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ABSTRACT
This study addresses the optimal planning of electric vehicle charging infrastructure at
workplaces. As the optimal planning for a given workplace can involve various criteria
that comprise conflicting single objectives, this study proposes a new integratedmulti-
objective optimization and multi-criteria decision-making (MCDM) model for deter-
mining the most suitable electric vehicle supply equipment (EVSE) configuration.
This approach combines the advantage of multi-objective optimization, which yields
Pareto solutions, with an improved MCDM model. The latter is used to evaluate the
Pareto frontier to find the best performing solution by enabling the station owners to
use linguistic variables for weighting the decision-making variables. The conventional
weighted aggregated sum product assessment method is improved by introducing
the Dombi Bonferroni functions in the proposed model making it more flexible as
compared to its counterparts. In the final step, the selected solutions are ranked by
reapplying the MCDMmodel. A case study is performed based on collected charging
data from a workplace. To validate the proposed model, a comparison against four
alternative MCDM models is performed. It is demonstrated that the proposed model
yields very close ranking order as the alternative approaches. Among five EVSE
options, DC fast charging is found to be the best while AC Level-2 EVSE (19.2/22kW)
is found to be the least attractive option. Sensitivity analysis shows the robustness of
the ranking results in response to changing weightings of the model coefficients.

1. Introduction
Global deployment of electric vehicle (EV) charging infrastructure is gradually increasing to respond to

ever-increasing EVmarket share worldwide. Governments have introduced a range of policies and incentives
to promote further deployment of the charging infrastructure. Accordingly, the number of global EV charging
units continues to rise reaching about 7.3 million chargers worldwide in 2020 [1]. Workplace charging is the
second most preferred charging modality [2]. Enabling more charging units at workplaces provides benefits
in several ways. First, it can mitigate charger access anxiety that will increase the electric driving range for
EVs [3]. This is essential to boost up EV adoption since the lack of charging infrastructure is still one of the
most commonly reported barriers to the EV transition [1]. Second, it will help companies transition their
vehicles towards an electric fleet [4]. Moreover, workplaces can play a strategic charging infrastructure role
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to shift EV charging loads from peak demand times to daytime charging for employees’ vehicles or night
charging for fleet cars. As such, workplace charging can help integrate variable renewable generation [5].
EV charging infrastructure at workplaces should, therefore, be stimulated.

Planning and managing a workplace charging station requires an optimal design that needs to address
the issues from the perspectives of the station owner, EV users, and the grid [6]. It should provide a cost-
effective solution for both EV users and the station owner without compromising an efficient use of the grid
assets [7]. Optimal charging station sizing and placing have, therefore, been an ongoing research focus for
many researchers. Single-objective optimization approach has been widely applied to formulate the planning
problem in most of these studies [2]. In this approach, several different objectives are lumped into a single
objective function. Then, deterministic models based on linear [8] and nonlinear integer programming [9] or
meta-heuristic models [10] are typically used to find the best solution. In [2], the sum of three cost elements
associated with electric vehicle supply equipment (EVSEs) is minimized to find the least lifetime cost of
a workplace charging station. In [8], the use of various non-residential EVSEs is maximized for increased
number of EVs served. Li et al. in [11] analyzes the techno-economic feasibility of various configurations of a
given workplace charging station. While the overall objective of these research is to maximize either EV user
or the station owner’s profit, technical aspects associated with charging station deployment such as network
losses and the grid impact are not considered. Further work included the effect of power grid constraints such
as network losses and voltage profiles in optimizing the siting and sizing of non-residential charging stations
[12]. The objective is set to reduce losses and improve the voltage profile in the distribution system in [12].
Luo et al. in [13] lumped the costs of network reinforcement and losses in a single cost function. While these
single-objective optimization models provide an optimal charging infrastructure configuration through cost
minimization, the solution is sought for only a specific criterion or metric that corresponds to minimizing a
single objective function aggregating all different objectives into one. However, the planning problem for a
given workplace environment can involve several conflicting objectives when all aspects of a charging station
is considered. Some of these objectives can be compromised in finding the optimal solution if considered
independently as single-objective optimizations. For instance, optimising charging powers for EVs that
minimizes only the energy charge considered as the single objective can increase the peak demand. This
might result in higher demand charges for industrial and commercial customers [14]. Therefore, each aspect
for a given workplace should be considered in finding the optimality that results in multiple non-unique sets
of solutions. The final subjective decision can then be made from the non-dominated solutions, i.e., Pareto
optimal set based on the decision maker’s priority [15]. In this respect, the multi-objective optimisation
method can define a Pareto optimal set that provides a suitable compromise among all objectives without
degrading any of them.

The multi-objective optimization (MOO) approach has been mainly applied to location optimization of
public charging infrastructure [16]. Considering both the grid and EV user related objectives, the electric
vehicle grid integration is optimized [17]. These studies apply various evolutionary algorithms such as
multi-objective evolutionary algorithms based on decomposition, non-dominated sorting genetic algorithms,
multi-objective grey wolf optimiser for finding Pareto solutions [18]. Herein, the meta-heuristic solutions can
be very time inefficient. For instance, an ant colony optimization-based approach requires around 127s to
find the best route for an EV in [19] that can be prohibitive to be implemented in real-time. Pareto ranking
selection should therefore be practical for real-time applications. Furthermore, premature convergence to a
suboptimal point may result in adverse configuration. In [20], the weighted sum approach is adopted to assign
a chosen weight of the user’s priority to each objective function. However, this approach converts the multi-
objective problem into a single scalar objective function. Only single solution among the Pareto solutions are
found that does not yield the global optimum point. Multi-criteria decision making (MCDM) methods such
as technique for order of preference by similarity to ideal solution (TOPSIS) have been recently applied to the
siting problem of public electric vehicle charging stations. Shi & Lee in [21], TOPSIS method is employed to
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select a final satisfied solution among the Pareto set. It is shown that the multi-objective optimisation model
provides better balanced solution as compared to the single objective optimisation. Liu et al. in [22], two
MCDMmethods, namely, decision-making trial and evaluation laboratory and multi-objective optimization
by ratio analysis plus full multiplicative form are integrated to manage the decision makers’ uncertain and
diverse linguistic assessments in optimizing the location of public charging stations. It has been shown that
MCDM methods can provide effective rankings under an uncertain linguistic context when involving many
conflicting criteria.While the above literature indicates that charging station site selection is often researched
based on various objectives, optimal configuration of charging stations is largely unexplored. Furthermore, to
the best of authors’ knowledge, the MCDM approach has not been applied to find the best performing Pareto
solution whereas they have been typically used in ranking charging station sites. Particularly, the MCDM
methods in EV applications have been employed based on the assumption that decision-making variables
are independent [22]. However, decision-making variables are expected to be interrelated when all aspects
for a workplace charging station are considered. Therefore, further work on MCDM methods is needed in
terms of improving flexibility and respect for the mutual influence among the attributes of decision. That
means that the method respects the mutual influence between the attributes in the initial decision matrix.

