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Highlights 

 We propose a novel multi-view clustering algorithm which features sparse low-rank subspace

with the novel bilinear error matrices decomposition model based on non-negative matrix

factorization (NMF) and adaptive-weighting manifold learning.

 For more robust decomposition of the noisy part of the data, the  norm and the nuclear 

norm are used to constrain the error matrix of NMF and the error matrix of basis matrix, 

respectively.  

 In order to preserve the geometric structure and relevant information of each view,

adaptive-weighting manifold learning and the Hilbert Schmidt Independence Criterion are added

to the model, which is solved by the idea of adaptive exponential weighting.

 The proposed algorithms have obtained very good experimental results in several well-known

multi-view datasets, and it has a very fast convergence rate.

Abstract 

Multi-view clustering has become a hot yet challenging topic, due mainly to the independence of and 

information complementarity between different views. Although good results are achieved to a certain 

extent from typical methods including multi-view based  -means clustering, sparse cooperative 

representation clustering and subspace clustering, they still suffer from several drawbacks or limitations: 

(1) When each view is sparse decomposed, it still contains some hidden information for mining, such as
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the structure of samples, the intra-class similarity measure, and the inter-class diversity discrimination, 

etc. (2) Most of the existing multi-view methods only consider the local features within each view, but 

fail to effectively balance the importance of and combine information among different views in a 

diversified way. To tackle these issues, we propose a novel multi-view diversity learning model based on 

robust bilinear error decomposition (BED). The BED term with a low rank sparse constraint is an 

improved non-negative matrix factorization (NMF), which is used to extract the hidden structure 

information in sparse decomposition and useful diversity discrimination information in error matrix. The 

preservation of local features and selection of important views are achieved by adaptive weighted 

manifold learning. Furthermore, the Hilbert Schmidt independence criterion is used as a diversity learning 

term for mutual learning and fusion among views. Finally, the proposed robust low-rank multi-view 

diversity learning spectral clustering method is evaluated and benchmarked with eight state-of-the-art 

methods. Experiments in six real datasets have fully validated the significantly improved accuracy and 

efficiency of the proposed methodology for effective clustering of multi-view images. 

Keywords 

Low-rank Representation (LRR), Multi-view Subspace Clustering (MVSC), Hilbert Schmidt 

Independence Criterion (HSIC), Non-negative Matrix Factorization (NMF), Adaptive-Weighting 

Manifold Learning (AWML). 

1 Introduction 

With the rapid development of information technology, it is difficult to meet increasing demands 

with solely single-view data clustering methods based on clustering data from a singular perspective, 

especially in analyzing datasets with complex relationships [1]. Therefore, it is essential to extract 
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effective information from different views, which can then be combined for data fusion. Here, we define 

multi-view data as multiple features extracted from the samples using different techniques. By fusing the 

most diversity of various features, the effectiveness of clustering can be significantly improved. 

Multi-view clustering (MVC) has been widely applied for many practical applications, such as 

natural language processing [2], computer vision [3], big data [4] and biomedical information analysis 

[5]. Simultaneously, it can handle distinctive types of data including images [6], texts [7] and their 

combinations [8]. The core of multi-view data is to share features with the same structure among multiple 

views, so that data points can be uniformly partitioned according to multiple representations of different 

views. By fusing information from different views, MVC algorithms can achieve high accuracy of 

clustering rather than simply connecting features from different views, which seems often incomplete as 

different views describe various perspectives. Therefore, the major issue of multi-view data analysis is 

how to effectively integrate multiple features and explore the underlying structures [9]-[11], such as, 

adding related constraints to the conventional  -means approach [12]. 

In order to explore different information from multiple feature sets while revealing a consistent 

cluster structure of the dataset, Jiang et al [13] proposed a collaborative fuzzy MVC algorithm with 

differently weighed views. Zhang et al [15] proposed a  -means-based two-level weighted fusion MVC 

method, yet the structure of the view and the integration of different views were not taken into 

consideration. In order to solve the problem of retaining the internal structural features of each view, 

Wang et al [16] proposed a belief propagation-based MVC method, where clustering consistency between 

the clustering qualities and similarity between different views were used. This led to the realization of 

different viewpoints through the passing between single view and cross view, where information between 

views was directly integrated.  
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Many existing MVC methods employ graphs in which typically pre-calculated inputs were used to 

reveal the data distribution independently in each view. Manifold learning can better obtain the inherent 

geometric information and the natural discriminant information in a single view. Gao et al [43] proposed 

double graphs-based discriminant projections (DGDP), which designed the graph constructions to 

preserve the informative globality and locality. Gao et al [44] also proposed the discriminant global and 

local preservation graph embedding (DGLPGE) to weight the edges of graphs. Cai et al used manifold 

learning to smooth the data and preserve the local structural features of the graph in MVC [17], i.e. the 

internal features of each view. As to MVC, most of them seldom consider the correlation between the 

internal graph structure of the view and the clustering results, with the results depending largely on the 

quality of the pre-defined affinity graph [18]. In practical applications, manifold learning is often used as 

an auxiliary part, which is combined with some other techniques to complete the tasks. Wang et al [19] 

proposed to combine manifold regularization with non-negative matrix factorization (NMF) for similarity 

measurement of regions within a view or between individual views, where a more compact multi-view 

data space representation through the regularization of views was obtained. NMF is essential for the 

sparse representation of the data, which has become a hot topic of research over the years. Based on the 

manifold regularization, we can also use a part-based NMF representation to maintain the local geometry 

of the data space. 

Due to the widespread use of low-rank in single-view data compression [21], low-rank 

representation (LRR) has also been applied to MVC as it can improve clustering performance by 

exploring structural consistency among multi-views. In Ref. [22], a multi-view spectral clustering method 

was proposed for structural low-rank matrix decomposition. By decomposing potential low-dimensional 
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data for clustering representations, a structured LRR was proposed to provide a high-quality description 

of the data‟s clustering structure for each view. 

Another thing to note, high-dimensional multi-view datasets need to be projected onto a 

low-dimensional space to simplify the problem. The importance of different views should be taken into 

account. For instance, Yu et al [46] used the low-rank matrix representation to capture the global structure 

from the weighted multiple views. Zhang et al [14] proposed a multi-view cooperative local adaptive 

weighted information entropy of each view clustering method based on the Minkowski matrix. Zhan et al 

[20] proposed a novel multi-view document clustering method with the graph-regularized concept 

factorization, which was suitable for feature extraction and adaptive weighting of each view, enabling the 

preservation of the local structural features by using the manifold learning. This approach only considers 

the importance of the subspaces of the different views, but the importance of the internal structure of each 

view is not taken into account. Recently, Zhang et al [45] proposed kernelized multi-view subspace 

clustering (MVSC) via auto-weighted graph learning (KMSC-AGL) to evaluate the importance of 

multiple views. However, the update of weights in this method depends on the derivation of the common 

similarity matrix, showing a lack of mathematical meaning for weights that will be solved in this paper. 

