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Abstract

Federated Learning (FL) is a distributed machine learning approach in which
clients contribute to learning a global model in a privacy preserved manner. Effec-
tive aggregation of client models is essential to create a generalised global model.
To what extent a client is generalisable and contributing to this aggregation can
be ascertained by analysing inter-client relationships. We use similarity between
clients to model such relationships. We explore how similarity knowledge can
be inferred from comparing client gradients, instead of inferring similarity on the
basis of client data which violates the privacy-preserving constraint in FL. The
similarity-guided FedSim algorithm, introduced in this paper, decomposes FL ag-
gregation into local and global steps. Clients with similar gradients are clustered
to provide local aggregations, which thereafter can be globally aggregated to en-
sure better coverage whilst reducing variance. Our comparative study also inves-
tigates the applicability of FedSim in both real-world datasets and on synthetic
datasets where statistical heterogeneity can be controlled and studied systemati-
cally. A comparative study of FedSim with state-of-the-art FL baselines, FedAvg
and FedProx, clearly shows significant performance gains. Our findings confirm
that by exploiting latent inter-client similarities, FedSim’s performance is signifi-
cantly better and more stable compared to both these baselines.
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1. Introduction

Federated Learning (FL) is a Machine Learning (ML) paradigm which learns
from distributed clients to collaboratively train a global model in a privacy pre-
serving manner without transferring local data to a central server [1]. FL is typi-
cally applied in two types of application scenarios: cross-device and cross-silo. In
a cross-device applications it is common to include a large number of clients, such
as in keyboard next-word predictions [2], emoji prediction [3] and wake word de-
tection [4, 5, 6, 7]. In contrast with cross-silo applications the number of clients
are limited but each client typical has a large repository of data. Here typical
applications include those in healthcare and banking, where a small number of
institutions have a business incentive to train a shared model [8, 9, 10, 11, 12, 13].
In the cross-device settings of FL, intermittent availability of devices and the need
to work with smaller client datasets remains an interesting challenge for model
training. This calls for novel aggregation methods that can adapt to clients with
small data with intermittent availability.

In traditional ML algorithms, the assumption of data being Independent and
Identically Distributed (IID) is an important prerequisite. However, in the FL
setting, this assumption is not held due to the distributed nature of data and the
diversity of clients. This has created a demand for distributed training strategies
suited to non-IID settings. Federated Averaging (FedAvg) is the most widely used
algorithm for learning a generalised global model in non-IID settings [1]. FedAvg
is an incremental and distributed stochastic gradient descent (SGD) based model
optimisation strategy commonly used in the cross-device application scenarios.
At each FL round, locally optimised client models are aggregated to create a new
and improved global model at a central location and is repeated as many rounds
until model convergence or application imposed resource constraints are reached.

In many applications, there are commonalities to be found amongst clients
(e.g. similarity in demographics, interests, subjectivity). For example, Figure 1
illustrates the similarities (using the Kolmogorov-Smirnov statistic for distribu-
tion comparison) between clients using three datasets commonly used in FL re-
search [1, 14, 15]. Exploiting these pairwise client similarities could in turn help
reduce computational costs (e.g. number of FL communication rounds) needed
to achieve comparable convergence. Similarity knowledge can also be used to
discover divergent clients, therein help temper their influence on the global ag-
gregation (i.e. reduce variation). In this paper we investigate this research hy-
pothesis and demonstrate that exploiting inter-client similarities leads to better
performance in an FL setting than current benchmarks.
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Figure 1: Pairwise similarity between clients in FL datasets

To this end, we make the following contributions:

• introduce FedSim, a pairwise client similarity guided model aggregation
strategy for FL, using client gradients to compute similarity;

• conduct a comparative evaluation of FedSim, against the state-of-the-art Fe-
dAvg [1] and FedProx [14] to study performance and training stability using
4 real-world datasets and 6 synthetic datasets; and

• provide two novel datasets for FL research, extracted from two publicly
available datasets: Fed-MEx and Fed-Goodreads.

Our evaluation results suggests that by exploiting latent similarity knowledge
between clients, FedSim is able to significantly improve performance over other
baselines and that training performance is also seen to be more stable. These
findings are further verified, analysed and insights drawn to understand: the per-
formance improvements observed with FedSim with respect to the quality of client
cluster analysis; statistical significance in performance improvements with in-
creasing FL training; impact of similarity guided vs. random clustering for Fed-
Sim; generalisability of FedSim with a variety of popular classifier models; and
measuring non-IIDness in a privacy preserved manner to validate the impact of
FedSim at different levels of statistical heterogeneity.

The rest of this paper is organised as follows. Section 2 investigates the related
literature in FL. Next, the novel similarity guided model aggregation strategy Fed-
Sim is presented in Section 3. Section 4 presents the datasets, evaluation method-
ology and performance measures. Results and discussion with real-wolrd datasets
are presented in Sections 5 followed by a comparative study with synthetic data in
Section 6. The conclusions and plans for future work are presented in Section 7.
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2. Related Work

In this section, recent research literature in five areas of interest are investi-
gated: FL algorithms; use of similarity in FL algorithms; security and efficiency
improvements with similarity; measuring of statistical heterogeneity in an FL set-
ting; and FL evaluation methodologies.

2.1. Federated Learning
FedAvg [1] is the most widely used FL algorithm in recent literature to learn

a global model under the client privacy preserving mandate. The aim of FedAvg
is to create an effective global model with wider coverage of participating clients.
At the beginning, the server randomly initialises the global model, w0, and com-
municates it to the clients. Thereafter, the global model is continuously opti-
mised over many communication rounds. A communication round t in FedAvg is
aimed at distributing and updating a global model which can thereafter be progres-
sively improved with increasing rounds until convergence. Each round involves
sampling K clients and these selected clients will receive the most recent global
model. Note that the sampling is applied to clients present in a given round and
in a real-world scenario these clients can be intermittent. Thereafter each client
performs a local update using SGD for E number of epochs with batch size B
of its training data. Once the local update is completed, the updated weights are
communicated to the server. These updates are weighted by the client sample size
nk and aggregated to obtain the updated global model. The weighted aggregation
step is shown in Equation 1, where K is the clients selected in a round, wk

t+1 the
updated weights of a client, n the total data sample size from all clients, nk the
sample size of the k client and wt+1 the updated weights of the global model.

wt+1 ←
K∑
k=1

nk

n
wk

t+1 (1)

Once the updated global model wt+1 is computed it is re-distributed to all clients
to benefit from the refined model on completion of a single FL round.