With the motivations stated above, this study proposes an improved MCDM model to select the
best performing EVSE configuration among optimal options based on the designer’s perspective (e.g.,
the workplace charging station owner). The optimal EVSE configurations are first obtained from a de-
veloped MOO model. In the proposed MCDM model, the weighted aggregated sum product assessment
(WASPAS) method was extended using Dombi Bonferroni functions. The latter are used to determine
weighted sequences and form an aggregation function based on which the optimal alternative is selected.
To the best of the authors’ knowledge, no research considers the fusion of information using Dombi
Bonferroni functions in the WASPAS methodology to date. Unlike the current MCDM approaches such
as WASPAS, combined compromise solution (CoCoSo) method, Multi-Attributive Border Approximation
Area Comparison (MABAC), and MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) that utilize
linear functions based on weight arithmetic averaging, nonlinear aggregation functions are used based on
the implementation of Dombi norms in the Bonferroni functions. That makes it a more flexible decision-
making method as compared to its counterparts. The main feature of the presented model is the way of
determining the weight coefficients of decision-making variables for defining the relationship among the
variables that is based on the application of the logarithmic additive function andDombi norms. Furthermore,
the MCDM methods in the current literature such as WASPAS, CoCoSo, MABAC, and MAIRCA require
the application of other objective or subjective methodologies to determine the weighting coefficients of the
criteria [23, 24, 25]. The main advantages of the improved WASPAS model can be highlighted as follow: (i)
enabling flexible decision-making and taking into account the interaction between decision attributes, (ii)
considering the connection between the attributes and eliminating the impact of extreme/inconsistent data,
(iii) possessing the flexibility that is expressed by the parameters �1, �2, and �, (iv) allowing to control the
robustness of the results by varying the parameters �1, �2, and � and their influence on the final decision.
In this respect, the Dombi Bonferroni WASPAS method provides a fully defined multi-criteria framework
that enables the definition of criterion weights and the evaluation of alternatives. Overall, the main salient
contributions of this study can be summarized as follows:

• A newmethodology is proposed for selecting the best performing option for Pareto solutions. As such,
this methodology enables individual expert evaluations in a multi-criteria decision-making framework
to find an optimal electric vehicle supply equipment (EVSE) configuration at workplaces.

• A multi-objective optimization model for workplace charging stations is proposed that minimizes
overall cost of a workplace charging station for its lifecycle including daily levelized infrastructure
cost, energy, and demand charges.
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• The conventional WASPAS model is improved by introducing Dombi Bonferroni functions making it
more flexible as compared to its counterparts.

The rest of this paper is organized as follows. Section 2 presents the proposed methodology including the
description of EVSE alternatives considered. The MOO model is presented in Section 3. Section 4 presents
the Dombi Bonferroni WASPAS model along with detailing the decision-making variables considered.
Experimental and comparison results, including a sensitivity analysis, are discussed in Section 5. Finally,
Section 6 provides concluding remarks.

2. Methodology
2.1. Approach

The flowchart for the optimal planning of workplace charging station proposed is presented in Fig. 1.
Here, the optimal solution is sought from a charging station operator perspective, since facility managers
at workplaces usually supervise the charging and billing procedure. In seeking the optimal charging
infrastructure, the methodology is proposed to combine the advantages of MOO with those of MCDM
approaches. As such, the MOO can optimize several conflicting objectives simultaneously that yield a
set of optimal solutions (i,e., Pareto frontier) [22] while the MCDM provides formulation flexibility and
easy calculation in evaluating the solutions from the multi-criteria perspectives considered, which in turn
determines the best performing solution [15]. The model first relies on collected data from charging units
that are used to extract a charging behavior. Then, an MOO model is developed in which various aspects
of a charging station operator are considered with different objectives. The model is run for different EVSE
configurations that are currently installed at workplaces. The Pareto frontier for each EVSE is evaluated
by proposed Dombi Bonferroni WASPAS model enabling experts to use linguistic variables for weighting
evaluation criteria. As such, the best performing optimal solution for each candidate configuration is
found. Finally, the selected solutions are ranked by reapplying the Dombi Bonferroni WASPAS model. The
validation of the ranking results obtained are made by comparing with those of other four MCDMmethods,
i.e., WASPAS, MABAC, MAIRCA, and CoCoSo.
2.2. Description of alternatives

A charging station consists of an EVSE to deliver electricity to an EV through a standardized
connector and a dedicated socket outlet. It can be either an AC inlet incorporating protection, control, and
communication devices, or an AC-DC converter with communication and control functions installed in.
There are currently two standards, namely, the Standard J1772 [26] and the Standard IEC 61851 [27] that
define the requirements, allowable charging rates, and the handshake protocol that EVSE and EVmust follow
in North America and Europe, respectively. Both standards classify EVSEs into three categories as either
levels in J1772 or modes in IEC 61851 based on power rates at which EV’s battery is charged. The first
EVSE type is AC Level-1 or Mode-2 providing AC charging power to the vehicle from single phase plug
through a dedicated charging cable and socket outlet such as Mennekes. It does not require any additional
infrastructure. However, the maximum charging power can be up to 1.9/3.68 kW (max 16 A) depending on
supply voltage that provides a low-speed charging. Therefore, this EVSE type is typically used in residential
areas with long parking times. The second EVSE is AC Level-2 orMode-3 that offers smart charging through
a dedicated socket outlet in which the charging process can be monitored, controlled, and managed [28]. It
can be supplied from either single phase (L2-1P) or three phase (L2-3P) that allows medium-speed charging
up to 7.36 kW (max 32 A) and fast charging 19.2/22 kW (240V-80A/400V-32A), respectively. TheMode 3
in Europe has also rapid charging capability of up to 43 kW (max 63A). This EVSE is typically installed at
workplaces with moderate parking dwell times. The third EVSE type is on the other hand DC fast charger
(DCFC) orMode-4 that enables rapid charging at a range of high power levels from 50 kW to 350 kW. The
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Figure 1: Flowchart of proposed integrated approach.