Although the importance of different views was considered to tackle the problems above, this 

method did not fully consider the diversity between views. Rather than focusing purely on the similarity 

between different views, it is also critical to use the diversity of different views. Consequently, to make 

full use of all view information an ideal solution needs to solve the following three key challenges: 1) 

extraction of hidden information in the noise part of the low-rank decomposition; 2) adaptive trade-off 

between local feature based structure consistency of different views; and 3) the diversity fusion between 

different views. 
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To tackle the aforementioned challenges in MVC, this paper proposes a new unified robust low-rank 

multi-view diversity optimization model (RLMDOM), which features a novel bilinear error matrix 

decomposition (BEMD) module, an adaptive-weighting based manifold learning (AWML) module, and 

the Hilbert Schmidt Independence Criterion (HSIC) for inter-view learning. The structural block diagram 

of the proposed RLMDOM with the AWML is shown in Fig. 1. In the proposed method, the BEMD 

module is an improved NMF, where robust low-rank constraints are added to the relevant error matrices. 

In this way, the robustness and sparsity of matrix decomposition are improved, such that the internal 

structure information of the sparse matrix and some useful discriminant information in the error matrix 

can be fully explored. Subsequently, the addition of AWML can ensure the local geometric structure 

inside each view to a large extent, and the discriminant information of data will not be seriously degraded 

when the input data is sparsely decomposed. Moreover, the structure of each view is applied with 

adaptive weighting, so that the importance of different view structures can be weighed and changed 

during the algorithm updates. To further enhance mutual learning and diversity fusion among different 

views, we added the HSIC module to facilitate the interconnection between views, the mutual learning 

and integration of information during the model optimization. Experimental results have shown that the 

proposed RLMDOM is a promising diversity optimization model with a superior performance than 

existing approaches. 

The major contributions of the proposed RLMDOM algorithm can be summarized as follows: 

(1) A novel BED model based on NMF is proposed. One error matrix is the sparse representation 

error of each view obtained by NMF. This can effectively remove any redundant information from 

the input data, whilst reducing unnecessary noise interference. Another error matrix is between 

the basis matrix obtained by NMF and the input data matrix of each view. This can help to extract 

the effective information by the sparse representation model more sufficiently. The novel bilinear 

error matrix decomposition can more effectively extract the hidden information in the noisy error 

part. 
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(2) The     norm and the nuclear norm are used to constrain the error matrix of NMF and the error 

matrix of the basis matrix, respectively. The     norm is to ensure that the coefficient matrix 

obtained by NMF has more complete information than the one obtained by linear decomposition. 

The nuclear norm that represents the sum of the singular values of the minimization matrix, 

belongs to the low-rank constraint with the effect of sparsity. 

(3) In order to enhance the relationship between views and the diversity of views during matrix 

decomposition, two sub-modules are combined in the proposed model, including AWML and the 

HSIC, respectively. AWML takes into account contributions of the internal structures of different 

views during the process of continuous optimization. Furthermore, HSIC is used to make a variety 

of judgments on each view to enhance the connection between views; 

(4) We effectively integrate BED, AWML and HSIC to construct a unified robust low-rank multi-view 

diversity optimization model. The internal structure information of sparse representation, the 

useful discriminant information of each view, and the diversity learning are fully considered. 

Experimental results have demonstrated the superior performance of the proposed methodology 

in comparison to a few state-of-the-arts. 

The remaining of this paper is organized as follows. Section 2 briefly introduces the background of 

related techniques, including NMF, manifold learning for data smoothing and HSIC covariance 

constraints. The proposed algorithm and its optimization process are presented in Section 3. Section 4 

details the experimental results and analysis, and finally some concluding remarks are drawn in Section 5. 

 

Figure 1: The structural block diagram of the proposed RLMDOM method. 
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2 Related Works 

In this section, the fundamentals and background of the key techniques used in our proposed 

approach, including NMF, manifold regulation and HSIC are briefly introduced as follows. 

2.1 Non-negative Matrix Factorization (NMF) 

NMF [23] has been widely applied in LRR, sparse decomposition and cooperative representation 

[24] in recent years. In NMF, a given matrix   can be decomposed into two matrix forms, i.e. a basis 

matrix   and a coefficient matrix  , where all the elements in these two matrices are non-negative. That 

is 

                                            (1) 

where                    ,   is the number of sample features,   is the number of input 

samples, and each column of   is a sample. The basis matrix              and the coefficient 

matrix              can be obtained.  

The Euclidean distance is adopted to measure the objective function below: 

   ‖    ‖ 
  ∑                

        
                         (2) 

where * represents dot product;     denotes the  -th feature of the  -th sample of the input data  ;      

and      denote the  -th row and  -th column, respectively. In fact, NMF is used as a sparse 

decomposition algorithm. With added constraints, the coefficient matrix can be used as an objective 

function of clustering detailed in the next subsections. 

2.2 Manifold Regularization 
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Although NMF can generate a series of useful sparse matrices for a given data matrix, it does not take 

into account the integrity of the internal structural features of the data matrix. Recently, manifold learning 

has been applied in NMF to smooth the sparse subspace matrix [25]. In order to preserve the integrity of 

local features, the graph theory is used to construct the association of local features. It is found that this 

local similarity relationship can be constructed using the  -nearest neighbor based multi-label data 

clustering (ML-KNN) [38].  

Three representative approaches of the general graph method based on KNN are given as follows:  

1) Binary representation: In the constructed graph, each element is treated as a node. If the 

node   is within or on the edge of the nearest neighbor of the node  ,    =1; otherwise 

   =0, where     denotes the weight value between nodes   and  , that is, the 

similarity between these two samples. 

2) Heat kernel weighting: If the node   is within the  -nearest neighbor of node  , we 

have 

      
‖     ‖

 

 .                                (3) 

3) Dot-product weighting: If the node   is within the  -nearest neighbor of node  , we 

have 

    
  

   

         
                                   (4) 

Let                     denote the  -th column of the coefficient matrix. The Euclidean distance 

is used to calculate the deviation between the columns for measuring the smoothness of the low 

dimensional representation in multi-views. Here, the general manifold regularization    can be defined 

as follows: 

   
 

 
∑ ‖  

   
   

   
‖

 

 
 
        

   
                         (5a) 

  ∑    
    

       
   

   
   

 ∑    
    

         
   

               (5b) 
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   (               )    (               )            (5c) 

   (               )                                (5d) 

where    denotes the matrices trace,    
   

 denotes the weight value between nodes   and   in the  -th 

view,            is the similarity matrix, and                is the  -th view Laplacian 

matrix, in which      is a diagonal matrix with    
   

 ∑    
    

   . 

