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Abstract—In recent years, a variety of deep learning techniques 
and methods have been adopted to provide AI solutions to issues 
within the medical field, with one specific area being audio-based 
classification of medical datasets. This research aims to create a 
novel deep learning architecture for this purpose, with a variety of 
different layer structures implemented for undertaking audio 
classification. Specifically, bidirectional Long Short-Term 
Memory (BiLSTM) and Gated Recurrent Units (GRU) networks 
in conjunction with an attention mechanism, are implemented in 
this research for chronic and non-chronic lung disease and 
COVID-19 diagnosis. We employ two audio datasets, i.e. the 
Respiratory Sound and the Coswara datasets, to evaluate the 
proposed model architectures pertaining to lung disease 
classification. The Respiratory Sound Database contains audio 
data with respect to lung conditions such as Chronic Obstructive 
Pulmonary Disease (COPD) and asthma, while the Coswara 
dataset contains coughing audio samples associated with COVID- 
19. After a comprehensive evaluation and experimentation 
process, as the most performant architecture, the proposed 
attention BiLSTM network (A-BiLSTM) achieves accuracy rates 
of 96.2% and 96.8% for the Respiratory Sound and the Coswara 
datasets, respectively. Our research indicates that the 
implementation of the BiLSTM and attention mechanism was 
effective in improving performance for undertaking audio 
classification with respect to various lung condition diagnoses. 

 
Keywords—deep learning, Long Short-Term Memory, audio 
classification, lung disease, COVID, bidirectional Recurrent Neural 
Network, attention mechanism 

 

I. INTRODUCTION 

Deep learning methods are now one of the most prominent 
methods in computing today with respect to tasks such as audio, 
video, and image classification [1]. In the field of medical 
imaging, a large number of deep learning methods have been 
demonstrated in a variety of studies. Some example 
deployments pertaining to medical image classification  include 
melanoma identification, diabetic retinopathy screening, and 
blood cancer detection. Such existing deep learning research 
has resulted in significant performance enhancement with 
respect to medical diagnosis [2]. Besides 

the above, there have also been studies with respect to the audio 
classification of medical datasets. As an example, 
Convolutional Neural Networks (CNNs) and traditional 
machine learning methods, such as Support Vector Machine 
(SVM), have been adopted in [3] for lung condition diagnosis 
using audio datasets. As one specific type of Recurrent Neural 
Network (RNN), the Long Short-Term Memory (LSTM) 
network is widely adopted for time series forecasting [4]. In a 
recent research study, Kumar et al. [5] employed an LSTM 
model for heartbeat audio classification, which yielded an 
accuracy rate of 80%, outperforming all other machine learning 
methods utilised in their experiments [5]. There are also a 
variety of other existing studies that indicated the efficiency of 
deep learning methods pertaining to audio classification tasks 
[6, 7, 8, 9]. 

Motivated by aforementioned existing studies, in this 
research, we explore the use of deep learning models, 
specifically RNN architectures with attention mechanisms for 
the classification of medical audio datasets for chronic and non-
chronic lung diseases, as well as COVID-19 diagnosis. We 
evaluate the proposed attention RNN models using both the 
Respiratory Sound [6] and the Coswara datasets [7]. 
Specifically, the Respiratory Sound Database contains audio 
data with respect to a total of six lung conditions such as 
Chronic Obstructive Pulmonary Disease (COPD) and asthma, 
while the Coswara dataset contains coughing audio samples 
associated with COVID-19. The empirical results indicate that 
the proposed models with attention mechanisms outperform 
other deep learning architectures for diverse lung condition 
classification. 

II. RELATED WORK 

A. Related Studies for Audio Classification 
There have been several existing studies that explored the 

combination of CNN and LSTM for audio classification. In 
particular, the investigation of classifying music genres has 
been intensively studied with impressive results using deep 
learning methods. As an example, Choi et al. [8] employed a 
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Convolutional Recurrent Neural Network (CRNN), which is 
described as a CNN model with the last layers replaced with an 
RNN network. The Million Song Dataset, consisting of 
numerous song clips, has been employed for model evaluation 
for the classification of categories such as genre, mood, era, and 
instrument [9]. Their CRNN model was composed of six layers 
which included four conv2d layers and two RNN layers. To 
utilise the dataset for model evaluation, features were extracted 
from the audio files using the python package Librosa. The 
features extracted from the audio files are known as Mel-
Frequency Cepstral Coefficients (MFCC), which are the 
logarithmic measure of the Mel magnitude spectrum and 
contain sufficient discriminating properties. This in particular 
makes them efficient assets for classifying audio datasets [10]. 
The empirical results of their studies indicated that their 
proposed CRNN model outperformed all three other baseline 
CNN models consistently for audio classification. In particular, 
the CRNN model outperformed the CNN model with 5 
convolutional layers and 2 fully-connected layers on 44 tags out 
of the 50 tags in the dataset, based on the AUC-ROC (Area 
Under Curve-Receiver Operating Characteristic Curve) metric, 
pertaining to music tagging. However on the other hand, their 
proposed CRNN model had the highest number of model 
parameters and was computationally costly. 