charging rate can be limited depending on the vehicle’s acceptance rate. Unlike AC EVSEs in which the
charger is built into the vehicle, DCFC includes a bidirectional high-power AC-DC converter that provides
DC electricity directly to the vehicle’s battery. DCFC requires specific connectors such as either Combo-2,
CHAdeMO or GB/T [29]. Similar to L2 types, DCFC units are installed at workplaces, public car parks, and
on-street parking. Both L2 and DCFC types have multi-port options (typically 2 ports) that enable EVs to
charge simultaneously by sharing the supply across the ports. L2 and DCFC installations at workplaces
mostly require electrical upgrades and are subject to site factors including visibility and aesthetics that
increase the installation cost significantly. Moreover, their commercial installations may result in higher
electricity costs by increasing the facility’s peak electricity demand. This study considers available five
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different EVSE types to be installed at workplaces. These are L2-1P, L2-3P, DCFC including multi-port
L2-3P (L2 MP) and multi-port DCFC (DCFC MP).

3. Multi-objective optimization cost model for workplace charging stations
MOO methods are commonly used to solve a variety of design problems with multi objective functions

to be satisfied at the same time. These multiple design objectives enforce contradicting requirements on
the technical and economic performances of a system [30]. MOO provides superiority over single-objective
optimization by providing concurrently achieved trade-off between the multiple single objective functions
[15]. This results in a set of solutions, called Pareto frontier, in which the optimal solution for one objective
may not be the optimal for other objectives [31]. Final selection among Pareto frontier can be made based
on the decision maker’s preferences [32].

Several cost objectives can be defined from the workplace EV charging station owner perspective.
An EVSE cost function can be classified as capital and operational expenditures. The major capital
expenditure (CAPEX) is EVSE unit cost ($/unit) that varies from type and size. The operational expenditure
(OPEX) includes two cost elements. The first element is the energy charge that represents daily electricity
consumption cost to charge all EVs in a workplace charging station. It can be sensitive to smart charging
strategies while charging scheduling policies can affect greatly the energy charges under utility time-of-use
(TOU) tariffs ($/kWh) [33]. The second is demand charge that corresponds to the contribution of charging
loads to peak demand of facility. Unlike the residential customers, industrial and commercial customers are
subject to demand charges as an additional cost for their monthly peak power consumption measured as the
average of 15 min time intervals [2]. This becomes a major concern in EV adaption at workplaces since EV
charging can increase the peak demand significantly [34]. As a result, monthly bill may be higher due to the
high demand charge even though the energy charge is minimized.

Finding the trade-off between these cost functions as objectives requires a MOO model. The model is
presented in which the CAPEX and OPEX are to be optimized together. The model includes three cost
functions. Cop in (1) is the daily operational cost referring to cost of daily total electricity consumption to
charge all EVs. Typical TOU rate with varying energy cost is considered as a price vector of F (t) taken from
[35]. To satisfy EV users requirements, the operational cost function is subject to the constraints given in
(2) through (5) . The constraint (2) make sure that the required charging energy of the itℎ EV, Erequired,i,
is satisfied within the vehicle’s arrival, tarr,i, and departure, tdept,i, times. The constraint (3) states that the
charging power of the itℎ EV, Pcℎ,i, can be between zero and minimum of rated powers of EVSE (P ratedj )
and EV’s on-board charger (P ratedi ). �j and �i denotes efficiencies of EVSE and on-board charger of itℎ
EV, respectively. Constraint (4) imposes that the charging process happens within the arrival and departure
times. Constraint (5) states that the required charging time, treq,i cannot be longer than the plugged in time.
Herein, N={1, 2, ...n} is set of EVs, T is the number of time slots of 1 min each, S={1, 2, ...s} is set of
EVSE units, J={1, 2, 3, 4, 5} is set of charging levels of the EVSE types considered. {1, 2, 3, 4, 5} denotes
L2-1P, L2-3P, L2 MP, DCFC and DCFC MP charging units, respectively. P ratedJ and �J are the rated power
and the efficiency of DCFC EVSE unit, respectively.

Cop =
Sj
∑

sj=1

n
∑

i=1

T
∑

t=1

(

F (t) × (Pcℎ,i,sj (t) ⋅
Δt
60
)
)

, (1)

subject to
T
∑

t=1
Pcℎ,i(t) ⋅ �i ⋅

Δt
60

= Erequired,i, ∀t ∈ [tarr,i, tdept,i], i = 1, ..., n (2)
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{

0 ≤ Pcℎ,i(t) ≤ min
(

�iP ratedi , �jP ratedj

)

,∀J ∈
{

1, 2, 3
}

0 ≤ Pcℎ,i(t) ≤ �J ⋅ P ratedJ ,∀J ∈
{

4, 5
}

∀t ∈ [tarr,i, tdept,i], i = 1, ..., n

(3)
Pcℎ,i(t) = 0, ∀t ∉ [tarr,i, tdept,i], i = 1, ..., n (4)
treq,i ≤ (tdept,i − tarr,i), i = 1, ..., n. (5)

The second cost function is the demand charge , Cdc , as given in (6). It is the product of a demand charge
rate, Cdrate and the peak power of daily aggregated load profile in 15 min interval. The daily aggregated
load profile is the sum of base demand of the workplace, Pbase, and total charging loads, ∑Pcℎ,i,sj . It isdynamically updated after each EV charging is scheduled. Demand charge with TOU tariff given in [35]
is considered as the price information. The constraint in (7) guarantees that the maximum power of the
workplace, Plim, is limited to 500 kW since the rate is designed for customers with a demand up to 500 kW.