2.3 The Hilbert Schmidt Independence Criterion  

  According to Refs. [26][27], we may recall the definition of cross-covariance    . A mapping 

     from a sample     to the kernel space   is defined, after that the inner product vector in the 

mapping space is represented as   (     )  〈           〉, where 〈 〉 is the inner product function, and 

  ,    are the  ,  -th column of the input data  , respectively. Then,   is defined as the second kernel 

space, with a kernel function   (     )  〈           〉, where    and    are the  ,  -th column of 

the input data  , respectively. As a result, the covariance function for two random variables,   and  , 

can be defined as: 

       [                   ]                     (6) 

where    and    are the expectations of   and  , respectively, which can be obtained by    

        and           , and   denotes the matrix product. 

Definition 1 (definition of HSIC): Given the separable reproducing kernel Hilbert space (RKHS)  , and 

a joint probability distribution    , we can use the associated operator     to identify the HSIC as the 

squared Hilbert-Schmidt norm: 
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               ‖   ‖
  

 
                         (7) 

where the squared Hilbert-Schmidt norm is represented as follows: 

‖ ‖  
  ∑    

 
   .                                      (8) 

Definition 2: (The general form of HSIC): Given   independent observations from    ,  

  {                         }    , an estimator of HSIC, redefine             as 

                                                    (9) 

where    and    are the two inner product matrix         (     ),        (     ) and 

            is the center matrix. For more details of HSIC, please refer to Refs. [26][27]. 

3 The Proposed Method 

As for MVC, a straightforward way to make use of all views is to perform clustering-based fusion of 

multi-view features. We propose the multi-view spectral clustering method based on NMF, called 

RLMDOM. This method can effectively decompose the input data, thus improving the computational 

efficiency of the algorithm. To preserve the local structure in MVC, we propose to obtain the latent 

representation in an adaptive way by using the AWML and the HSIC. The presented method is robust, as 

the adaptive weight of each view is used and the relevant robust constraints in each part are applied. 

Lastly, the spectral clustering method is utilized to classify datasets with the decomposing coefficient 

matrix. 

3.1 Sparse Low-rank Subspace Clustering  

According to the characteristics of NMF [23], a data matrix   can be decomposed into two 

non-negative matrices. As NMF is an approximate decomposition, a certain degree of errors exists. In 
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general, these errors partially miss some useful information. Therefore, to ensure the integrity of the 

information provided by NMF, an error matrix    for the non-negative matrix is defined below: 

                                         (10) 

The focus of the non-negative matrix is to use the corresponding object function and optimization 

method to minimize the decomposition error matrix. Actually, Eq. (2) contains two new matrices, i.e. the 

original data is decomposed into a basis matrix and a coefficient matrix, yet the decomposition in Eq. (2) 

is to use the original matrix as the basis matrix. There is a deviation in the basis matrix in the 

decomposition of the Eq. (2), and there is a noise term in the basis matrix in the decomposition of Ref. 

[27]. Therefore, in order to ensure that the coefficient matrix obtained by NMF has more complete 

information than the coefficient matrix obtained by linear decomposition, we add the error matrix and use 

the kernel approximation norm as ‖ ‖  ∑     and the     norm as ‖  ‖    ∑ √∑        
  

   
 
    

∑ ‖       ‖ 

 
   , where    denotes the  -th singular value of the matrix. Here, the novel BEMD model 

based on NMF, denoted by   , can be defined as follows: 

   ‖  ‖    ‖  ‖     

                                             (11) 

where    represents the error of NMF. It is simultaneously with low-rank and sparsity, and can be used 

to make the decomposition more robust than other norms. By comparing with Eq. (2) and Ref. [27], more 

useful information can be extracted by our proposed method.    denotes the difference between the 

basis matrix of NMF and the original data. This will not only preserve the characteristics of the 

coefficient matrix, but also enhance the robustness of the model. 

3.2 Model Construction 
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Before discussing the model construction, we firstly define some notations. The input multi-view 

datasets are represented as {                   }, where      represents the dataset from the  -th 

view and    denotes the number of total views. For each     , it has   instances, and each instance has 

  features, thus it can be presented by      {  
   

   
   

     
   

}      .           and 

          represent the  -th view‟s basis matrix and coefficient matrix of NMF, respectively.      is 

the Laplacian matrix for the  -th view with   
   

 and   
   

 denoting the error of the  -th view matrix 

     and basis matrix     , respectively.  

Based on the definitions above, the objective function of the proposed RLMDOM method can be 

given by:  

   

            
   

   
   

     ∑   
  
   [‖  

   
‖

   
 ‖  

   
‖

 
]    ∑     (         ) 

  
                   

 ∑ (    )
 
                   

  
                                (12)                             

      
   

                 
   

            ∑                           
  
            

There are three regularization parameters in Eq. (12), where    is to measure the importance of sparse 

representation,         and    are the trade-off correlations of the smooth term and the diverse 

regression terms, respectively.      and   are the weight of  -th view and power index, respectively. 

In the first term, the improved NMF is used to decompose the original data matrix into the basis matrix, 

the coefficient matrix and two error matrices. A sparse sub-matrix can be obtained, which is sparser than 

the original data matrix with the redundant information discarded. If the feature dimension of each sample 

    is greater than the number of samples in the input dataset    , i.e.    , the decomposition 

actually has an effect of dimension reduction. The     norm is used for more robust decomposition in 

the first term of the objective function. In order to ensure that the coefficient matrix obtained by NMF has 

more complete information than the one obtained by linear decomposition, the error matrix is added with 
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using nuclear norm, which not only preserves the characteristics of the coefficient matrix, but also 

enhances the robustness of the model. ‖ ‖  represents the sum of the singular values of the minimization 

matrix, which is different from other norms, and belongs to the low-rank constraint with the effect of 

sparse and dimensionality reduction [28]. In the second term, HSIC is used to fuse the structural features 

of various views, and also to determine the covariance between different views to enhance the connection 

between views. In addition, the differences between them are minimized through the related kernel space 

mapping. In the third term of the model, manifold learning is used to smooth each view whilst preserving 

its structural features. Actually, AWML can adaptively update the importance of different views 

according to the optimized results of the algorithm. The exponential form of AWML helps to enhance the 

diversity among different views for improving the discriminability in between. In comparison to other 

similar models, our proposed RLMDOM model mainly considers the deviation of matrix decomposition, 

whilst taking into account the importance of each view and the fusion of multi-view data for the 

following-on tasks of object detection and recognition. 