In a highly heterogeneous FL setting, regularisation can be used to recover
from aggregations that might harmfully divert the global model. FedProx [14] is
a framework that addresses two such heterogeneity challenges encountered in an
FL setting. Firstly with system heterogeneity FedProx addresses real-world ap-
plication challenges such as when clients are unable to complete local training or
clients might not be available throughout training. Secondly with statistical het-
erogeneity it addresses situations when the client’s local training samples are from
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highly non-IID data distributions. In standard FedAvg a client is required to com-
plete the full FL computation round (involving several local epochs) or else they
are considered as dropouts. In contrast with the FedProx algorithm such clients
are considered to be stragglers that are allowed to communicate partial updates
based on their status. In order to handle partial updates, FedProx uses an inexact-
ness measure γ for each client in each round. γ measures how much computation
is completed to optimise the local model. For statistical heterogeneity FedProx
proposes a proximal term (µ) to the local update objective. FedProx changes the
local update objective hk as in Equation 2. Fk is the local objective function of
a client k. Note that FedAvg is a case when µ = 0 in FedProx, when the local
update is SGD and when γ is a constant for all clients.

hk = Fk(w) +
µ

2
‖w − wt‖2 (2)

FedProx has shown significant stabilisation in training, relative to FedAvg in
the presence of statistical heterogeneity. It is worth noting that this compara-
tive performance advantage is not observed unless there are a majority of clients
who are considered as stragglers. In our comparative studies, we benchmark Fed-
Sim against both FedAvg and FedProx to empirically evaluate the performances
achieved by our similarity guided model aggregation strategy.

2.2. Similarity in Federated Learning
Pairwise client similarity can help recognise divergent clients. Similarity based

weighting schemes are increasingly proving advantageous in other areas of ma-
chine learning (e.g. Transformers in NLP and image vision applications [16]).
With FL, the need for privacy automatically rules out any considerations of using
similarity weighted aggregation at the data level.

Clustered Federated Learning (CFL) proposed in [15] is a Federated Multi-
Task Learning framework which groups clients into clusters with similar data dis-
tributions. CFL is a post-processing algorithm which begins after the training
phase of FL is completed and the global model is converged. CFL focuses on
creating specialised models for a set of clients which can benefit from their data
distribution similarities. To this end, it uses client gradients as a basis for sim-
ilarity computation for post-FL adaptation of the global model by similar client
groups. CFL computes bi-partition (branching) of the global model until there is
a specialised model for each branch containing one or more clients. In our work,
we use gradients instead of data to gauge pairwise client similarities, however this
is done to improve model aggregation during FL training, and not as a post-FL
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processing strategy, hence FedSim is different from CFL. Nonetheless CFL can
still be applied following FedSim’s FL training phase.

In meta-learning research, like in FL, a combination of independent gradient
descent steps carried out by different tasks (analogous to clients) are aggregated
to form a meta-model (analogous to the global model) for distribution at each
round. Unlike FL, the focus is not on satisfying privacy constraints, but on max-
imising the adaptability of the model to new tasks. Interestingly, in meta-learning,
organising tasks considering semantic similarities has resulted in superior learn-
ing with applications that rely on inter-client relationships such as personalised
activity recognition [17] and personalised conversation generation [18]. Here we
explore whether FedSim can also be applied to personalised settings, but in a FL
context. More specifically using FEMNIST and two new datasets, Fed-MEx and
Fed-Goodreads, we mimic the need for personalisation where each client can be
viewed as having data from a single person.

2.3. Security and Efficiency with Similarity in FL
In FL applications security plays a major role where by default privacy preser-

vation of data is central to the concept of model learning. However when com-
municating client information, such as weights, gradients and meta data, there
is an obvious vulnerability to cyber threats. Hashing has been successfully used
in distributed ML applications for secure communication, specifically where lo-
cality hashing is used to also preserve similarity knowledge between patients in
health applications [12]. Here the distributed ability to learn hash codes which
are context-specific and representative of patients across different institutions is
also very relevant to FL. Specifically in [19], a cross-siloed FL setting was able to
train boosted decision trees using a pre-processing stage where each client com-
putes hash values to build global hash tables. Unlike with the cross-device FL
setting, clients communicate learnt models with other clients (instead of sending
it to a server) in a sequential manner (from client to client) where all clients are ex-
pected to be available during training with large amounts of data at their disposal.
However the use of locality sensitive hashing is relevant also to a cross-device
settings (and our work), as such it can be adopted as a means to securely commu-
nicate information in most FL settings. Contextually relevant hashing can also be
adopted to reduce dimensionality for similarity computation as an alternative to
general purpose reduction methods (e.g. singular value decomposition [20], lo-
cality sensitive hashing [21]). In our work, we use principle component analysis
for this purpose.
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2.4. Measuring Statistical Heterogeneity
Measuring the degree of statistical heterogeneity (i.e. Non-IIDness) of clients

provides insights on generalisability of models in an FL setting. A recent review
identified several factors that affect statistical heterogeneity [13]:

• Feature distribution skew is when the data distributions of clients are dif-
ferent and can be varied due to different personalisation nuances (e.g. a
letter can be written in different ways).

• Class distribution skew is when the distribution of classes are varied across
clients. Some clients can have a small subset of classes and some can have
a mix of many classes (e.g. certain words can be used by a certain group of
people only).

• Quantity shift is when different clients have different amounts of data. The
amounts can be vastly varied among the client population.

• Concept shift and concept drift occur in FL settings when clients identify
similar data instances by different class labels, and when clients label dif-
ferent data samples with the same class label. In such scenario the non-IID
assumption is extreme and FL is adversely impacted.