Zheng et al [11] demonstrated another CRNN model for 
Gastrointestinal (GI) sound event detection. Their work 
employed a gastrointestinal sound dataset that includes 6 
different types of body sounds, i.e. bowel sound, speech, snore, 
cough, groan, and rub. As in the existing studies, to utilise the 
audio files, MFCC features were extracted using the python 
package Librosa. Their proposed CRNN model was made up of 
a 5-layer CNN network, followed by a bidirectional Gated 
Recurrent Unit (BiGRU) layer and the fully connected layers. 
Their work achieved promising results with the mean F1 score 
of 81.06% for the detection of the aforementioned 6 categories 
of sounds, with two of the classes, i.e. speech and snore, 
yielding F1 scores over 90%. 

 
B. Bidirectional RNN Architectures 

In the above-mentioned existing studies, the concept of a 
BiGRU was utilised as a part of the implemented model. With 
the goal of this research to implement an RNN model in 
conjunction with attention mechanisms, the concept of using a 
bidirectional RNN is worth exploring further. While a GRU is 
not an LSTM, it is very similar in functionality and design, with 
the main difference being that the GRU combines the “forget” 
and “input” gates into an “update” gate, as well as adding a 
“reset” gate. This results in the GRU model having fewer 
parameters and generally a simpler architecture than that of an 
LSTM network [12]. 

However, one key distinction of our research is the use of 
bidirectional design for the LSTM and GRU models. A 
bidirectional RNN model has two RNN layers of the same type, 
for example, having two LSTM layers. These two layers ensure 
that the input features can be processed in both forward and 
backward directions. This enables the model to better obtain the 
relations among elements in the input sequence by 

using the information in both forward and backward directions 
[13]. 

In addition, Chen and Li [14] demonstrated a CNN- 
BiLSTM model for the classification of emotions embedded in 
music. The dataset adopted in their work consisted of 2000 
audio song samples from the Last.fm tag subset of the Million 
Song Dataset [9]. The dataset consisted of 500 song samples for 
each of the following emotion classes, i.e. anger, sadness, 
relaxation, and sadness. Like aforementioned studies, MFCC 
features were extracted from the audio files and adopted for 
model training. Their studies indicated that their proposed 
CNN-BiLSTM method achieved an average accuracy rate of 
68% across the four classes, while the other baseline models, 
i.e. CNN-LSTM, CNN, and LSTM, achieved 63%, 59%, and 
50% respectively for music emotion classification. This 
demonstrates again that the use of BiLSTM layer architectures 
can potentially increase classification performance. As the use 
of bidirectional RNN methods was shown to be advantageous 
in [11] and [14], the concept has been further explored in our 
research. 

 
C. Attention Mechanisms 

Another concept that has been explored intensively in 
various studies as part of the RNN architectures is the attention 
mechanism, which has shown very positive results in areas such 
as speech recognition and natural language processing (NLP). 
The attention mechanism provides an adaptive ability to learn 
the relationship of each of the input features at several time steps 
to predict the current time step [15]. 

In the work of Zhang et al. [16], a convolutional RNN 
architecture with an attention mechanism, namely ACRNN, 
was proposed. Attention for both CNN and RNN layers was 
investigated. In particular, their work focused on being both 
determining the effectiveness of the attention mechanism as 
well as the position that the attention mechanism should reside 
in within the model. Their work was evaluated using the 
environmental audio datasets, i.e. ESC-50 and ESC-10, which 
consist of 50 and 10 classes respectively [17]. The empirical 
results indicated that the attention mechanism provided a 
significant increase in accuracy, with an over 2% increase for 
both datasets. It was also found that the attention mechanism 
was best suited for increasing classification accuracy in layers 2 
and 10 in their CRNN network. These discoveries indicated that 
an attention mechanism implemented within a deep CRNN 
model would be beneficial for undertaking audio classification 
and is worth further investigation. 