3.3 Optimization 

To solve the non-convex objective function in Eq. (12), the Augmented Lagrangian Method (ALM) 

[29] is adopted. The specific algorithm flow is summarized in Algorithm 1 and the details are explained 

as follows. 

Firstly, the objective function can be rewritten as: 

 (            
   

   
   

     )  ∑   
  
   [‖  

   
‖

   
 ‖  

   
‖

 
]  ∑ (    )

 
                   

  
    

 ∑  (  
   

                 
   

)
  
    

   ∑     (         ) 
  
         ∑  (  

   
             

   
)
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    ∑                           
  
        0             (13) 

where        〈   〉  
 

 
‖ ‖ 

 , 〈   〉 is the matrix inner product, and   
   

 and   
   

 are related to 

the Lagrangian multipliers. Furthermore, the parameter   is a regularity coefficient. In this paper, the 

inner product kernel is used for HSIC, which is defined as                 . For notation 

convenience, HSIC is represented by 

∑     (         )
  
        ∑   (          )

  
                              

 ∑   (                 )
  
                                         (14a)                                               

  ∑        
                 

 

 
                       (14b) 

Based on the analysis above, an alternate optimization method can be derived in order to convert it to 

a few solvable sub-problems. In every round of parameter updating, the solution of one variable is 

obtained whilst all others are fixed. 

1) The updating of the variable     : With fixed variables        
   

   
   

         

to update     , the optimization problem of Eq. (13) turns into 

      ∑          
     (               )  ∑ 〈  

   
                 

   〉   
  
              

   ∑     (         ) 
  
        ∑

 

 

  
   ‖                

   
‖

 

 

            (15) 

where   is the Lagrangian coefficient. We take the derivative to Eq. (15) about      and let it be 0. 

According to the Karush-Kuhn-Tucker condition [31], it can be rewritten as: 

                                           (16a) 

                                                (16b) 

                         
   

          
   

             (16c) 
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Note that Eq. (16a) is the standard Sylvester equation [30][42]. As the matrix   and    do not 

have common eigenvalues, according to the following Theorem 1, Eq. (16a) has a standard solution.  

Theorem 1: If the equation         is a standard Sylvester equation, it has a standard solution for 

 , as        , provided that the matrix   and    have no common eigenvalues, where    is the 

solution to the following equation,  

                   
    

     
    

     
  ∑    

    
      

  ∑    
    

      
                    

                                                                         (17) 

where        ,        ,        are the orthogonal similarity transformation matrix, and the 

matrix   and the matrix   are reduced to lower and upper real Schur form;        ,        

and, where   and   are the reduced target dimension of         and        , respectively. For 

more details please refer to Ref. [42]. 

2) The updating of     : To update the parameter     , the above method is 

adopted by fixing other variables except     , where the loss function of 

Eq. (13) can be rewritten as: 

      ∑
 

 

  
   ‖            

   
‖

 

 

 ∑ 〈  
   

             
   〉  

                   

 ∑
 

 

  
   ‖                

   
‖

 

 

 ∑ 〈  
   

                 
   〉  

      (18)  

Similarly, we take a derivative to Eq. (18) about      and let it be 0. Again, according to the 

Karush-Kuhn-Tucker condition [31], the optimization solution of      is derived as: 

                                            (19a) 

                 
   

             
   

    
   

        
 

 
  

   
    (19b) 

                                              (19c) 
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Here,   can be regarded as the positive definite matrix, hence   will have an inverse matrix.  

3) The updating of     : According to Eq. (13) and the relative constraint, the 

sub-problem of      can be derived as: 

      ∑                           
  
                     (20) 

    ∑           
  
                                      

Eq. (20) can be solved by using the Lagrange function method as follows： 

 (    )  ∑  
  
                    (      )   (∑          

     ).       (21)                                     

With the fixed parameter  , partial derivation is able to be taken to      and set it to be 0, thus we have:  

                                                      (22a) 

  

     
                                               (22b) 

      
 

 
 

 

                                          (22c) 

4) The updating of   
   

: To update   
   

, the original objective function can 

be rewritten as: 

      
  

 
‖  

   
‖

   
 

 

 
‖  

   
                

  
   

 
 ‖

 

 

           (23) 

One can see that this problem has a closed form solution [21][32]. Let                 

  
   

 ⁄ , we can then update   
   

 by: 

   
   

 {
   

  

 ‖  ‖ 

           ‖  ‖ 
 

  

 

                                        
                    (24) 

where    
   

 is the      -th element of   
   

, and    is the  -th column of  . For a large dataset, the 

following normalization method is applied to   
   

 for greater robustness and smoothness: 
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‖  
   

‖
 

  .                                    (25) 

5) The updating of   
   

: To update   
   

, the original objective function can 

be rewritten as: 

      
  

 
‖  

   
‖

 
 

 

 
‖  

   
            

  
   

 
 ‖

 

 

               (26) 

Let             
  

   

 
, and this can be solved by the Singular Value Threshold (SVT) method [33], 

where  ∑   may become the standard SVT of the matrix  . Therefore, the solution of the above 

formula can be derived as: 

  
   

     
 

 ∑                                    (27a) 

                                           (27b) 

where       is the shrinkage operator. To ensure that the variable   
   

 does not overflow during the 

entire optimization process, we also apply the following normalization method to   
   

 for greater 

robustness and smoothness: 

  
   

 
  

   

‖  
   

‖
 

  .                                    (28) 

6) The updating of ALM parameters: These parameters can be updated as 

follows: 

  
   

   
   

  (                
   

)                 (29a) 

  
   

   
   

  (            
   

)                    (29b) 

                                         (29c) 

where   is a constant parameter.  
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Algorithm 1: The algorithm steps for solving RLMDOM 

Input: Unlabeled datasets   {    }
   

  
              {       }

   

  
       

Output: The features of data points grouped in   clusters. 

1：Initialize:                    
   

     
   

          
   

     
   

        

2：While             do 

3:   for  =1  to    do 

4:           

5:      for  =1  to    do 

6:        Update    by Eq. (14b). 

7:        if     do 

8:                   

9:        end if 

10:     end for 

11:   Fix other parameters and update      by solving Eq. (17). 

12:   Fix other parameters and update      by solving Eq. (19a). 

13:   Fix other parameters and update      by solving Eq. (22c). 

14:   Fix other parameters and update   
   

 by solving Eq. (24) 

and Eq. (25). 

15:   Fix other parameters and update   
   

 by solving Eq. (27a) and Eq. (28). 

16:   Update   
   

 by solving Eq. (29a). 

17:   Update   
   

 by solving Eq. (29b). 

18:   Update   by solving Eq. (29c). 