In the real-world, a mixture of these factors are to be expected. Several met-
rics attempt to quantify non-IIDness of a client by comparing its data at the class
level with others [22, 23]. A global Non-IID Index (NI) was introduced in [23]
to extract a class level embedding using a pre-trained deep learning architecture
(ConvNet) using all train and test data obtained from clients. Here an average
embedding is generated for each class using the train and test data separately. The
final NI measure is the sum of the normalised differences between the train and
test average embeddings in each class. Reliance of client data to generate embed-
dings limits the applicability of this metric in an FL setting where privacy must be
preserved. An adaptation of this NI algorithm, Client-wise Non-IID Index (CNI),
considers class-level embeddings at local clients (instead of globally) [22]. CNI
considers the degree of distribution shift at each client instead of between train
and test sets of all clients. It captures feature distribution, label distribution and
quantity shift. However CNI can only be used to study client heterogeneity using
image datasets. The PNI measure proposed in this paper, instead can be applied
on non-image data while preserving privacy. Accordingly we use PNI to draw
insights from evaluation results and to understand performance behaviours across
the different real and synthetic datasets used in our work.
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Method Evaluation Datasets Baselines Evaluation Metrics

FedAvg
[1]

MNIST, FEMNIST
CIFAR-10, Shakespeare

FedAvg Communication Rounds

FedProx
[14]

Synthetic, MNIST
FEMNIST, SENT140
Shakespeare

FedAvg Stabilisation (visually on
train loss)
Accuracy

LotteryFL
[22]

MNIST, FEMNIST
CIFAR-10

FedAvg Accuracy
Communication Cost

IFCA
[24]

Synthetic, MNIST
CIFAR-10

Global model
Local model

Accuracy

SCAFFOLD
[25]

Synthetic, FEMNIST FedAvg
FedProx

Communication Rounds

LEAF
[26]

FEMNIST, Sent140
Celeba, Reddit
Shakespeare

FedAvg Accuracy
Communication Cost
Amount of FLOPS

Table 1: Datasets and evaluation metrics found in FL literature

2.5. Performance Measures
Table 1 presents a comparison of datasets used in previous work along with

the metrics used to evaluate proposed methods. Compared to conventional ML,
evaluating the performance of FL algorithms must consider criteria relevant to
both local and global learning perspectives. Communication rounds, is a com-
mon criteria, which is interpreted as the number of rounds needed to achieve a
target accuracy or convergence [25, 1]. Communication cost refers to the amount
of network bandwidth consumed to achieve a target accuracy [22, 26]. Aggrega-
tion of test accuracy from each client on the distributed global model has been
formed into a performance measure in [24, 14]. Essentially, the choice of evalua-
tion criteria depends on the hypothesis being examined. For instance, aggregation
methods aim to increase the global model’s test accuracy, whilst communication
reduction techniques aim to reduce communication costs. The focus of this pa-
per is an improved aggregation mechanism, therefore we use global model test
accuracy, supported by a comparative accuracy fluctuation analysis metric over
communication rounds to evidence performance stability.
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3. Methods

FedSim favours similar clients when formulating locally specialised models.
It must also create a generalised global model that can cover useful differences
among these specialised models. Use of similarity knowledge in clustering helps
to improve coverage and identify representative clients. In non-IID settings im-
proving client coverage will help generalisability of the global model, whilst the
use of similarity will help identify and reduce potentially harmful influences on
global aggregations by divergent clients. In the rest of this section we present a
detailed description of the FedSim algorithm and propose a measure of statistical
heterogeneity.

3.1. Federated Learning with FedSim

Figure 2: High-level approach of the proposed FedSim algorithm

A high-level view of the proposed FedSim algorithm is illustrated in Figure
2. Following the distribution of a randomly initialised global model to clients, a
FedSim communication round has the following steps: client sampling, clustering,
local updates cluster aggregation and global aggregation.

Step 1 due to communication constraints and intermittent client availability a
subset of clients are randomly sampled to participate in each FL round.
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Step 2 selected clients are clustered based on their local gradients without sharing
each other’s privately held data. These gradients are calculated based on
error from the most recently distributed global model.

Step 3 selected clients continue to update their model weights (using an optimi-
sation method such as SGD) to produce their local models.

Step 4 locally updated client weights are combined within each cluster using a
weighted average to form a specialised, representative model for the cluster.
Here weights are a function of a client’s sample size given the cluster.

Step 5 a global aggregation step is used to combine the specialised models to
generate the new global model

Follow on sections discuss these FedSim steps in detail providing a theoretical
underpinning and with reference to Algorithm 1.

Algorithm 1 FedSim Algorithm
Require: w0 initial global model, K clients, n clusters

1: for t=1,2,.. do
2: Broadcast wt to all clients
3: Select S clients where S ⊂ K
4: C ← Clustering(S, n clusters) (Algorithm 2)
5: for all c ∈ C do
6: for all k ∈ c do
7: wk

t ← updates wt using SGD
8: end for
9: w̄c

t ← ClusterAggregation(w1
t , w

2
t , ..., w

|c|
t ) (Eq.13)

10: end for
11: wt+1 ← GlobalAggregation(w̄1

t , w̄
2
t , ..., w̄

|C|
t ) (Eq. 14)

12: end for

3.2. Federated Optimisation with Clusters
Mathematically, a ML optimisation problem aims to minimise an objective

function, f , which is defined as follows for an instance, i, with weights, w:

min
w
f(w∗) where f(w) = E(fi(w)) (3)
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Here f is a function of the model error (e.g. fi(w) = (ŷi − yi)2) and E is the
expected value. In a FL system with K clients indexed by k, each with nk data
instances, the objective function for a client k is:

Fk = E(fi(w);∀i ∈ k) =
1

nk

nk∑
i=1

fi(w) (4)

Let the objective function of FedAvg, for a set of selected clients, K, in a given
round be:

FO = E(Fk;∀k ∈ K) (5)

Suppose we used a clustering algorithm (such as k-means), to create a client clus-
ter, c, containing a set of S clients, then we can define an objective function for
that cluster as:

Fc = E(Fk;∀k ∈ S) (6)

Accordingly, for a FL system with FedSim, having a set of clusters, C, let the
objective function be:

FG = E(Fc; ∀c ∈ C) (7)

Furthermore, to prove the impact of similarity based clustering, let FR be the
objective function of a randomly formed cluster (R) of the same size as that of
cluster c (as in Equation 6). Then:

FR = E(Fk;∀k ∈ R) (8)