Cdc = Cdrate ⋅
(

max
(

96
∑

k=1

15
∑

t=1
mean

(

Pbase((k − 1) ⋅ 15 + t) +
Sj
∑

sj=1

n
∑

i=1
Pcℎ,i,sj ((k − 1) ⋅ 15 + t)

)))

, (6)

subject to
T
∑

t=1

(

Pbase(t) +
sj
∑

sj=1

n
∑

i=1
Pcℎ,i,sj (t)

)

≤ Plim, Sj = 1, ..., sj , i = 1, ..., n. (7)

The third cost function is the daily-levelized EVSE infrastructure cost, CEVSE, as given in (8), that
includes unit hardware, Cunit, installation, Cins, and maintenance Cmain costs [36]. While minimizing energy
and demand charges, the EVSE cost may increase due to the need of higher number of units. Since the unit
cost for EVSE is significant, the savings from the energy and demand charges may be suppressed. An annuity
factor,AF , given in (9) is used to convert the infrastructure cost to a daily-levelized cost with a fixed interest
rate of 5%. The costs of unit, installation, and maintenance are considered as lump sum of $5,000, $12,000,
and $50,000 for L2-1P, L2-3P, and DCFC, respectively taken from [37].

CEVSE = AF ⋅ sj ⋅
(

Cunit + Cins + Cmaint
)

. (8)

AF =
( 1
WD

⋅
(1 + r)LC ⋅ r
(1 + r)LC − 1

)

. (9)
The three conflicting cost functions are optimized simultaneously using multi-objective optimization

given in (10). Due to the contradictory nature of the cost functions, there is no single solution that minimizes
each cost functions simultaneously, therefore, a set of Pareto optimum solutions exist [38]. The Pareto
optimality can be achieved with a common method of weighted sum approach by forming a single objective
function in (11). It is a weighted linear combination of all the three cost functions [39]. The sum of weights
in the aggregated function should be one (12). An increment of 0.1 is selected to evaluate the range of weights
(!1,!3, and!3) in minimizing that resulted in 66 possible cases and corresponding solutions as the Pareto
optimality. Among these solutions, the optimum solution is decided based on the station owner’s preferences
using the proposed MCDM that enables station owner to evaluate various criteria, which is explained in the
next section.

min
Pcℎ,1...Pcℎ,n

Sj

[

Cop(Pcℎ,i, Sj), Cdc(Pcℎ,i, Sj), CEVSE(Sj)
]T
. (10)
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Table 1
The evaluation criteria.

Criteria Code Criteria Name Unit Type

C1 Peak demand kW Cost
C2 Number of EVSE units - Cost / Benefit
C3 Energy charge Cents/kWh Cost
C4 Demand charge Cents/kWh Cost
C5 EVSE cost Cents/kWh Cost
C6 EVSE occupancy % Cost
C7 Required charging time min Cost
C8 Hosting capacity % Benefit
C9 Lifetime of EVSE unit years Benefit
C10 User flexibility % Benefit

 (Pcℎ,i, Sj) =
(

!1 ⋅ Cop(Pcℎ,i, Sj) + !2 ⋅ Cdc(Pcℎ,i, Sj) + !3 ⋅ CEVSE(Sj)
)

, (11)
with,

!1 + !2 + !3 = 1, ∀ ! ∈ [0, 1]. (12)
To solve the optimisation problem (10), an interrupted smart charging strategy with the first-come, first-
served scheduling policy is employed in the model. This algorithm minimizes the number of charging units
that places EVs into a charging unit sequentially depending on their arrival time until an incoming EV cannot
be fit in the current charging unit. Then, a new charging point is added and the incoming EV is placed in the
new unit. The algorithm imposes an interrupted charging profile in which the EV is charged at discrete time
slots that may be separated by idle slots [40]. The model is implemented in Matlab using the optimization
toolbox as a linear programming [41]. Based on collected data from the field, the arrival and departure times
and the required charging energy for EVs are assumed to be Gaussian. The arrival and departure times are a
mean of 8:40 A.M. with a standard deviation of 1h 05, and a mean of 4:10 P.M. with a standard deviation of
2h 28, respectively. % SoC levels of EVs are a mean of 45% and a standard deviation of 18%. Simulations
are run for a group of 100 EVs for 100 random cases that covers different mobility scenarios.

4. Multi-criteria decision-making model for the Pareto solutions
4.1. Description of decision-making variables

This study specifies key variables in evaluating the optimal configuration of a workplace charging station
in terms of the size and type of EVSEs. These include 10 criteria in Table 1 which are described as either
benefit or cost perspectives to allow quantitative evaluations. Using linguistic terms, the degree of importance
for each criterion is evaluated individually by a group of experts including a utility manager who supervises
a workplace charging station. The Pareto solutions for nine criteria out of ten (except C9) presented are
calculated by the MOO model.

Peak demand, C1, is one of the key considerations for workplaces [42]. It refers to the contribution of
total EV charging loads to peak demand of the facility. It was shown that the charging loads can increase the
facility’s peak demand significantly [14]. The charging load that causes peak demand to exceed the facility’s
highest average energy consumption in 15-minute intervals will result in increased monthly demand charges
[3], and hence, network losses. The distribution of Pareto optimal solutions of peak demand for a group of
100 EVs with respect to EVSE types considered is shown in Fig. 2.a. As shown, DCFCs achieves lower peak
powers while AC EVSE types show relatively higher peak demand behaviors. However, it is also observed
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Figure 2: Distribution of Pareto optimal values of the decision-making variables C1 and C2 for 100 EVs with
respect to EVSE types, (a) peak demand of aggregated load profiles, (b) EVSE unit numbers (Results are average
values over 100 random trials).

that the peak demand can be the highest with DCFCs. Therefore, a suitable MCDM analysis is needed.
The number of EVSE units, C2, refers to the number of charging units to be installed in a workplace EV
charging station. It is considered for both cost and benefit perspectives separately. It is practically observed
that EVs occupy EVSE more than their required charging time since they need to be plugged off after having
been charged due to current EVSE technology. That requires one to monitor charging process and manage
the occupancy of EVSEs. In this sense, higher number of EVSE units may be desirable as it increases
accessibility for EVs at the same time. However, increasing number of EVSE units depends on site limitations
and might require considerable electrical upgrades that will increases EVSE installation costs significantly.
As shown in Fig. 2.b, DCFCs require significantly lower number of charging units as compared to AC EVSE
types. L2-1P and L2-3P type display close performance in terms of the unit number. Multi-port option
reduces the need of charging units significantly for AC EVSE types while it changes slightly for DCFCs.