 

III. THE PROPOSED DEEP NETWORKS WITH ATTENTION 
MECHANISMS 

In this research, we propose two bidirectional LSTM and 
GRU networks incorporated with attention mechanisms, 
namely A-BiLSTM and A-BiGRU, for chronic and non- 
chronic lung conditions and COVID-19 diagnosis. We 
introduce the key procedures such as the feature extraction from 
audio inputs and the proposed deep learning models in detail 
below. 



 

A. Feature Extraction 
As indicated in the aforementioned existing studies, the 

first step is to extract the features from audio inputs. The method 
of choice includes the extraction of the MFCC features, which 
again can be achieved through the use of the python package 
Librosa [18]. 

There are several aspects that need to be taken into account 
in the pre-processing stage. The first of which is to decide how 
to ensure that the model has enough input features, which can 
be achieved by splitting the audio files into segments. 
Depending on the sample rate and the length of each of the audio 
clips, which need to be determined, the audio input can then be 
split into segments. 

Following the splitting stage, all of the MFCC features are 
extracted from each of the segments and then appended to a 
dictionary with its class label. To achieve this, certain variables 
need to be decided upon such as the value for the Fast Fourier 
Transform (FFT) algorithm and the hop length. The FFT 
algorithm is typically used to convert a signal from its original 
domain, which in this case is time, to a representation in the 
frequency domain. In the context of MFCC, FFT is applied to 
every frame to calculate the frequency spectrum. This is 
conducted through the process called the Short-Time Fourier- 
Transform (STFT), from which the power spectrum is then 
calculated. Once the power spectrum is calculated, then 
triangular filters applied on the Mel-scale are applied to the 
power spectrum to extract frequency bands. Using these 
frequency bands, the Mel frequency is computed through the 
use of the formula below [20]. 

 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) = 1127 x ln (1 + 𝑓𝑓
700

 )             (1) 
 

The formula in Equation (1) in particular converts the 
audio input to the Mel frequency in hertz i.e 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓). First, a 
setting of 1127 is calculated by taking the natural logarithm (ln) 
and the corner frequency of 700 hertz, which is typically 
between 600 and 1000 hertz for this type of formula. This is 
then multiplied by the natural logarithm (ln), where a constant 
value of 1 pluses the frequency in hertz (f) being divided by the 
corner frequency of 700. 

The values of the hop length combined with the FFT 
algorithm determine how many frames are taken from each 
segment. The default numbers for both of these variables are 
2048 for FFT and 512 for hop length, which for simplicity, will 
be used for this research. Following the extraction of the MFCC 
feature from the audio files, they are each appended onto a 
JSON file which is used as the input file for training the model 
architectures. 

 
B. The Proposed Model Architectures 

In this research, we propose bidirectional RNN models 
with an attention mechanism for audio classification, i.e., 
chronic and non-chronic lung conditions and COVID-19 
identification via breathing, coughing, and voice recordings. 
The two specific types of RNN networks chosen for model 
construction are LSTM and GRU. Determining the specific 

structure of the networks involves rigorous testing of the 
settings of each of the layers’ parameters, as well as the 
hyperparameters during the training process. Table 1 below 
describes the architectures of the proposed BiLSTM and 
BiGRU models with the attention mechanisms. 

 
TABLE I. A-BILSTM AND A-BIGRU MODEL ARCHITECTURES 

 
Layer Layer Description Unit Setting 
1 BiLSTM or BiGRU 512 
2 Attention Mechanism N/A 
3 LSTM or GRU 512 
4 Dense (Relu) 256 
5 Dropout 0.5 
6 Dense 128 

Fully Connected Dense (Softmax) 6/2 
 

As shown in Tables I, the two model architectures of A- 
BiLSTM and A-BiGRU have the same structures, with the only 
differing aspect being the type of the RNN network, i.e., LSTM 
or GRU, implemented in layers 1 and 3. The choice of 
implementing the attention mechanism in the second layer of 
each model was influenced by the suggestion in [16], which 
demonstrated that the attention mechanism was best suited to 
increase the model accuracy by being on layer 2 or 10 of the 
network. With the choice of a dense layer being the final 
connected layer of the two architectures, therefore the only 
remaining option was to implement the mechanism on layer 2. 

In addition, the first layer of the model was decided to be 
the aforementioned BiLSTM or BiGRU layer, with the hidden 
neuron units set as 512. Owing to the layer being bidirectional, 
the number of hidden units is then doubled. The number of 
hidden units was determined based on rigorous testing which 
involved experimenting with different numbers of neurons. 