Equation 4 is a function of model error, which increases with increasing variance
in data points. When clients are tightly clustered using similarity based measures
as in Equation 6, it is expected that the error variance in a single cluster will be
lower than that of a cluster that is formed randomly. Hence when the weight
parameters tends towards optimal values, we expect:

Fc ≤ FR (9)
E(Fc) ≤ E(FR) (10)

Note that in FedAvg clients are randomly included within a single cluster, therefore
from Equation 5 and 7, we expect:

FG ≤ FO; where FG = E(Fc;∀c ∈ C) and FO = E(Fk; ∀k ∈ K) (11)
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Now suppose we introduce an arbitrary constant λ as follows:

FG + λ = FO (12)

such that in Equation 12, λ acts as a regularisation term, that varies with cluster
settings (e.g. number of clusters, clustering method, similarity metric, dimension-
ality). This would then suggest that by using an informed clustered approach we
can obtain a more regularised objective function which would produce improved
performance compared to a FL method with just a single cluster. Indeed when
all clients belong to a single cluster, then Equation 7 is identical to FedAvg (FO)
where, |C| = 1, nc = n and λ becomes 0. When |C| > 1, we expect cluster-
ing to provide a better representation of the federated problem space by ensuring
that the influence of similar clients do not dominate the aggregation of parameters
in federated learning. Essentially this helps to reduce potential variance in the
weight aggregation (averaging) step. Our idea is to cluster clients according to the
similarity of client parameters, which in turn acts as a proxy to similarity on the
basis of client data.

3.2.1. Initialisation
The initialisation step of FedSim is identical to FedAvg where a global model

is initialised with random weights, w0. Here, the global model (and corresponding
local models) is selected to meet the requirements of the reasoning task (i.e. next
word suggestion or character recognition). Commonly it is a neural architecture
where w0 are its model parameters.

3.2.2. Clustering
In communication round, t, a set of clusters, C, are created with a subset

of clients, S, randomly sampled from the set of all clients, K, where S ⊂ K.
This clustering process (see Algorithm 2) is triggered in each FedSim round as
shown in Algorithm 1, line 4. A client, k, is represented using the gradient vec-
tor, gk, obtained using the client’s training data error of the recently distributed
global model, wt. Once client gradients are communicated to the server, a clus-
tering algorithm (such as kmeans++), is used to create |C| number of clusters
(i.e. n clusters) based on similarity of client gradient vectors. Clustered clients
perform SGD to create their locally updated models (wk

t for client k).
Clients are sampled without replacement at each round (as in FedAvg) which

helps with applications having intermittent clients. Accordingly, the clustering
step in FedSim needs to be repeated at each round. Computational cost of each
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communication round can increase exponentially due to pairwise similarity calcu-
lations for clustering. We alleviate this cost in two ways: sampling a few clients in
each round; and applying dimensionality reduction (in this work we use Principal
Component Analysis (PCA)) to the gradient vectors.

Algorithm 2 FedSim Clustering Method
Require: S clients, n clusters, wt model

1: for all k ∈ S (selected clients in round t) do
2: gk ← compute gradients for wt using SGD on local data
3: end for
4: G′← g1...g|S|, where gradients gk received from each client k ∈ S
5: G← dimensionality reduction(G′) ; e.g. PCA
6: C ← client clustering(n clusters, G′) ; e.g. K-Means++
7: return C

Use of gradients vectors ensures semantically meaningful private data is not
communicated when similarity is computed. We also expect that for similarity,
gradients will capture latent patterns of a client’s data w.r.t. model error. Ac-
cordingly, using gradient vectors to derive similarity between clients ensures that
FedSim is able to reason about client similarity without exposing client data or
client’s meta-data to the server or other clients. Other forms of locality sensi-
tive hashing methods can also be adopted to further secure the communication of
similarity information.

As stated in Section 3.2, when n clusters = 1, Algorithm 1 is equivalent to
the baseline FedAvg; where cluster aggregation in step 9 is applied to all clients
involved in a given FL round using the aggregation in Equation 1; and step 11
becomes redundant (average for a single cluster). In addition to n clusters = 1,
the FedProx algorithm, also combines a proximal regularisation term in step 7.

3.2.3. Cluster Aggregation
Purpose of cluster aggregation is to combine local models to create a repre-

sentative model for each cluster. For a given cluster, c, at round, t, a cluster model
is formed as:

w̄c
t ←

∑
k∈c

nk

n
wk

t (13)

Here nk is the sample size of client k, n the total number of samples and wk
t the

updated local model of client k (i.e. after locally updating the global model wt).
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The weighting by sample size, is borrowed from the original FedAvg aggregation.
At the end of cluster aggregation, we obtain |C| clusters (i.e. |C| < |S|), with
each representing a specialisation over a distinct set of similar clients. Note that
from Equation 12, the cluster settings in terms of; the number of clusters, and the
metric space for similarity computations, all contribute to λ regularisation term.

3.2.4. Global Aggregation
The main objective of FL settings is to learn a global model that is generalis-

able to clients. In FedSim the new global model for distribution in round, t+ 1, is
created as:

wt+1 ←
1

|C|
∑
c∈C

w̄c
t (14)

which is an average over all cluster models w̄c
t . Here all clusters are considered

equally important to ensure equal coverage of the federated cluster space C.

3.3. Measuring Statistical Heterogeneity
In order to study the relationship between similarity and non-IIDness, we con-

sider a privacy preserving data characterisation measure (PNI) which we will use
to help analyse the impact of statistical heterogeneity on FL performance. Essen-
tially we expect that such a measure of non-IIDness should increase with increas-
ing statistical heterogeneity.

Model error captures to what extent a model fails to generalise to its underly-
ing data, which in turn can be due to the heterogeneity of the feature distributions.
Here a non-IIDness measure can be defined as a function of error terms. Unlike
raw prediction data, using derived information like model error is privacy preserv-
ing (and preferable over measures that rely on having access to raw data).

Root mean square error (RMSE) is selected as the error function for the pro-
posed PNI measure. RMSE calculations requires access to raw data (actual and
predicted class data), which for privacy reasons should not be communicated to
the server. In order to overcome the privacy concern, a model, wrnd, is initialised
at the server with random weights and communicated to all clients. Here wrnd is
considered to be a neural model suitable for the reasoning task of clients. Each
client i will predict labels ŷi for all its training data Di (Equation 15).