All cost elements as objectives of the MOO cost model for a given workplace charging environment
are considered in the decision-making. Fig. 3 exhibits the distribution of Pareto optimal values of the cost
elements considered for a group of 100 EVs. Under the scheduling policy and TOU tariff considered, it is
found that DCFC shows better energy charge performance due to better utilization of lower TOU periods
with higher charging capacities. AC EVSE types display similar energy charge performances even though
they differ from charging powers. This is due to inefficient use of L2-3P capacity (i.e., 22kW) which is much
larger than the on-board charger rates of the EVs. Demand charge performances are obtained as similar to
that of peak demand as the demand charge is product of demand power and a fixed rate. In terms of EVSE
cost, L2-1P shows the best cost performance due to the lowest infrastructure cost even though it requires the
highest unit number. L2-3P shows worse performance than that of DCFC types due to higher unit number
required.

EVSE occupancy is another key consideration when determining optimal EVSE configuration. It refers
to how much time an EV is required to connect to EVSE unit with respect to the required time to complete
its charging need. The occupancy is expressed by

EVSEoccupancy = mean
( tplug−off ,i − tplug−in,i

treq,i

)

i = 1, ..., n, (13)
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Figure 3: Distribution of Pareto optimal values of the decision-making variables C3, C4, and C5 for 100 EVs with
respect to EVSE types, (a) energy charge, (b) demand charge, (c) EVSE cost (Results are average values over
100 random trials).

where, tplug−in,i and tplug−off ,i are plug-in and plug-off times of itℎ EV. treq,i is the required charging time of
itℎ EV that refers to the time needed to achieve desired SOC with the rated charging power. User flexibility
is an important consideration for EV users that must be taken into account to guide EVSE selection. It refers
to how much time an EV user can leave sooner than the anticipated departure time with the desired SOC.

EVf lex = mean
( tdept,i − tplug−off ,i

tdept,i − tarr,i

)

i = 1, ..., n, (14)

Among Pareto optimal set, one solution for the three decision variables for 100 EVs is shown in Fig. 4. While
% values of the occupancy and user flexibility are used in the calculations, their time values are shown in the
figure for convenience. As expected, DCFCs offer the lowest required charging time that increases the user
flexibility significantly. AC EVSE types give similar required charging times. The average charging time
required for AC EVSE type is increased by approximately 8-fold as compared to DCFC type. Employing
an interrupted charging profile requires that EVs are connected to EVSEs more than their required charging
times since the algorithm impose charging process at the lower TOU periods and the peak demand. The
average occupancy rate for DCFC is found to be approximately 2.8 per vehicle while it ranges 1.6 for AC
EVSE types. Since DCFC has more charging flexibility thanks to its higher rated power, the algorithm seeks
optimal time slots to minimize both energy and demand charges. This requires EVs to be connected to
EVSEs more than their required charging times. However, the user flexibility remains highest with DCFCs.
The average flexibility rate per vehicle for DCFC is found to be more than double the rate for AC EVSE
types.

Hosting capacity is considered to measure actual EV hosting capacity of an EVSE unit. It is defined as
the ratio of the total charging energy provided to total energy capacity of installed EVSE units in the available
time horizon by

HC =

n
∑

i
Erequired(i)

Sj(i) ⋅
max(tdept(1∶n))

∫
min(tarr(1∶n))

(P ratedj ⋅ �j) dt

. (15)

The closer HC is to unity, the better EVSE’s capacity use. HC depends on number of EVs. For a group of
100 EVs, distribution of Pareto optimal values of the HC is shown in Fig 5. The multi-port DCFC achieves
the highest HC followed by DCFC while L2-3P EVSEs have considerably the lowest HC value. This is due
to inefficiency of L2-3P EVSE capacities by the on-board charger specifications of EVs on the market. In
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Figure 4: One of the Pareto optimal solutions of the decision-making variables C6, C7, and C10 for 100 EVs
with respect to EVSE types, (a) L2-1P, (b) L2-3P, (c) DCFC, (d) Multi-port DCFC (Values are averaged over
100 random trials.).
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Figure 5: Distribution of Pareto optimal values of hosting capacity (C8) for 100 EVs with respect to EVSE types.

this respect, L2-1P shows closer hosting performance to that of DCFCs. Finally, the lifetime of EVSE unit is
considered to help guide EVSE selection. It refers to the operational life cycle of an EVSE unit. A life cycle
of 10 is considered for AC EVSE types while the lifetime of DCFC EVSEs are assumed to be 15 years.
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4.2. MCDM model development
4.2.1. Dombi operations
Definition 1. Let �1 and �2 be any two real numbers. Then, the Dombi T-norm and T-conorm between �1
and �2 are defined, respectively as follows [43]:

TD(�1, �2) =
1

1 +
{

(

1−�1
�1

)�
+
(

1−�2
�2

)�
}

1
�

, (16)

T cD(�1, �2) = 1 −
1

1 +
{

(

1−�1
�1

)�
+
(

1−�2
�2

)�
}

1
�

, (17)

where, � > 0 and �1, �2 ∈ [0, 1].
According to the Dombi T-norm and T-conorm, we define the Dombi operations:

Definition 2. Suppose �1 and �2 are two real numbers, �, � > 0, let it be f (�1) = �1∕
∑n
i=1 �1 a real function,

then some operational laws of real numbers based on the Dombi T-norm and T-conorm can be defined as
follows:

(1) Addition "+"

�1 + �2 = (�1 + �2) −
�1 + �2

1 +
{

(

f (�1)
1−f (�1)

)�
+
(

f (�2)
1−f (�2)

)�
}

1
�

(18)

(2) Multiplication "×"

�1 × �2 = (�1 + �2) −
�1 + �2

1 +
{

(

1−f (�1)
f (�1)

)�
+
(

f (1−�2)
f (�2)

)�
}

1
�

(19)