Following the attention layer, an unidirectional LSTM or 
GRU layer is then implemented, with the choice of units being 
set as 512 as it is half the value of the first layer. Following the 
third layer, a regular dense layer with the activation function 
‘relu’ is found to be the most effective. The next layer is a 
dropout layer, which is to reduce the amount of overfitting that 
may occur during the training of neural networks [21]. 

The two final layers implemented are the two dense layers, 
the first being 128 units, and the final being the fully connected 
layer consisting of 6 or 2 units (i.e., the number of classes), 
depending on the expected number of classes being outputted in 
the employed test dataset. In addition, the specific classes for 
both datasets are explained in the next section. 

 
TABLE II. BILSTM AND BIGRU MODEL ARCHITECTURES 

 
Layer Layer Description Unit Setting 
1 BiLSTM or BiGRU 512 
2 LSTM or GRU 512 
3 Dense (Relu) 256 
4 Dropout 0.5 
5 Dense 128 

Fully Connected Dense (Softmax) 6/2 
 

The fully connected layer also has the activation function 
‘softmax’. To determine the effectiveness of the attention layer, 



 

testing also involved training both model architectures without 
the attention mechanism implemented, as shown in Table II. 

 
C. Model Training 

As mentioned previously, the training process was 
rigorous to optimise the layers of the models and the various 
training hyperparameters. 

The first choice to be made pertaining to the training and 
test processes is determining the train, validation, and test split 
of the dataset. Several divisions were tested, but what was 
conclusively chosen was the splits shown in Table III below. 

 
TABLE III. TRAINING, VALIDATION, TEST SPLITS FOR EACH TEST 

DATASET 

 
Datasets Train 

(%) 
Validation 

(%) 
Test 
(%) 

Respiratory 
Sound Database 

75 12.5 12.5 

The Coswara 
Dataset 

80 10 10 

 
 

These splits were found to be the most effective for 
optimising the model performance and accuracy for the 
respective datasets. 

Due to the nature of the two networks, i.e. A-BiLSTM and 
A-BiGRU, being fundamentally different, with the GRU 
network being a simpler variation of the LSTM, the 
hyperparameters identified to achieve optimal performance 
between the two networks differed a fair amount. Tables IV-V 
below demonstrate the identified optimal model settings. 

 
 

TABLE IV. A-BILSTM AND BILSTM MODEL HYPERPARAMETERS 
 

Hyperparameters Setting 
Epochs 150 

Learning Rate 0.00001 
Batch Size 64 

 
 

TABLE V. A-BIGRU AND BIGRU MODEL HYPERPARAMETERS 
 

Hyperparameters Setting 
Epochs 20 

Learning Rate 0.01 
Batch Size 64 

 
 

As shown in Tables IV-V, the training process for the GRU 
models required far fewer epochs, as well as a comparatively 
larger learning rate, to achieve optimal performance, which 
reflects the comparatively simple nature of the networks 
themselves. 

Moreover, Figs. 1-2 are examples of the training and 
validation losses for the Coswara dataset, with respect to A- 
BiLSTM and A-BiGRU, respectively. As demonstrated in Figs. 
1-2, no overfitting occurred during the training process which 
ensures that all models are performing to the best of their 

capability. We discuss the evaluation details in the following 
section. 

 

Fig.1. The training and validation losses for the A-BiLSTM model with 
respect to the Respiratory Sound Database 

 
 

 
 
 

Fig. 2. The training and validation losses for the A-BiGRU model with 
respect to the Coswara dataset 

 
 

IV. EVALUATION 

To ensure a comprehensive model evaluation, both the 
Respiratory Sound Database and the Coswara dataset are used 
in our experiments to give a good indication of the proficiency 
and effectiveness of the proposed models. 

The Respiratory Sound Database was chosen for 
investigation in this research. This is mainly owing to the fact 
that three out of the top ten leading causes of death globally are 
respiratory diseases [21]. With early detection being crucial for 
preventing deaths of such diseases, providing a more 
convenient and accurate method of diagnosis could offer a vital 
tool to medical professionals working in the respiratory field 
[22]. Specifically, the dataset contains 920 recordings from 126 
subjects whose conditions include Healthy, Upper Respiratory 
Tract Infections (URTI), Chronic Obstructive Pulmonary 
Disease (COPD), Bronchiolitis, Pneumonia and Bronchiectasis. 
In other words, a total of six lung conditions are taken into 
account for model evaluation. All the 920 audio recordings have 
been employed in our experiments. With there being numerous 
classes to classify from and the sounds being recorded from a 
range of stethoscopes, to achieve high 



 

accuracy would require an extremely proficient model, which 
constitutes a challenging scenario for audio classification. 