ŷi ← predict(wrnd, Di) (15)

Each client will then use the predicted labels to calculate RMSE with respect
to the actual label y and for n number of local samples (Equation 16).
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Once computed locally, RMSEi will be communicated to the server.

RMSEi =

√√√√ Di∑
n

(ŷn − yn)2

n
(16)

Here we can use paired differences between model error, to measure statistical
heterogeneity of a client, i:

PNIi =
∥∥RMSEi −RMSEj 6=i

∥∥
2

(17)

where differences in RMSE between client, i, and all other clients, j 6= i, are
computed using the Euclidean norm (L2 distance). The Privacy-preserving Non-
IID Index (PNI), for the federation of all clients is calculated as an average over
client PNI values:

PNI =
1

|C|

C∑
i

PNIi (18)

4. Evaluation

The aim of the evaluation is to study the utility of the similarity guided feder-
ated learning algorithm (FedSim) through a comparative study involving the fol-
lowing baseline algorithms:

• FedAvg is the most popular and widely used FL approach available to-
day [1].

• FedProx [14] improves stability of FedAvg in non-IID settings and is con-
sidered state-of-the-art for both statistical and system heterogeneous set-
tings.

• FedSim is our algorithm proposed in this paper (see Section 3.1)

The remainder of this section will present the datasets, implementation details and
evaluation methodology used in this paper.

4.1. Datasets
FedSim is evaluated using 4 real-world datasets and 6 synthetic datasets. We

have considered commonly used publicly available federated datasets for our ex-
periments to enable reproducible results. Also, we have curated two novel feder-
ated datasets from the Goodreads [27] and MEx datasets [28] both of which are
available to download from GitHub.
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4.1.1. Real-world Datasets
The four real-world datasets considered in the experiment setup are MNIST,

FEMNIST, Fed-MEx and Fed-Goodreads. Real-world datasets exhibit a mixture
of feature distribution skew, class distribution skew and quantity shift to charac-
terise statistical heterogeneity (see Section 2.4).

MNIST is a handwritten digit recognition dataset adapted in the FL setting. We
reuse the FL setting proposed by [14] where there are 69,035 data samples
of 10 classes distributed among 1000 clients and each client has samples for
only 2 classes. A data sample is an image of size 28×28 and the number of
samples per client follows a power law.

FEMNIST is a 62-class handwritten character recognition dataset. A subset of
FEMNIST representing 26 classes is used in the FL setting as proposed
by [14]. A total of 18,345 samples are distributed among 200 clients and
each client has samples only for 5 classes. A data sample is an image of
size 28×28 and the number of samples per client follows a power law.

Fed-MEx is a novel FL dataset produced with this work. MEx is a publicly
available exercise recognition dataset collected with 30 subjects performing
7 different physiotherapy exercises [28]1. The Fed-MEx dataset has 934
data samples from the pressure mat subset of the MEx dataset. Each client
has a random amount of samples for only 2 exercise classes. A pressure mat
data sample contains a sequence of heat maps (size 5×16×16) recorded for
5 seconds with 1Hz frequency. MEx has previously been used for person-
alised activity recognition research [17] and forms an interesting contrast to
the other image and text datasets. The federated version of this dataset and
the generation code is published on GitHub2.

Fed-Goodreads is a novel FL dataset produced in this work. Goodreads3 is a
publicly available dataset and commonly used for text classification with
DL due to its large volume [27, 29, 30, 31]. Fed-Goodreads contains the
book reviews subset with parsed spoiler tags is used (1.38m reviews) to
perform a binary classification task of predicting if a review sentence con-
tains a spoiler or not. This dataset provides an ideal peronsalised setting

1https://archive.ics.uci.edu/ml/datasets/MEx
2https://github.com/chamathpali/Fed-MEx
3https://sites.google.com/eng.ucsd.edu/ucsdbookgraph
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for a federated dataset as the data is organised by individual users, where a
user will have different quantities of data and different users have different
patterns of writing sentences. Fed-Goodreads contains 100 unique clients.
The number of samples per client is limited to 2-10 to enforce statistical
heterogeneity and each data sample contains 2517 features. The variation
in text vocabulary in relation to the binary classification makes this a chal-
lenging text classification task. The curated FL version of the dataset and
the generation code is published on GitHub4.

4.1.2. Synthetic Datasets
Synthetic datasets are generated using the approach described in [32] and

widely used in FL experiments [14, 33]. Two parameters α and β control the
statistical heterogeneity of the generated data: increasing α increases class distri-
bution skew by controlling the class generator model; and increasing β increases
feature distribution skew. Both parameters together will impact levels of concept
shift where the relationship between features and classes can change from client to
client. Data samples, each with 60 features are generated using different α and β
values to obtain 6 datasets with varying degrees of statistical heterogeneity. Each
dataset has 10 classes and 30 clients. The number of samples per client follows a
power law with which quantity skew is controlled. A synthetic dataset is denoted
by the synthetic(α, β) notation. synthetic IID dataset is generated using identical
distribution for features and classes across clients. All statistical heterogeneity
factors (in Section 2.4) feature in synthetic non-IID datasets.

4.2. Experiment Details
All datasets present classification tasks which we initially model using Multi-

nomial Logistic Regression. A flattened feature vector is used as the input. Input
sizes for image data, Fed-MEx, Fed-Goodreads and synthetic(α, β) are 784, 1280,
2517 and 60. We also select following hyper-parameters: number of epochs for
local update as 20; and batch size for local update as 10. Learning rates used
for local update are 0.03, 0.003, 0.01, 0.3 and 0.01 for MNIST, FEMNIST, Fed-
MEx, Fed-Goodreads and synthetic(any) respectively. Number of communica-
tion rounds are limited after convergence or at maximum 500 rounds. Selected
communications rounds for MNIST, FEMNIST, Fed-MEx, Fed-Goodreads and
synthetic(α, β) are 30, 500, 200, 250 and 100 respectively. All datasets maintain

4https://github.com/chamathpali/Fed-Goodreads
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a client’s train and test data split of 80% and 20%. Hyper-parameters mentioned
above for MNIST, FEMNIST and synthetic(α, β) were adapted from [14] to en-
sure comparability and reproducibility.