19:   end for 

20:   Determine whether the convergence condition is met. 
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4 Experiments Results and Analysis 

4.1 Experimental Setting 

In this section, comprehensive experiments on six well-known MVC datasets are used for 

performance assessment of the proposed approach. These datasets span various applications, such as 

news, texts, and facial images/videos under various conditions, which are widely used in MVC field. The 

general information and statistics about these six datasets are summarized in Table 1, and the 

experimental settings are detailed as follows.  

(1) Notting-Hill Video Face dataset [34]: This is a face clustering dataset which contains 4660 

faces of 5 main casts in 76 video sequences. Our experiments used three views, including 

6750-D Gabor features, 3304-D LBP features and the 2000-D gray features. As suggested in 

Ref. [34], the first 1206 samples of the dataset are used in our experiment. 

(2) 3-Sources dataset [36]: Covering three online news sources, i.e. BBC, Reuters, and the 

Guardian, this dataset contains 416 cases. As suggested in Ref. [36], we used the three views 

with 169 distinct pieces of news from each view. 

(3) ORL_mtv dataset [28]: The ORL_mtv dataset includes 10 different gray scale face images of 

40 distinct subjects. With selected subjects, the images are taken under different conditions 

such as: varied lighting, facial expressions and details.  

(4) COIL20 dataset [10]: It contains 1440 samples in total, each of which is a 32x32 gray scale 

image from 20 objects captured from different view angles, including three views. 

(5) FERET dataset [35]: This dataset contains 1400 samples, each of which is 80x80 gray scale 

image from 200 objects captured from different view angles.  

                         |    |  |    |
 
   ⁄  

21:        . 

22:   end while 

23:   for  =1  to    do  

24:   end for 

25:   Apply spectral clustering to the affinity matrix  . 
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(6) Reuter dataset [36]: This is a document dataset containing features derived from 5 languages 

and translations over a common set of six categories, with all files being in the text bag 

representative. The original document language is English, with 4 other views in French, 

German, Spanish and Italian translation. For each class, 100 samples are randomly selected, 

resulting in a dataset of 600 documents. 

Table 1: Summary of the six datasets used in our experiments 

Dataset Notting-Hill 3-Sources ORL_mtv COIL20 FERET Reuter 

Samples 1206 169 400 1440 1400 600 

Views 3 3 3 3 1 5 

Clusters 20 6 40 20 200 6 

4.2 Compared Methods 

In this section, we will compare the proposed RLMDOM method with the existing well-known MVSC 

algorithms, including the Graph regularized multi-view NMF (GMVNMF) [41], Exclusivity-consistency 

regularized MVSC (ECRMSC) [10], centroid-based multi-view low-rank sparse subspace clustering 

(CMLRSSC) [36], pairwise kernel multi-view low-rank sparse subspace clustering (PKMLRSSC) [36], 

diversity-induced MVSC (DiMSC) [27], latent MVSC (LMSC) [28], MVSC via co-training robust data 

representation (CoMSC) [47], and consensus one-step MVSC (COMVSC) [48]. Details of these 

benchmarking approaches are briefly introduced as follows. 

1) GMVNMF [41]: This is mainly composed of two terms in the loss function, with 

NMF and weighting graph regularized. 

2) ECRMSC [10]: This method mainly uses a large number of    norm to constrain 

the components of sparse representation. 

3) CMLRSSC [36]: Similar to pairwise MLRSSC, the only difference is that the 

view-specific representations are enforced towards a common centroid. 

4) PKMLRSSC [36]: Aiming to recover the non-linear subspace, PKMLRSSC is similar 

to the first two algorithms yet the original dataset is affine mapped into a high 

dimensional feature space. 
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5) DiMSC [27]: This method extends the existing subspace clustering by joining the 

HSIC for preserving the relevant information between different views. 

6) LMSC [28]: Different from the general latent subspace clustering algorithms, 

LMSC uses two linear representations to derive the final sparse matrix which has 

greatly reduced the dimension of the data. 

7) CoMSC [47]: A method that utilizes multi-kernel spaces to process redundant 

information, and constructs consensus self-representations by exploring 

complementary details of learned representations. 

8) COMVSC [48]: This is a unified MVSC framework, which jointly optimizes 

similarity learning, clustering partition and final clustering labels. 

4.3 Evaluation Criteria 

For quantitative performance evaluation, the following seven well-known evaluation criteria are 

used. They are the clustering accuracy (ACC) [27], normalized information (NMI) [37], precision [36], 

recall [36], F-score [36], adjusted rand index (ARI) and confusion matrix, respectively.  

4.4 Parameter Analysis 

There are several parameters in the objective function of RLMDOM, which includes the 

regularization parameters for NMF, manifold learning, HSIC and the Lagrangian regularization, i.e. 

     
            and  , respectively. In this section, the effect of these parameters on the proposed 

model will be discussed.  

The first important parameter is the sparse parameter   , which plays a crucial role in the sparse 

decomposition of the original data and directly affects the clustering performance of the entire algorithm. 

As shown in Fig. 2, the magnitudes of the fluctuations in the six datasets are quite stable under various 

  , which means the proposed approach is insensitive to   . To this end, we set   = 0.001 by unified 

verification of different datasets in the experiment.  
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The second important parameter         has a great effect on the weight of different views when 

preserving their structural integrity. A larger weight indicates that the view contains more information 

thus it is more important. Although the parameter      can be adaptively determined by Eq. (23), the 

parameter   has to be manually set. Actually, the initial value of   is empirically set to 1. If someone 

wants to obtain the best performance of clustering, the parameter of power index   can be adjusted in 

             , and the initial value of      is set to 0.3.  

For the parameter   , it ensures the diversity of different subspace representations based on HSIC. 

The larger the parameter is, the more important the common feature structure between views is. As shown 

in Fig. 3,    is set to 0.001 for all the datasets.  

The last two important parameters are the regulation parameters   and  , which are hard to be 

determined empirically. Here, the initial value of   can be obtained in a ranging from [1e-2, 1e4]. 

Actually, the initial parameter   is empirically set to 1e1, and   is set to 1.2. The effects of these two 

parameters are shown in Fig. 4, where the parameter   is shown in exponential scale. 
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Figure 2: ACC, NMI and f are presented respectively according to the data decomposition sparse 

representation parameter    in six datasets. 

 

 

Figure 3: ACC, NMI and f are presented respectively according to the importance of HSIC parameter    

in six datasets. 

 

Figure 4: ACC, NMI and f respectively of the regulation parameter   and parameter   in the 3-Sources 

dataset. The results are similar in other five datasets. 

4.5 Clustering Results 

In this section, the clustering results on the six datasets are presented and shown in Tables 2-7, 

including those from our method and eight benchmarking algorithms. As seen, the proposed method has 
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consistently outperformed all its peers in terms of all the six evaluation criteria. Detailed analysis of these 

results is presented as follows. 