We also employ the Coswara dataset to test model 
efficiency. Owing to the contents of the dataset being strictly 
COVID-19 related, the obvious primary reason of selecting the 
dataset would be to research and provide a possible solution that 
could help alleviate the current worldwide pandemic. 

The current most widely used method of testing for 
COVID-19 is the PT-PCR test, which while it is the most 
effective method of testing at this moment in time, it also has 
several issues such as cost, scalability, and the nature of the test 
violating social distancing [23]. Providing a more convenient, 
cost-effective, and scalable method of diagnosis would deliver 
a crucial service to allow more people to be tested daily and 
ultimately provide control over the pandemic. 

The Coswara dataset itself is open access and consists of a 
growing number of respiratory audio recording classes that 
include coughing, breathing, and voice recordings. The 
subsection focussed on in this research is the cough class. This 
subsection can be classified into three categories, i.e. healthy 
subjects, subjects who have COVID-19, and subjects who have 
a respiratory disease that is not COVID-19. 

The two classes that are included in this study are healthy 
subjects and subjects who have COVID-19, in other words, 
positive and negative cases for COVID-19 diagnosis. A total of 
95 positive and 100 negative cases are employed for model 
evaluation. 

Tables VI-VII below illustrate the performance of the four 
RNN models on both datasets. The results indicate that the best 
performing model is the A-BiLSTM network for undertaking 
audio classification for both datasets. 

 
 

TABLE VI EXPERIMENTAL RESULTS FOR THE RESPIRATORY SOUND 
DATABASE 

 
Models Average Test Accuracy (%) 
A-BiLSTM 96.2 
BiLSTM 93.2 
A-BiGRU 93 
Bi-GRU 91.2 

 
 
 
 

TABLE VII. EXPERIMENTAL RESULTS FOR THE COSWARA DATASET 
 

Models Average Test Accuracy (%) 
A-BiLSTM 96.8 
BiLSTM 94.6 
A-BiGRU 94.2 
Bi-GRU 92.8 

 

 
Fig.3. Confusion matrix of the proposed A-BiLSTM model for the Respiratory 
Sound Database. 

 
 
 

Fig.4. Confusion matrix of the proposed A-BiGRU model for the Respiratory 
Sound Database 

 

Fig.5. Confusion matrix of the proposed A-BiLSTM model for the Coswara 
dataset 



 

 

 
 

Fig.6. Confusion matric of the proposed A-BiGRU model for the Coswara 
dataset 

 
Moreover, Figs. 3-6 illustrate the confusion matrices for 

the Respiratory Sound database and Coswara datasets for both 
of the both proposed models, i.e. A-BiLSTM and A-BiGRU. 
Tables VIII-XI below illustrate the detailed results of each class 
for both datasets with respect to the A-BiLSTM and A-BiGRU 
networks. 

 
TABLE VIII. DETAILED RESULTS FOR A-BILSTM FOR THE RESPIRATORY 

SOUND DATABASE 
 

Class Test Accuracy (%) 
URTI 94.8 
Bronchiectasis 98.8 
Healthy 94.3 
COPD 93.3 
Bronchiolitis 98.8 
Pneumonia 97.2 

 
 
 

TABLE IX. DETAILED RESULTS FOR A-BIGRU FOR THE RESPIRATORY 
SOUND DATABASE 

 

Class Test Accuracy (%) 
URTI 88.8 
Bronchiectasis 97.2 
Healthy 87.3 
COPD 93.5 
Bronchiolitis 97.8 
Pneumonia 93.3 

 
 

TABLE X. DETAILED RESULTS FOR A-BILSTM FOR THE COSWARA 
DATASET 

 

Class Test Accuracy (%) 
Positive 97.6 
Negative 96 

TABLE XI. DETAILED RESULTS FOR A-BIGRU FOR THE COSWARA 
DATASET 

 

Class Test Accuracy (%) 
Positive 93.3 
Negative 95.1 

 
 
 

V. DISCUSSIONS 

From the inspection of the empirical results, several 
observations can be made. The main finding is that for both 
datasets, as indicated in Tables VI-VII, the A-BiLSTM model 
was the best performing method in terms of accuracy, i.e., it 
obtains accuracy rates of 96.2% and 96.8% for the Respiratory 
Sound and the Coswara datasets, respectively. Similarly, for 
both datasets, the LSTM models outperform the respective 
GRU models for each of the experiments. 