(3) Scalar multiplication, where � > 0

� × �1 = �1 −
�1

1 +
{

�
(

f (�1)
1−f (�1)

)�
}

1
�

(20)

(4) Power, where � > 0
��1 =

�1

1 +
{

�
(

1−f (�1)
f (�1)

)�
}

1
�

(21)
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4.2.2. Bonferroni Mean Operators
Definition 3. [44] Let (�1, �2,… , �n) be a set of non-negative numbers, �1, �2 ≥ 0, wi(i = 1, 2,… , n) the
relative weight of �i, wi ∈ [0, 1] and

∑n
i=1wi = 1. If

NWBM�1,�2(�1, �2,… , �n) =
( n

∑

i,j=1

wiwj

1 −wi
��1i �

�2
j

)
1

�1+�2
, (22)

then,NWBM�1,�2 is called to be a normalized weighted Bonferroni mean (NWBM) operator.
Definition 4. [44] Let (�1, �2,… , �n) be a set of non-negative numbers, �1, �2 ≥ 0, wi(i = 1, 2,… , n) the
relative weight of �i, wi ∈ [0, 1] and

∑n
i=1wi = 1. Furthermore, if we write

NWGBM�1,�2(�1, �2,… , �n) =
1

�1 + �2

n
∏

i,j=1

(

�1�i + �2�j
)

wiwj
1−wi , (23)

then,NWGBM�1,�2 is called a normalized weighted geometric Bonferroni mean (NWGBM) operator.
4.2.3. Dombi Bonferroni WASPAS Method

Suppose that a MCDM model is defined with m alternatives (Ai) and n criteria (Cj) Then, based on
the preliminary settings, we can define the algorithm for the application of the Dombi Bonferroni Weighted
Aggregated Sum Product Assessment (WASPAS) methodology, which is presented as follows.

Step 1. Formation of initial decision matrix and normalization of the initial decision matrix. Based on the
research problem, the elements of the initial decision matrix Φ =

[

!ij
]

mxn are defined, where the element
of the initial matrix !ij represents the value of the alternative Ai in relation to the criterion Cj . By applying
expression (24), the elements of the initial decision matrix are normalized. Thus, we obtain a normalized
matrix ΦN =

[

$ij
]

mxn.

$ij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

$ij =
!ij
$+
j

if j ∈ Benef it

$ij =
$−
j

!ij
if j ∈ Cost

, (24)

where,$+
j = max(!ij) ∀i and$−

j = min(!ij) ∀i.
Step 2. Determination of weight coefficients of criteria. The weighting coefficients of the criteria are

defined by applying a logarithmic additive evaluation of expert estimates. Experts (Ω1,Ω2,… ,Ωb) evaluate
the criteria to define the priority vector Θt = (

 tC1, 
t
C2,… ,  tCn

), 1 ≤ t ≤ b.
Step 2.1. To define the relation vector,Ψt, applying the condition �AIP < min

(

 tC1, 
t
C2,… ,  tCn

) defines
the absolute anti-ideal point (�AIP ). Using expression (25), the relationship between the elements of the
priority vector and the absolute anti-ideal point is determined.

�tCn =
 tCn
�AIP

, (25)

where, �tCn represents the element of the relation vector Ψt = (

�tC1, �
t
C2,… , �tCn

), 1 ≤ t ≤ b.
Step 2.2. Determination of the final vector of the weight coefficients wj =

(

w1, w2,… , wn
)T . By

applying expression (26), we obtain the values of the weighting coefficients of the criteria for the expert,
t, (1 ≤ t ≤ b).

wt
j =

ln
(

�tCn
)

ln
(

vt
) , (26)
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where, �tCn represents the elements of the relation vector Ψt = (

�tC1, �
t
C2,… , �tCn

), while vt =∏n
j=1 �

t
Cn.Using the Dombi weighted operator in (27), we obtain an aggregate vector of the weight coefficients.

wj =

∑b
j=1wj

1 +
{

∑b
j=1

1
b

( 1−f (wj )
f (wj )

)�
}1∕�

, (27)

where, f(wj
)

= wj∕
∑b
j=1wj represents a function of the weighting factor, while b represents the total

number of experts.
Step 3. Calculation of weight sum and product for alternatives. Using the Dombi T-norm and T-conorm

and the Bonferroni operators in (22) and (23), weighted sequences of alternatives are specified. Based on
Definitions 1, 2, 3, and 4, we can define Dombi Bonferroni weighted averaging function (DBWi) and Dombi
Bonferroni weighted geometric function (DBGi) as follow.

Theorem 1. Let $ij(j = 1, 2,… , n) be a set of matrix elements ΦN =
[

$ij
]

mxn and let �1, �2, � ≥ 0. If
we denotewj =

(

w1, w2,… , wn
)T the vector of the weight coefficients of the criteria, then we can represent

the DBWi function as follow:

DBW �1,�2,�
i =

( wiwj

1 −wi

n
∑

i,j=1(i≠j)
$�1
i $

�2
j

)
1

�1+�2
=

∑n
j=1$j

1 +

{

1
wiwj (�1+�2)

1−wi
∑n
i,j=1(i≠j)

1

�1

(

1−f ($i)
f ($i)

)�

+�2

(

1−f ($j )
f ($j )

)�

}1∕�
,

(28)
where, wj =

(

w1, w2,… , wn
)T is the vector of the weight coefficients of the criteria, while f($i

)

=
$j∕

∑n
j=1$j . The proof of Theorem 1 is given in Appendix A.

Theorem 2. Let $ij(j = 1, 2,… , n) be a set of matrix elements ΦN =
[

$ij
]

mxn and let �1, �2, � ≥ 0. If
we denote wj =

(

w1, w2,… , wn
)T the vector of weight coefficients of the criteria, then we can represent

the DBGi function as follow:

DBGi =
(

1
�1 + �2

n
∏

i,j=1
�1$i+�2$j

)

wiwj
1−wi

=
n
∑

j=1
$j−

∑n
j=1$j

1 +

{

1
wiwj (�1+�2)

1−wi
∑n
i,j=1(i≠j)

1

�1

(

1−f ($i)
f ($i)

)�

+�2

(

1−f ($j )
f ($j )

)�

}1∕�
,

(29)
where, wj =

(

w1, w2,… , wn
)T is the vector of the weight coefficients of the criteria, while f($i

)

=
$j∕

∑n
j=1$j . The proof of Theorem 2 is provided in Appendix B.