Learning Total Com. Clients per Number of
Dataset Features rate clients rounds round clusters

MNIST 784 0.03 1,000 30 20 5
FEMNIST 784 0.003 200 500 20 9
Fed-MEx 1280 0.01 30 200 10 3
Fed-Goodreads 2517 0.3 100 250 20 11
synthetic(any) 60 0.01 30 100 10 5

Table 2: Hyper-parameter details

Additionally, we explore two hyper-parameters specifically for FedSim: the
number of clients per round and the number of clusters. These are two key factors
to successfully discover latent similarity properties among clients. We explored
following values: 10, 20, and 30 clients per round while keeping cluster size
constant at 5; and 3, 5, 7, 9, 11 cluster sizes while keeping clients per round at 10
and 20. We find 20, 20, 10, 20, 10 as the most optimal number of clients per round
and 5, 9, 3, 11, 5 are the most optimal cluster sizes for MNIST, FEMNIST, Fed-
MEx, Fed-Goodreads and synthetic(any) datasets respectively. Hyper-parameter
are summarised in Table 2.

All experiments are implemented in Python using the TensorFlow [34] li-
braries for Machine Learning. Experiments are performed on a MacBook Pro
with 1.7 GHz Quad-Core Intel Core i7 processor and 16GB RAM memory and on
8 NVIDIA Tesla P100 SXM2-16GB GPUs. Average time elapsed for a communi-
cation round with MNIST, FEMNIST, Fed-MEx and Fed-Goodreads in millisec-
onds are as follows: 2929.3, 4433.5, 759.9 and 541.8 for FedAvg; 1423.7, 5855.8,
949.9 and 716.7 for FedProx and; 2858.3, 4443.4, 1049.5 and 646.8 for FedSim.
The comparison of average time taken per communication round is presented in
Table 3. The average time elapsed for a communication round of FedSim is nearly
comparable on all datasets to other two methods. The time taken for a round is
varied in each dataset due to its data size and experiment configuration (e.g. local
epochs, number of clients selected per round). The source code for the experiment
setup is available on GitHub 5.

5https://github.com/chamathpali/FedSim
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Dataset FedAvg FedProx FedSim

MNIST 2929.3 1423.7 2858.3
FEMNIST 4433.5 5855.8 4443.4
Fed-MEx 759.9 949.9 1049.5
Fed-Goodreads 541.8 716.7 646.8

Table 3: Comparison of average time taken per communication round in milliseconds

4.3. Performance Measures
The primary performance measure is the test accuracy of the global model

against each client’s test data. At the end of a communication round, once the
global model is updated using the global aggregation step, it is communicated to
all clients to evaluate using their test data. The final test accuracy of an algorithm,
at any given round, is the mean of all test client accuracy measures weighted by
the client’s test set size.

In comparative evaluations, a mean performance improvement is calculated
for FedSim and FedProx over the FedAvg baseline as a quantitative measure. The
cumulative difference of test accuracy measures between two algorithms are aver-
aged over the number of rounds to obtain the mean performance improvement as a
percentage. We highlight the algorithm that records the highest improvement with
bold text. In addition, comparison of test accuracy measures over the communi-
cation rounds are plotted to provide a qualitative measure of performance stability
over the baselines.

4.4. Statistical Significance
Statistical significance helps quantify whether an outcome of an experiment is

random or likely due to the factor of interest. Therefore, a one-tailed hypothesis
test with a significance level of 0.05 was carried out to determine if FedSim per-
formed better than FedAvg and FedProx. The experiments performed on all the
datasets were carried out with 35 random seeds (from 0 to 34 incremented by 1) to
empirically demonstrate the significance. Repetition of the same experiment with
different random seeds helps to reduce the sampling error of our experiments.

5. Results and Discussion with Real-world Data

Figure 3 presents performance results for the three algorithms with increasing
number of rounds on four real-worlds datasets. FedSim reaches higher perfor-
mance on all datasets with pronounced improvements in FEMNIST, Fed-MEx
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Figure 3: Comparison of performances over communication rounds

and Fed-Goodreads. All algorithms show stable convergence with increasing
rounds on 3 datasets (MNIST, FEMNIST and Fed-MEx) with FedSim showing
earlier convergence and greater stability on FEMNIST and Fed-MEx. FedAvg and
FedProx have very similar convergence graphs on Fed-MEx but FedSim achieves
greater performance over these baselines from approximately round 30 onwards.
We observed convergence on Fed-Goodreads at round 250 when changes to loss
did not exceed 8e-4 for the last 50 rounds. Although results with this dataset were
less stable compared to the other datasets, FedSim’s performance was consistently
better than the baselines. This is expected in a dataset like Fed-Goodreads where
statistical heterogeneity is high (e.g. there are clients with one training instance
and others can have over 5, furthermore vocabulary overlap is low due to signif-
icant variation in word usage). Nevertheless, in comparative terms FedSim man-
ages to maintain relatively higher accuracy with a more stable performance graph.
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However it was surprising that FedProx which was introduced with the aim to
improve stability over FedAvg, had performed poorly (notably on FEMNIST).

FedSim improvement over
Dataset FedAvg (% ) FedProx (% )

FEMNIST 11.11±2.88 9.08±3.63
MNIST 7.32±2.69 5.65±4.35
Fed-MEx 2.08±1.26 2.68±0.78
Fed-Goodreads 1.86±0.73 1.98±0.64

Table 4: Comparison of overall performance improvements of FedSim over baselines

Table 4 lists the averaged accuracy percentages improvement gains achieved
by FedSim over each of the two baselines. Here FedSim has significantly out
performed both baselines on all four datasets (MNIST, FEMNIST, Fed-MEx and
Fed-Goodreads). With FEMNIST this improvement is very pronounced, and to
explore this further, we perform a cluster analysis using all clients for each dataset.
The two most significant PCA components from the gradients are used to repre-
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Figure 4: An example clustering of clients in a single trial

sent clients and to cluster them using K-Means (with n clusters = 10). Figure 4
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Figure 5: Analysis of accuracy improvements of FedSim compared to FedAvg and Fed-
Prox of experiments in Figure 3

presents a two-dimensional mapping of the clustering showing the clients and
their cluster memberships (using 10 colours for the different clusters). It is ap-
parent that FEMNIST has well defined clusters, having both higher intra-cluster
similarity (density) and greater inter-cluster distance (separability), compared to
the other datasets. Similar observations can be made of the MNIST clustering,
where although clusters are densely formed, their separability is less pronounced,
compared to that of FEMNIST. In contrast Fed-MEx lacks well-defined clusters,
which possibly explains the significant yet smaller improvements observed with
FedSim. Like with MNIST, in Fed-Goodreads we can observe reasonable cluster-
ing but with weaker separability between clusters. Here our analysis of clustering
suggests that, as expected, FedSim is able to exploit similarity in client learning
and that these similarities can be captured by comparing their gradients.