One possible explanation for both of the above 
observations is that because of the more complex nature of the 
LSTM, with it embedding more complex layer topologies, it 
provides the network with better capability to learn bidirectional 
temporal dependencies on large MFCC datasets. Moreover, as 
seen in Figs. 1-2, the number of epochs required to train on the 
Coswara dataset to achieve optimal  performance was far fewer 
for the A-BiGRU model in comparison with those of the A-
BiLSTM model. 

As discussed previously, this is more likely owing to the 
simpler nature of the A-BiGRU model. Therefore, if the 
efficiency or size of the model is essential in determining the 
models to use, for example, in the case of using a model on a 
mobile device, then the GRU would be preferable. 

Another key observation that can be made is with respect 
to the impact on performance of the implemented attention 
mechanism. Not only does the highest performing model for 
both datasets consist of the attention mechanism, but all models 
that have an attention mechanism implemented show higher 
performance than their counterparts, with the difference in test 
accuracy ranging from 1.8% and 3% for the Respiratory Sound 
Database, and 1.4% to 2.2% for the Coswara dataset. 

Although the improvements are not transformative, they 
are notable and significant enough to be worthy of 
implementation, especially when considering that achieving test 
accuracy results of 96.8% for the Coswara dataset would not be 
possible without the attention mechanism being implemented. 
Despite that in this particular study, no models tested consist of 
purely unidirectional LSTM/GRU layers, we can observe the 
results from [4] which demonstrated that an unidirectional 
LSTM model tested on a heartbeat audio dataset achieved an 
accuracy rate of 80%. 

Despite the datasets being tested not being the same as in 
this research, they are similar in nature as they are all audio 
medical datasets. Therefore, the superiority of our experimental 
results of around 96% on both selected datasets indicates the 
potential of the use of bidirectional RNN to be more suited to 
achieve higher performance on audio 



 

classification, owing to the consideration of both forward and 
backward states simultaneously during the inference process. 

Another conclusion that can be made by observing the 
Figs. 3-6 and Tables VIII-XI is that both the confusion matrices 
and the detailed experimental results illustrate how the A-
BiLSTM model outperforms A-BiGRU significantly for the 
classification of each class with respect to both datasets. 

Specifically by inspecting the results of the Respiratory 
Sound Database in Tables VIII-IX, the A-BiLSTM model 
outperforms the A-BiGRU network for the classification of 
nearly all the categories. In particular, the A-BiLSTM model 
yielded substantially better results for the categories such as 
Healthy (94.3%), Pneumonia (97.2%) and UTRI (94.8%), when 
compared with the A-BiGRU model, which yielded 87.3%, 
93.3% and 88.8% for Healthy, Pneumonia and UTRI, 
respectively. 

On the other hand, for the Coswara dataset, according to 
the experimental results shown in Tables X-XI, the A- BiLSTM 
model again outperforms the A-BiGRU model for the 
prediction of both positive and negative classes. 

Ultimately, our conclusion is that the specific architecture 
implemented for the A-BiLSTM model has achieved 
impressive results and is certainly worth exploring and 
experimenting with further. 

VI. CONCLUSION 

In this research, we have implemented novel architectures 
of the RNN networks with attention mechanisms for the 
classification of the medical audio datasets, i.e., the Respiratory 
Sound and the Coswara datasets. The experimental results of 
both datasets reveal the efficiency of the proposed A-BiLSTM 
network among all the test methods, which consists of a 
BiLSTM layer, an attentional layer, an unidirectional LSTM 
layer, and several dense layers. The A-BiLSTM model achieves 
the test accuracy rates of over 96% for both datasets, which 
indicates that the implementation of a BiLSTM network and 
attention mechanism is a concept that is beneficial for 
improving audio classification performance. 

Furthermore, the aforementioned A-BiLSTM architecture 
implemented in this research was shown to be highly effective, 
but with further experimentation with different layer and 
hyperparameter settings [24-32], additional improvements in 
performance could be made. Evolutionary algorithms [33-49] 
could also be exploited pertaining to the above parameter tuning 
as well as architecture generation processes. Moreover, it would 
also be beneficial to employ additional medical audio datasets 
to further evaluate model efficiency. 
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