(1) For all six datasets excluding FERET, our approach has yielded significantly improved 

results. Firstly, we can analyze the two clustering indicators ACC and NMI of all 

experiment results. More specifically, the average of ACC of our method is higher 

than the second best algorithm by 2.1%, 3.7%, 11%, 0.2%, 5% and 0.6% on the 

ORL_mtv, 3-Sources, COIL20, Notting-Hill, Reuters and FERET, respectively. Besides, 

the average of NMI of our method is higher than the second best algorithm by 0.8%, 

6%, 3%, 2%, 4% and 0.6% on the ORL_mtv, 3-Sources, COIL20, Notting-Hill, Reuters 

and FERET, respectively. The clustering results for dataset on ORL_mtv, 3-Source, 

COIL20, Notting-Hill, Reuters and FERET are shown in Tables 2-7, which show the 

great improvement of our algorithm compared to other algorithms. 

(2) We analyze the experimental results from the image dataset. Tables 2, 5 and 7 show 

the face clustering results on ORL_mtv, Notting-Hill and FERET. Table 4 is the results 

on the multi-target dataset COIL20. Here, we divide the datasets into two groups, i.e. 

multi-view datasets (ORL_mtv, COIL20 and Notting-Hill) and single-view dataset 

(FERET), respectively. As can be seen from these tables, the experimental results of 

our proposed algorithm for multi-view face datasets are very good. In particular, from 

the Notting-Hill dataset, it can be clearly seen that the lowest improvement of the 

evaluation index is approximately 1% compared to the other method (such as 

ECRMSC and COMVSC for ACC). As to the dataset FERET, the improvement of 

experimental results is not so obvious compared to CoMSC and COMVSC, which also 

take into account the mapping of the kernel space, the fusion of diversity, and the 

preservation of geometric structures. Especially, the comparison method COMVSC 

also utilizes the optimal similarity learning, clustering partition and final clustering 

labels. Therefore, our proposed method experimental result is only 0.6%, 0.7%, 0.1%, 

0.2%, 0.5%, 0.1% better than the second best algorithm COMVSC in ACC, NMI, 

F-score, recall, Precision and ARI. From the experimental results in Table 7, we can 

analyze from two aspects on the reasons of low experimental results, including other 

comparison algorithms (GMVNMF, CMLRSSC, PKMLRSSC, ECRMSC, DiMSC, LMSC, 

CoMSC and COMVSC). First, the dataset FERET is a single-view dataset. In order to 

ensure that the proposed algorithm is not only applicable to multi-view datasets, but 

also to single-view datasets (FERET), for this dataset we do not use multi-view 

features like other datasets. Second, to illustrate the generality of our proposed 

algorithm, we did not use the different feature extraction methods to extract 

features from the original image, like other datasets ORL_mtv and Notting-Hill. The 

dataset without feature extraction has a lot of noise information when it is integrated 
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into the matrix, which will affect the cluster performance to some extent. Therefore, 

the experiment result on dataset FERET is not so good compared to other datasets. 

As to multi-view dataset COIL20, it shows that the experimental results are very good 

with great improvement compared to other algorithms. According to the 

experimental results of the second best algorithm CMLRSSC, there are 11%, 3%, 13%, 

3%, 21% and 14% improvement on the six evaluation metrics ACC, NMI, F-score, 

Recall, Precision and ARI, respectively. Therefore, the proposed algorithm has good 

clustering performance on face datasets, no matter it is multi-view feature space or 

single-view feature space.  

(3) We analyze the experimental results from the text dataset. Table 3 and Table 6 show 

the clustering results on the text datasets 3-Sources and Reuters, respectively. As can 

be seen, our proposed algorithm has obvious improvement compared to other 

comparison algorithms. ECRMSC is the second best algorithm on the text dataset 

3-Sources, and our propose algorithm is much better than that. The biggest 

improvement of the evaluation metrics is ARI, which is 13% higher than ECRMSC, 

while the lowest is 3% for ACC. As can be seen from Table 3, the proposed method 

has greatly improved in various indicators compared with CMLRSSC and PKMLRSSC. 

That is because different norm constraints are used. Another difference between our 

method and the CMLRSSC and PKMLRSSC algorithms are that the manifold learning 

method is used to preserve the local structural features of the view, and ensure the 

effectiveness of each view. Table 6 shows the clustering results on another text 

dataset Reuters. We can see that the proposed algorithm still has obvious 

improvement from the comparison algorithms with different evaluation indicators. 

For example, the lowest improvement evaluation index is 3.8% in NMI. However, the 

clustering performance evaluation index recall is lower than the comparison 

algorithm DiMSC, CoMSC and COMVSC. The reason is that the text data classification 

context is closely related, and we filter some negative information when performing 

NMF on the text dataset. However, the clustering results of GMVNMF, CMLRSSC and 

PKMLRSSC in this dataset are much worse than our proposed method. That is 

because our method pays attention to the deviation of matrix decomposition and 

adds the AWML module. Besides, compared with the DiMSC and COMVSC methods, 

when the original data matrix is decomposed, the basis matrix may contain noise 

which in turn affects the clustering performance to some extents. 

Table 2: Results (mean ± standard deviation) on the ORL_mtv dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 72.70±0.40 89.10±0.10 66.00±0.44 78.37±1.53 57.90±0.65 65.00±0.46 

ECRMSC [10] 85.41±1.10 94.70±0.90 82.10±1.50 84.72±1.21 78.30±0.82 81.01±1.12 
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CMLRSSC [36] 68.80±3.04 83.67±1.33 58.67±3.45 63.41±2.81 5466±4.21 57.64±3.55 

PKMLRSSC [36] 76.70±2.83 89.46±1.46 70.30±3.41 75.03±3.15 66.17±3.93 69.57±3.49 

DiMSC [27] 83.80±0.10 94.00±0.30 80.20±0.70 85.60±0.40 76.40±1.20 80.70±0.20 

LMSC [28] 81.94±1.71 93.10±1.16 74.83±0.90 78.94±0.43 71.12±0.43 74.22±0.46 

CoMSC [47] 76.75±1.25 87.22±0.75 68.31±1.54 71.11±1.47 64.75±1.85 67.31±1.89 

COMVSC [48] 79.25±0.45 90.59±0.14 73.34±0.87 79.57±0.23 68.03±1.10 72.68±0.48 

Ours 87.55±1.45 95.56±2.78 83.17±0.82 85.75±1.34 82.92±1.45 82.34±1.34 

 

Table 3: Results (mean ± standard deviation) on 3-Sources dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 55.42±3.05 49.60±2.29 48.46±2.52 51.42±2.61 45.35±2.37 32.23±1.51 