In Figure 5, we highlight in gray, any communication rounds in which Fed-
Sim failed to significantly outperform at least one of the baselines (significance
level=0.05). Values below zero indicate negative performance against a baseline
and grey vertical lines denote areas of no statistical significance. Significance test-
ing results show that with a majority of increasing rounds, FedSim’s performance
is superior to the baselines on all of the datasets. For instance with MNIST and
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FEMNIST, significance was observed after the first communication round. Whilst
with Fed-MEx significance was achieved after 37 rounds and thereafter maintain-
ing significance until the 200th round. Similar observations were noted with Fed-
Goodreads where in a majority of the rounds (i.e. 94% of the rounds), FedSim had
achieved significant improvements. In comparison to FEMNIST, Fed-MEx and
Fed-Goodreads datasets where cluster separability is not as pronounced (see Fig-
ure 4), FedSim achieves only minor improvements while maintaining statistical
significance.

5.1. Generalisability Over Different Learning Models
In order to analyse model generalisability of FedSim, further experiments were

conducted with alternative neural classifiers. A 2-D Convolutional neural network
(CNN) was used for MNIST and FEMNIST hand-written digit classification tasks,
a multi-layer neural network (MLP) with 3 hidden layers for the Fed-MEx dataset
and a single layer recurrent neural network (RNN) for the Fed-Goodreads dataset.
Details of these architectures appear in Table 5. We use the same experimental
setup and FedSim hyper-parameter configuration as discussed in Section 4 (see
also Table 2) with the exception of number of local epochs (10), and learning rate
(0.0001) for Fed-Goodreads dataset. These exceptions were necessary to reduce
the risk of overfitting, which has been a problem when training RNNs on the Fed-
Goodreads dataset.

Dataset Model Architecture

FEMNIST CNN-2D conv2d(3, 3)64→ maxpool(2, 2)→
MNIST conv2d(3, 3)64→ maxpool(2, 2)→ dense(2048)
Fed-MEx MLP-3 dense(1280)→ dense(640)→ dense(120)
Fed-Goodreads RNN rnn(128)

Table 5: Alternative model architectures used in the FedSim generalisability study

Figure 6 plots the test accuracy over FL rounds using the CNNs, MLP and
RNN models. It is also evident that FedSim maintains similar accuracy improve-
ments and learning stability with a majority of the neural models, which suggests
that FedSim is model agnostic. FedSim accuracy improvements with FEMNIST is
small, because the CNN model has converged quickly, however the model main-
tains better stability with FedSim (compared with FedAvg and FedProx). Results
with Fed-Goodreads has been disappointing with none of the RNN models man-
aging to achieve the previous accuracy levels achieved with the simpler logistic
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Figure 6: Comparison of performances over communication rounds with real-world
datasets for different neural classifiers

regression (in Figure 3). We found that anything other than a simpler regression
model led to overfitting with this dataset. Changing the optimiser to Adam [35]
(from SGD) helped to a certain extent. Whilst it is clear from these experiments
that the logistic regression model is best for the Fed-Goodreads dataset, we are
still able to demonstrate that FedSim’s performance is comparable to FedAvg.
Note that FedProx was badly impacted due to its inability to use the Adam op-
timiser (due to its use of partial updates from straggler clients) which explains its
poor performance (we used the original optimiser recommended by the authors).

Results in Table 6 shows FedSim having an overall accuracy improvement on
most of the datasets (with the exception of Fed-Goodreads) compared to results
seen with the logistic regression model (in Figure 3). According to these results
it is evident that the highest improvement with FedSim is gained on the MNIST
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FedSim improvement over
Dataset Model FedAvg (% ) FedProx (% )

FEMNIST CNN-2D 1.42±1.52 5.05±2.75
MNIST CNN-2D 11.69±7.58 17.25±8.26
Fed-MEx MLP-3 0.89±1.29 1.79±1.28
Fed-Goodreads RNN -0.32 ±0.42 8.88±2.87

Table 6: Comparison of overall performance improvements of FedSim over baselines with
real-world datasets with different model architectures

dataset which is 11.69% over FedAvg and 17.25% over FedProx. The visual pre-
sentation in Figure 6 supports this improvement on MNIST. Both FEMNIST and
Fed-MEx have also gained an overall accuracy improvement with FedSim. With
these results we can empirically prove that the proposed method is model agnostic
and can be used with different model architectures in practical use cases.

5.2. Similarity Guided vs. Random Clustering
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Figure 7: Comparison of similarity guided clustering vs random clustering on FEMNIST

To investigate the effect of exploiting similarity knowledge, a closer exam-
ination of FedSim was carried out by comparing a random cluster creation ap-
proach which assigns clients in a round-robin manner. The large gains observed
on FEMNIST with FedSim can be explained by this comparison in Figure 7 which
clearly demonstrates the benefit of using similarity knowledge for model aggre-
gation. This empirically proves our expectation previously stated in Equation 10.
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Interestingly (but not surprisingly) we also found that random clustering outper-
forms similarity clustering with extreme non-IID datasets (synthetic (0.75,0.75)
and (1,1)) where there is likely to be no useful similarity knowledge to exploit.

5.3. Dimensionality Reduction with PCA
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Figure 8: Analysis of variance captured by the number components when using PCA

As discussed in section 3.1, dimensionality reduction with PCA is utilised to
minimise computation costs when computing similarity based clusters. Figure 8
explains the level of compression that can be achieved with PCA applied to each
real-world dataset. The dotted line indicates the number of PCA coefficients that
captured 95% of the variance of original gradients and are selected for clustering.
We find that PCA reduces the gradient vector size to a value between 4 and 15 with
all datasets. The impact of dimensionality reduction to minimise computational
cost is quantified by comparing the time elapsed for a communication round in
FedSim with and without PCA. We found that a FedSim communication round
with MNIST, FEMNIST, Fed-MEx and Fed-Goodreads is 230.0, 469.1, 19.3 and
92.9 milliseconds, faster on average compared to without PCA. This improvement
will have a significant impact on performance in production environments.