Step 4. Calculation of the integrated value of the Dombi Bonferroni functions, (�i) can be expressed by

�i =
� ⋅DBWi + (1 − � )DBGi

∑n
i=1

(

� ⋅DBWi + (1 − � )DBGi
) , � ∈

[

0, 1
]

. (30)

The coefficient � defines the intensity of the influence of DBWi and DBGi functions on the final decision.
When defining the initial solution, the value of 0.5 is more often adopted. This ensures equal intensity of
influence of both Dombi Bonferroni functions.

Step 5. Alternatives are ranked based on their integrated values of the Dombi Bonferroni functions. The
closer �i is to unity, the better alternative’s performance.
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Table 2
Best performing Pareto optimal indices for the EVSEs considered.

L2-1P L2-3P L2 MP DCFC DCFC MP

Pareto index 66 66 66 45 51

Table 3
Initial decision matrix for the EVSEs considered.

Criteria L2-1P L2-3P L2MP L3 L3MP

C1 183.723 184.528 184.528 184.828 174.746
C2 21.240 20.230 10.115 2.900 2.530
C3 242.459 242.203 242.203 232.869 235.721
C4 56.496 56.852 56.852 56.985 52.525
C5 39.335 89.915 44.957 72.221 63.007
C6 1.622 1.633 1.633 2.781 2.632
C7 112.884 108.116 108.116 14.307 28.128
C8 0.403 0.142 0.283 0.455 0.514
C9 10 10 10 15 15
C10 11.836 12.697 12.697 26.119 21.394

5. Experimental results
5.1. Results for alternatives

The application of the Dombi BonferroniWASPASmethod for determining the optimal EVSE configura-
tion has been performed in the two phases. First, the Dombi Bonferroni WASPAS method has been applied
to find the best performing Pareto solution among 66 optimal solutions for each EVSE type considered.
Table 2 reports the Pareto indices identified.

In the second phase, the Dombi Bonferroni WASPAS method has been applied to rank the best
performing solutions of the alternatives as follow:

Step 1: The initial decision matrix Φ =
[

!ij
]

5x10 was formed and its elements were normalized using
expression (24) that is presented in Table 3.

Then, using (24) the elements of the matrix Φ, !ijwere transformed into standardized values ($ijfrom
the interval $ij ∈

[

0, 1
]. Thus, the elements of the normalized matrix ΦN =

[

$ij
]

5x10 were obtained as
shown in Table 4.

Step 2:Weighting coefficients of the criteria were defined by applying logarithmic additive evaluation of
expert assessments. Four experts Ω =

{

Ω1,Ω2,Ω3,Ω4
} participated in the study and evaluated the criteria

based on the seven-point scheme: Very low (VL) - 1, Low (L) - 2, Medium-low (ML) - 3, Medium (M) - 4,
Medium-high MH) - 5, High (H) - 6, Very high (VH) - 7. Based on expert assessments, priority vectors for
each expert were defined individually that is reported in Table 5.

Step 2.1: Based on the condition that �AIP < min
(

 tC1, 
t
C2,… ,  tCn

), the absolute anti-ideal point
�AIP = 0.5 was defined. Using the expression (25), the relations between the elements of the priority vector
in Table 5, and the absolute anti-ideal point (�AIP ) were defined as in Table 6.

Step 2.2: Using the expression (26), the weighting coefficients of the criteria for each expert were
obtained as reported in Table 7. Using the Dombi weighted function, (27), a fusion of the weighting
coefficients obtained for the experts was performed. When applying the Dombi weighted function, the value
of the parameter � = 1 was adopted. As an example, the fusion of the value for the weight coefficient w1 in
Table 7 was performed as follows:
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Table 4
Normalized matrix of the EVSEs considered.

Criteria L2-1P L2 MP L2-3P DCFC DCFC MP

C1 0.951 0.947 0.947 0.945 1.000
C2 0.119 0.250 0.125 0.872 1.000
C3 0.960 0.961 0.961 1.000 0.988
C4 0.930 0.924 0.924 0.922 1.000
C5 1.000 0.875 0.437 0.545 0.624
C6 1.000 0.993 0.993 0.583 0.616
C7 0.127 0.132 0.132 1.000 0.509
C8 0.784 0.551 0.275 0.885 1.000
C9 0.667 0.667 0.667 1.000 1.000
C10 0.453 0.486 0.486 1.000 0.819

Table 5
Criteria priority vectors of the experts.

Criteria Expert-1 Expert-2 Expert-3 Expert-4

C1 M MH H VH
C2 H MH H MH
C3 M L M MH
C4 M MH MH VH
C5 ML M ML M
C6 H M MH MH
C7 H M H H
C8 H M MH H
C9 H L M M
C10 M MH M M

Table 6
Relationship vectors between the elements of the priority vector and the absolute anti-ideal point.

Criteria Expert-1 Expert-2 Expert-3 Expert-4

C1 8 10 12 14
C2 12 10 12 10
C3 8 4 8 10
C4 8 10 10 14
C5 6 8 6 8
C6 12 8 10 10
C7 12 8 12 12
C8 12 8 10 12
C9 12 4 8 8
C10 8 10 8 8

w1 =
0.2149+0.2641+0.2584+0.2627

1+
{

1
4

(

1−0.0923
0.0923

)

+
(

1−0.1134
0.1134

)

+
(

1−0.111
0.111

)

+
(

1−0.1128
0.1128

)}1∕1 = 0.1066

Fusion of the values for the remaining weighting coefficients performed in a similar manner.
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Table 7
Criteria weight vectors of the experts

Criteria Expert-1 Expert-2 Expert-3 Expert-4 Final wj

C1 0.092 0.113 0.111 0.113 0.107
C2 0.110 0.113 0.111 0.098 0.108
C3 0.092 0.068 0.093 0.098 0.086
C4 0.092 0.113 0.103 0.113 0.105
C5 0.080 0.102 0.080 0.089 0.087
C6 0.110 0.102 0.103 0.098 0.103
C7 0.110 0.102 0.111 0.106 0.107
C8 0.110 0.102 0.103 0.106 0.105
C9 0.110 0.068 0.093 0.089 0.087
C10 0.092 0.113 0.093 0.089 0.096

Table 8
Calculated integrated values (�i) of the Dombi Bonferroni functions for the optimal
EVSE configurations.