ECRMSC [10] 80.47±0.00 70.27±0.00 68.94±0.00 62.75±0.00 76.50±0.00 60.71±0.00 

CMLRSSC [36] 65.80±6.01 58.31±2.95 62.09±5.85 58.31±7.63 66.81±4.87 51.72±6.92 

PKMLRSSC [36] 60.47±3.60 52.44±2.18 54.60±3.74 49.35±4.19 61.23±3.82 42.74±4.51 

DiMSC [27] 68.27±0.45 60.52±0.61 59.95±0.83 53.51±0.53 66.47±0.82 48.49±0.83 

LMSC [28] 71.60±0.10 68.37±1.32 65.58±0.23 58.62±0.52 74.41±0.30 56.72±0.42 

CoMSC [47] 71.60±4.85 60.57±3.54 66.71±5.89 61.08±3.57 73.49±2.89 57.81±4.69 

COMVSC [48] 71.60±3.58 60.43±4.19 66.86±4.56 67.66±3.96 66.08±2.95 56.67±5.45 

Ours 84.20±7.60 76.49±4.33 79.77±5.66 75.10±6.69 85.17±4.67 74.18±7.03 

 

Table 4: Results (mean ± standard deviation) on COIL20 dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 81.01±2.20 94.05±1.42 81.00±2.30 92.57±0.56 72.35±3.72 79.90±2.50 

ECRMSC [10] 77.71±2.22 93.26±1.02 78.47±2.45 91.25±1.57 68.88±1.09 77.19±1.18 

CMLRSSC [36] 87.99±0.32 96.42±0.10 85.69±0.25 96.42±0.13 77.18±0.33 84.86±0.26 

PKMLRSSC [36] 79.72±2.52 85.00±1.97 76.09±2.23 77.27±2.31 74.95±2.16 74.83±2.49 
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DiMSC [27] 70.81±2.36 80.95±2.04 65.43±1.85 67.10±1.42 63.99±1.42 64.55±1.25 

LMSC [28] 80.10±0.70 87.90±0.11 75.80±0.70 83.20±0.40 78.30±0.80 82.10±1.70 

CoMSC [47] 67.91±1.56 75.99±0.84 62.20±2.58 64.04±1.49 60.46±2.68 60.18±2.89 

COMVSC [48] 65.76±1.56 79.59±0.53 61.39±1.24 68.57±0.12 55.57±1.12 59.17±1.58 

Ours 99.44±0.52 99.46±0.36 99.06±0.42 99.11±0.33 99.02±0.48 99.01±0.61 

 

Table 5: Results (mean ± standard deviation) on Notting-Hill dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 67.64±4.65 82.10±1.02 54.78±1.36 67.09±2.24 46.45±3.50 49.82±2.83 

ECRMSC [10] 70.07±2.45 82.52±1.96 58.21±2.58 57.84±1.29 58.57±1.07 54.97±1.28 

CMLRSSC [36] 62.69±3.32 76.30±1.63 54.39±3.98 50.61±4.35 58.88±4.03 51.13±4.24 

PKMLRSSC [36] 63.84±2.98 78.49±1.58 56.04±2.70 50.37±3.37 63.26±2.18 53.04±2.82 

DiMSC [27] 63.56±2.03 77.14±1.71 54.20±1.11 47.35±1.69 60.70±1.54 50.04±1.17 

LMSC [28] 68.57±1.28 80.87±1.25 58.42±1.91 53.71±0.33 64.20±1.93 54.18±2.12 

CoMSC [47] 67.00±1.26 77.08±1.21 54.14±0.35 54.69±0.56 53.61±0.48 50.54±0.89 

COMVSC [48] 71.47±0.89 83.80±1.12 65.79±1.56 60.27±2.51 72.41±2.87 63.39±2.45 

Ours 71.74±2.86 86.10±1.45 67.06±3.43 61.31±4.17 74.15±3.84 64.76±3.66 

 

Table 6: Results (mean ± standard deviation) on the Reuter dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 16.80±0.00 4.50±0.00 28.30±0.00 28.00±0.00 16.50±0.00 11.84±0.00 

ECRMSC [10] 30.33±0.20 11.46±1.23 24.11±0.56 35.30±1.25 18.30±1.26 12.99±0.30 

CMLRSSC [36] 50.10±3.13 33.42±2.27 39.23±1.87 45.08±4.49 34.90±1.35 25.36±1.85 

PKMLRSSC [36] 54.79±3.38 36.84±1.46 41.21±1.46 45.44±2.11 37.86±1.46 28.26±2.24 

DiMSC [27] 53.34±0.67 35.98±0.13 40.35±0.48 48.20±0.15 34.35±0.48 25.98±0.53 

LMSC [28] 48.33±0.33 30.79±0.24 37.68±0.19 43.05±0.81 33.19±0.15 23.30±0.25 
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CoMSC [47] 54.50±2.13 37.35±2.41 41.63±1.56 48.12±1.36 36.25±0.56 28.74±1.12 

COMVSC [48] 47.00±1.23 31.57±1.14 37.71±0.85 47.52±0.56 31.26±0.45 22.19±0.52 

Ours 60.74±2.98 41.15±2.36 45.74±1.92 46.23±1.66 45.29±2.29 34.86±2.42 

 

Table 7: Results (mean ± standard deviation) on the FERET dataset (best results in bold) 

Method ACC NMI F-score Recall Precision ARI 

GMVNMF [41] 7.00±0.20 49.00±0.42 4.92±0.41 5.75±0.33 4.60±0.10 4.11±0.35 

ECRMSC [10] 24.64±0.45 61.67±1.20 4.54±1.23 5.82±0.85 4.20±0.25 2.80±0.86 

CMLRSSC [36] 23.21±0.65 65.88±0.24 4.95±0.32 5.38±0.35 4.58±0.30 4.51±0.32 

PKMLRSSC [36] 29.06±0.83 68.69±0.38 9.61±0.63 10.72±0.66 8.71±0.61 9.18±0.63 

DiMSC [27] 29.82±0.50 68.41±0.60 9.32±1.57 10.44±1.78 8.51±1.40 8.95±1.58 

LMSC [28] 27.93±0.72 68.01±0.94 8.28±0.31 8.87±0.63 7.48±0.39 7.89±0.41 

CoMSC [47] 30.00±1.56 68.66±1.47 9.94±1.69 10.67±1.21 9.12±0.96 9.53±1.58 

COMVSC [48] 30.07±0.17 68.57±0.29 10.51±0.56 12.28±0.85 8.70±0.34 10.05±0.98 

Ours 30.69±0.76 69.34±0.33 10.60±0.56 12.48±0.80 9.22±0.48 10.16±0.56 

In order to better understand the relevant classification results of the visual dataset, we display the 

boxplot of some datasets (ORL_mtv and COIL20) in Fig. 5. As shown in Fig. 5, the final classification 

results of our proposed method are relatively stable. Besides, the confusion matrix of the datasets 

ORL_mtv and COIL20 is shown in Fig. 6. It can be seen that the data on the main diagonal represents the 

number of correct clustering for each category. Where, the darker the color on the main diagonal is, the 

more samples that are clustered correctly by our proposed algorithm. By observing the distribution on the 

main diagonal, we can clearly see that the classification results are almost consistent with the 

classification results in Table 2 and Table 4.  
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Figure 5: The boxplot of ORL_mtv and COIL20. 