6. Comparative Study with Synthetic Data

A further investigation was carried out to understand the performance of Fed-
Sim and baselines on different levels of controlled IID-ness. For this purpose
we use the five synthetic datasets with varying statistical heterogeneity situations.
For instance by increasing α we increase the class distribution shift by varying the
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standard deviation for sampling the weights that control the class label generation
model. Similarly with increasing β we are able to shift the feature distributions
between clients and thereby increase the levels of Non-IIDness through features.
However in practice we expect that real-world FL datasets are unlikely to be com-
pletely Non-IID (e.g. α and β equals one) in terms of having clients that have
both unique feature and class distributions. In contrast the IID dataset will have
no feature distribution shift and will use the same class label generation model to
generate client data, resulting in highly similar clients.
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Figure 9: Comparison of performances over communication rounds with synthetic
datasets to study the effect of statistical heterogeneity and similarity

Figure 9 plots the test accuracy measures over the communication rounds to
investigate the performance stability of FedSim compared to FedProx and FedAvg.
The similarity guided, FedSim, has achieved increased performance stability on
synthetic datasets (0,0), (0.25,0.25) and (0.5,0.5) which are considered to be mod-
erately non-IID. For datasets (0.75,0.75), (1,1) that are extremely non-IID, FedSim
fails to outperform FedProx, however FedSim is significantly stable compared to
FedAvg. Similarly, in IID setting, FedSim fails to outperform FedAvg however
FedSim significantly outperforms FedProx.

A summary of results are presented in Table 7 which shows the mean test ac-
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Synthetic FedSim improvement over
Dataset FedAvg (%) FedProx (%)

Synthetic IID -8.92 ±2.04 11.99±2.90
Synthetic(0,0) 6.93±4.78 5.83±4.17
Synthetic(0.25,0.25) 11.21±6.39 1.87±3.01
Synthetic(0.5,0.5) 3.61±6.23 -0.06±2.47
Synthetic(0.75,0.75) -3.23±4.16 -6.22±2.74
Synthetic(1,1) -6.18±2.83 -6.98±2.83

Table 7: Comparison of overall performance improvements of FedSim over baselines

curacy improvement (as a percentage) achieved by FedSim, over FedAvg and Fed-
Prox over 35 trials each involving 100 communication rounds. FedProx, which
is optimised for non-IID settings, has significantly poor performance in IID set-
tings (-20.92% with synthetic IID dataset). In comparison, FedSim has only a
8.92% drop in performance over FedAvg compared to that of 11.99% with Fed-
Prox. We expect that the IID situation is unlikely to benefit from clustering since
all clients are likely to be similar and could instead be treated as members of
one and the same cluster. FedProx achieves performance improvements with all
5 non-IID datasets compared to FedAvg. Similarly, 3 of the 5 non-IID datasets
record performance improvements with FedSim. Notably, with the most extreme
non-IID synthetic dataset, FedSim has failed to outperform FedAvg and records a
performance reduction of 6.18%.

Overall, moderate non-IID settings benefit from a similarity guided approach
to FL. In addition, FedSim performs comparably well in an IID setting as well as in
an extreme non-IID setting. In moderate non-IID settings, FedSim exploits the la-
tent similarities between clients to achieve additional performance improvement.
However in the IID setting, FedAvg’s improvement over FedSim can be explained
by observing that FedSim with |C| = 1 is equivalent to FedAvg. This suggests
that when inter-client similarities are high it is better to form fewer clusters for
aggregation. Currently FedSim maintains a fixed cluster size and instead would
need to reduce the number of clusters (in an IID setting) to achieve comparable
performance with FedAvg. In an extreme non-IID setting, the similarities are min-
imal to non-existent, hence FedProx using a proximity regularisation in its weight
update step is better able to adapt to the setting achieving better performance.

Finally in order to study if PNI correlates with any known factors that cause
statistical heterogeneity we use the methods described in [32], to create 11 syn-
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thetic Non-IID datasets by changing α incrementally from 0 to 1 (α controls the
variation in class distributions among clients). Then 3 variants of each dataset are
created for β values 0, 0.5 and 1 (β controls the variation in feature distributions).
Figure 10 plots the mean PNI values obtained for the 11 datasets and their vari-

Figure 10: Comparison of PNI values across different feature distributions

ants from 100 repeated experiments (with 100 random seeds). Overall, PNI values
consistently increased with β which demonstrates that PNI is capturing the het-
erogeneity in feature distributions among clients. It is reassuring to find that the
PNI measure validated in this controlled setting with synthetic data, has increas-
ing values with increasingly heterogeneous feature distributions. This suggests
that PNI could in future be used to characterise real-world datasets where feature
distribution are not explicitly controlled.

7. Conclusion

In this work, we introduced FedSim, an aggregation strategy to take advantage
of inter-client relationships, modelled as pairwise similarity in gradients without
sharing client data. A comprehensive evaluation on multiple application domains
using real-world (including two new datasets) and synthetic datasets demonstrated
that FedSim outperforms FedAvg and FedProx baselines, when similarity knowl-
edge is harnessed. Results with real-world datasets confirmed that FedSim cap-
tured the similarity knowledge in clients to improve model aggregation leading
to significantly better performance. Our findings also confirm the generalisability
of FedSim with alternative neural models and optimisation algorithms.

In order to explore which settings are best suited to FedSim, we carried out
experiments with six synthetic datasets with IID and multiple variants of non-IID
distributions. Significant performance improvements were observed with FedSim
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on multiple variants of synthetic datasets except with the IID and extreme non-
IID settings. These findings suggest that switching between different aggregation
policies can help to address changing levels of statistical heterogeneity or alter-
natively be able to change n clusters dynamically to harness different levels of
similarity relationships in client data. In future work, we will explore strength-
ening security mechanisms where similarity information can be captured without
the risk of exposing privacy and to introduce a method to dynamically switch
aggregation methods.
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