC : these are two class level fea-

ture relevance explainer versions of LIME and SHAP
weights respectively, where for each class, the aggre-
gated feature relevance is the mean feature relevance
weights over all train data instances for that class.

A comparison of DisCERN settings with 5 alternative
options for Rel; and 2 alternatives for p appear in Table III
for the Moodle dataset. Each alternative’s performance is
compared on #F and $F performance measures. Note that
there is no difference between QRel and NRel when using
Chi2 because feature weightings are global and not determined
by a local data instance (be that the query or the NUN). Results
show that SHAP achieves the best performance over LIME
and Chi2 with both QRel and NRel methods (see bold font).
SHAP using the QRel feature ordering method has achieved
lowest #F , whilst SHAPC has the lowest $F . However,
since SHAPC requires additional feature changes to achieve
class change, we consider SHAP to be a preferable strategy.
Moreover, we observe that LIME also achieves comparable
performances for both #F and $F . Notably, Chi2 failed to
outperform both LIME and SHAP strategies in both min-
imising number of features and amount of change. Overall,
these results emphasise the importance of feature relevance
explainers as a proxy to identifying features important to
achieving class change.

B. Evaluation of Actionable Feature Discovery
Table IV provides a comparison of five DisCERN configu-

rations with the DiCE counterfactual algorithm. Here RND



TABLE IV: Comparison of counterfactual methods on #F

Datasets Moodle Loan-2015 Alcohol Income Credit
DiCE 10.21 2.59 2.53 2.95 2.81
DisCERN [RND, Null] 21.62 21.91 2.16 2.92 3.18
DisCERN [LIME, QRel] 8.14 6.93 2.11 2.59 2.42
DisCERN [LIME, NRel] 8.61 6.69 2.15 2.64 2.50
DisCERN [SHAP, QRel] 7.69 6.86 2.11 2.70 2.48
DisCERN [SHAP, NRel] 8.32 5.51 2.12 2.68 2.42

TABLE V: Comparison of counterfactual methods on $F

Datasets Moodle Loan-2015 Alcohol Income Credit
DiCE 0.6344 0.7763 0.6707 0.8497 0.8179
DisCERN [RND, Null] 0.2924 0.0569 0.0909 0.3545 0.2573
DisCERN [LIME, QRel] 0.2642 0.0660 0.0927 0.3643 0.2365
DisCERN [LIME, NRel] 0.2726 0.0675 0.0910 0.3570 0.2662
DisCERN [SHAP, QRel] 0.2660 0.0760 0.0929 0.3604 0.2343
DisCERN [SHAP, NRel] 0.2454 0.0711 0.0925 0.3258 0.2210

is a baseline counterfactual explanation comparator where
actionable features are selected randomly instead of being
informed by feature relevance weights. Results suggests that
DisCERN in the QRel setting achieves the best performance
on the Moodle, Alcohol and Income datasets and DiCE
achieves best performance on the Loan-2015 dataset (see bold
font). DisCERN using LIME relevance explainer achieves best
performance on the Alcohol, Credit and Income datasets while
SHAP matches the performance on the Alcohol and Credit
Datasets. SHAP achieved best performance on the Moodle
dataset. DisCERN with QRel and NRel achieve comparable
performances across all datasets which resembles findings in
Table III. Interestingly, DiCE failed to outperform Random
feature ordering on the Alcohol and Income dataset which
could be due to the limited amount of features available.

Overall DisCERN with SHAP and NRel strategy achieves
class changes with lowest $F values (see bold font in Table V)
on the Moodle, Income and Credit datasets. $F performance
of DisCERN strategies are better compared to DiCE on all
five datasets. For instance, for a query in the Loan-2015
dataset, the total amount of change (#F × $F ) with the
DiCE method is 2.01(2.59 × 0.7763) and with DisCERN
[LIME,NRel] is 0.39(5.51× 0.0711). In situations where ac-
tionable features are not “easy to change”, it is more feasible to
use DisCERN over DiCE. With DisCERN there was no single
configuration (choices for Rel and p) that had out performed
the rest across datasets. It is unusual that DisCERN with
RND resulted in lowest $F on the Loan-2015 and Alcohol
datasets. Accordingly, the choice of relevance explainer (i.e.
LIME or SHAP) and ordering strategy (i.e. QRel or NRel) are
seemingly dataset dependent.

C. DisCERN Counterfactuals

Figure 3 shows how DisCERN can be used to form coun-
terfactual textual explanations using an example query from
each dataset. For purposes of illustration, we selected queries
that had a negative outcome and are good candidates to
demonstrate actionable feature changes to achieve a desirable

class change. Here only those actionable features discovered
using DisCERN are shown (and the other features includ-
ing those with identical values are not). A template-based
textual explanation generated from the counterfactual is also
presented for each example. It is interesting to note that with
all datasets, DisCERN is identifying important relationships
such as that between a person’s weight, the time since the
last meal, and the BAC level in the Alcohol Dataset or the
relationship between working hours and salary in the income
Dataset. Although some of these examples are genuine causal
relationships, others are relationships which do not directly
affect each others values. For instance in the Moodle dataset
we observe increased access to learning materials is being
related to a positive outcome; however this does not naturally
translate to a causal relationship. Understanding the types of
relationships that are discovered and using those to guide
language generation templates remains an important open-area
of research for the future.

VII. CONCLUSION

In this paper, we presented a novel approach to finding
actionable knowledge when constructing an explanation using
a counterfactual. We used feature relevance explainers as a
strategy to discover features that are most significant to a
predicted class and then used that knowledge to discover
the actionable features to achieve class change with minimal
change. We demonstrated our approach DisCERN using five
datasets one of which (Moodle Dataset) is an original contri-
bution.

Our empirical results showed that SHAP is the most optimal
feature relevance explainer for ordering actionable features.
DisCERN with QRel and NRel counterfactual methods in-
troduced in this paper have either outperformed or achieved
comparable performance over DiCE. The results have also
highlighted the need to find balance between the number of
feature changes and amount of feature change based on the
selected actionable features. Accordingly, we find that there
is conclusive evidence that feature relevance explainers are



Fig. 3: Example Counterfactuals

an important proxy to discovering actionable features and
minimising the changes required. Future work will expand
upon our evaluation to include additional real-world datasets
and the use of qualitative evaluation through crowd-sourcing
techniques.
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