 

Figure 6: Confusion matrix of the datasets (ORL_mtv and COIL20), where the numbers in the black box 

on the main diagonal represent the number of samples that are correctly classified by our algorithm. 

4.6 Similarity Matrix Selection 

There are many ways to define the similarity matrix through the k-nearest neighbor graph. In this 

experiment, three different definitions are used, which include the binary weighting, heat-kernel 

weighting and dot-product weighting. The binary is generally the measure of similarity between samples. 

As shown in Eq. (3) and Eq. (4), they are the measures of similarity by heat kernel weighting and 

dot-product weighting between samples [39], respectively. After conducting a large number of 

experiments, it is found that the best results can be obtained by using the dot-product of real datasets. 
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Various numbers of k-nearest neighbors for different datasets need to be specified for optimal clustering. 

According to the results shown in Fig. 7, we select  =12 in our experiments. If someone wants to have 

the best performance of clustering,   can be selected at the range from 3 to 12. 

 

Figure 7: The performance of the proposed RLMDOM in the 3-Sources datasets (the same effect can be 

witnessed in other datasets). The parameter   with different weighting schemes (dot-product, binary and 

heat kernel). ACC, NMI and f were only used for comparison purposes and generally, k was chosen as 12. 

4.7 Convergence and Algorithm Complexity Analysis 

The way of minimizing the objective function is an iterative process. Herein, the most important 

prerequisite is to consider the convergence of the proposed algorithm. Actually, our method is found to 

have a faster convergence speed than others, as shown in Fig. 8. As seen, for most of the datasets, optimal 

results are achieved after 4 iterations in our proposed approach.  

The complexity analysis of the proposed method is detailed in four main sub-problems,     ,     , 

  
   

 and   
   

 as follows. For the sub-problem     , as Eq. (16a) is a standard Sylvester equation, 

according to Refs. [27][42], the algorithm complexity of update      is      ,   is the number of 

samples. For the sub-problem     , as seen from Eqs. (19a), (19b) and (19c), this equals to an optimal 

sub-problem for the direct derivation of Quadratic polynomial. Therefore, its algorithmic complexity is 

mainly owning to the computation of the inverse of the matrix, which is      . For updating   
   

 and 
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, which is the     norm and nuclear norm optimization problem, thus the complexity will be      . 

Through the stepwise analysis of the above four sub-problems, the complexity of the proposed method 

can be derived as       
  , where   is the total number of iterations, and    is the number of views in 

each dataset. For comparison, the computational complexity terms of CMLRSSC, KMLRSSC, DiMSC 

and LMSC are found to be       
   [36],       

   [36],       
   [27] and               [28], 

respectively, where   is the total number of dimensions of multi-view features. As can be seen, in theory 

the proposed method actually has a very comparable computational complexity as other peers, though it 

has produced significantly improved classification accuracy as validated in six datasets.  

 

 

Figure 8: Convergence plots for ORL_mtv, 3-Sources, Notting-Hill, Reuters, COIL20 and FERET 

datasets are shown separately under different number of iterations. 

Table 8: Comparison of execution times of related MSC algorithms (in seconds) 

(best results in bold and second best results underlined) 

 ORL_mtv COIL20 3-sources Notting-Hill Reuters FERET 

GMVNMF [41] 75.58 848.52 9.61 2976.11 9.22 80.88 

ECRMSC [10] 117.13 384.48 30.98 423.76 31.41 812.67 
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CMLRSSC [36] 2.12 13.16 0.60 182.72 5.14 164.39 

PKMLRSSC [36] 2.45 36.72 0.33 27.84 2.91 65.96 

DiMSC [27] 25.16 469.54 4.19 161.38 16.93 260.95 

LMSC [28] 33.90 442.67 7.84 466.72 85.81 829.00 

CoMSC [47] 11.40 37.65 1.91 23.21 2.63 21.19 

COMVSC [48] 22.79 146.60 11.20 100.92 43.03 236.03 

Ours 12.51 38.37 2.94 26.77 6.01 21.34 

As for the algorithm running time analysis, we show the running times of all the compared methods 

on the six real-word datasets in Table 8. Although the running time of our proposed method is not the best 

compared with other latest MSC algorithms, it is still comparable. For example, the running time of the 

proposed algorithm is quite good on Notting-Hill, Reuters and FERET datasets. In particular, the 

runtimes on FERET is only 0.15 seconds more than the best one. The running time of PKMLRSSC is 

particularly influenced by the sample dimension of the input data. It can be seen that 3-sources and 

ORL_mtv datasets have fewer sample dimensions, so PKMLRSSC consumes less time. Notting-Hill and 

FERET datasets have relatively higher sample dimensions, so PKMLRSSC consumes much more time. 

However, the time consumption of the proposed algorithm on all datasets is very stable, which is 

unaffected much by dataset size, sample feature dimensions, number of views, etc. However, the running 

time of other algorithms on all datasets fluctuates greatly. The proposed approach is the most efficient one 

among the nine approaches as shown in Table 8, due mainly to its fast convergence. 

5 Conclusions and Future Work 

In this paper, an efficient and effective algorithm, RLMDOM, is proposed for MVC, which features 

sparse low-rank subspace multi-view spectral clustering based on NMF and AWML. Benefitted from 

DiMSC and LMSC, our approach fully takes into account robust low-rank decomposition, hidden noise 
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information, trade-off between the importance of the views and the diversity of the information fusion 

between different views for data fusion. In addition, we tested on six public datasets, including five 

multi-view datasets and one single-view datasets. In comparison with eight state-of-the-art algorithms, 

our approach has produced significantly improved results, and it further benefits from a fixed value for all 

datasets for the trade-off parameters of the entire objective function, i.e.   = 0.001,   = 0.001 and γ =1 . 

Besides, the fast convergence speed improves the working efficiency. Higher dimensional images are the 

trend of future development, and tensor is the most powerful theoretical support to solve higher 

dimensional images. Since our method can only deal with two-dimensional matrices, some useful 

information will be lost in sparse representation, such as view structure, interrelation between samples 

and intra-class discrimination. The research of high dimensional tensor optimization theory is our focus in 

the future.  
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