L2-1P L2-3P L2 MP DCFC DCFC MP

�i if C2 is cost attribute type 0.584 0.482 0.593 0.862 0.835
�i if C2 is benefit attribute type 0.725 0.599 0.635 0.740 0.699

Step 3: The calculations of the weighted sum and the weight product of the alternatives were performed
using the funtions DBWi and DBGi in (28) and (29), respectively. The values of the parameters �1 = �2 =
� = 1 were adopted in the calculations. The DBWi and DBGi functions for the alternatives have been
obtained as:

DBW �1=�2=�=1
i =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.580
0.477
0.847
0.819
0.577

⎤

⎥

⎥

⎥

⎥

⎥

⎦

; DBG�1=�2=�=1i =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.607
0.488
0.878
0.851
0.590

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Step 4: When calculating the integrated values of the functions in (30), the coefficient � of 0.5
was adopted. Hence, the same intensity influence for both Dombi Bonferroni functions in the integrated
alternative value was achieved. Finally, the integrated values of the Dombi Bonferroni function for each
EVSE type have been obtained as given in Table 8. As discussed in Section 4.1, C2 has two evaluation
perspectives, the ranking was done for both perspectives.

The alternatives were ranked with respect to their integrated values of the Dombi Bonferroni functions.
The final ranking has been found to be DCFC>DCFCMP> L2MP> L2-1P > L2-3P. Regarding the expert
ranking of criteria, the results in Table 7 reveal that the number of charging units is found to have the highest
importance degree followed by required charging time and peak power while energy charge, EVSE cost and
its lifetime have the lowest importance degrees. Demand charge, hosting capacity, and EVSE occupancy are
other main factors affecting the ranking. The primary reason for DCFC being the best alternative is that it has
significantly the lowest required charging time and energy charge while providing the highest user flexibility
owing to its relatively higher charging rates. In terms of the number of charging units and hosting capacity,
DCFC displays also similar performance to those of multi-port DCFC which has the best values. One of the
highest importance factor,C7 brings down the score of DCFCMP below that of DCFC, even though it shows
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better performance in terms of peak power, the number of EVSE unit, and demand charge. In this respect, it
is shown that the cost and lifetime of EVSE units has minor impact on the ranking. While AC EVSE types
show similar performances, the difference in the number of EVSE units make L2 MP superior as compared
to L2-1P and L2-3P. The major reason for L2-3P being the worst alternative is that it has significantly the
lowest hosting capacity due to inefficient use of charging capacity.

When C2 is evaluated from benefit perspective, the ranking is found to be DCFC >L2-1P>DCFC
MP>L2 MP >L2-3P. DCFC is still the best alternative even though it requires the lowest number of
EVSE units. While C2 has the most importance degree, DCFC has the lowest charging time which make it
superior alternative. In this case, L2-1P outperforms DCFC MP since it provides significantly higher EVSE
accessibility owing to having higher unit number. L2 is still found to be the worst alternative due to the
lowest hosting capacity and providing less user flexibility.
5.2. Sensitivity analysis

In this section, the robustness of the ranking results obtained is tested to find the most optimum EVSE
type from the charging station owner perspective. To date, the literature has not adopted a singlemethodology
for checking the robustness of results in MCDM problems. One reason is due to the specifics of the MCDM
method used and the nature of the problem to be solved. Several authors [45, 46] claim that it is necessary to
analyze the influence of subjectively defined input parameters of model on decision-making. In the proposed
Dombi Bonferroni WASPAS model, there are four parameters (�, �1, �2, and �) that are defined based on
the subjective preferences of decision makers. Therefore, the robustness of the solution is analyzed for a set
of varying values of the parameters �, �1, �2, and �.
5.2.1. Impact of coefficient � on the ranking

Based on the value of the coefficient � , the degree of influence of the Dombi Bonferroni function on the
final decision is firstly defined. In the presented results, a value of � = 0.5 for the coefficient was already
used, which achieved equal influence of both Dombi Bonferroni functions. To consider the influence of the
coefficient � on the final decision, 11 different scenarios were formed for which the change of the coefficient
� in the interval [0, 1]was simulated. In the initial scenario, the value � = 0.0was adopted, giving preference
to theDBGi function (30), while in each subsequent scenario, an increment of 0.1 was adopted. As such, by
increasing the coefficient � by 0.1, the intensity of the influence of theDBWi function was increased by 10%.
At the same time, the intensity of the impact of theDBGi function was reduced by 10%. This has resulted in
a reduction in the integrated functions of alternatives. The dependence of the integrated alternative functions
on varying values of the coefficient � is shown in Fig. 6. As shown, an increase in the value of the coefficient
0 ≤ � ≤ 1 affects the decrease in the Dombi Bonferroni function. The values of the DBWi function have
smaller values compared to those of the DBGi function. It is also observed that the intensity of decreasing
of the integrated alternative functions is gradual and there are no drastic changes that can lead to a change
in the ranking of the alternatives. These results confirm that DCFC EVSE is the best performing solution as
it has a distinct dominance over other EVSE types in the set of alternatives.
5.2.2. Impact of coefficients �1, �2, and � on the ranking

As the parameters �1, �2 and � affect directly the values of the Dombi Bonferroni function, it is necessary
to examine whether or not the changes in the Dombi Bonferroni function for all alternatives are proportional,
i.e., uniform. If the Dombi Bonferroni functions of alternatives increase faster or slower due to a change in
the parameters, there may be a change in the ranking. To explore this, two experiments have been performed
in which the change of parameters �1, �2 and � in the interval 1 ≤ �1, �2, � ≤ 100 was simulated. In the first
experiment, keeping �1 = �2 = 1, the change of parameter 1 ≤ � ≤ 100 was simulated, while the second
includes the simulation runs for change of both parameters 1 ≤ �1, �2 ≤ 100 by keeping � = 1. Thus,
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Figure 7: Behavior of the integrated value of Dombi Bonferroni functions for varying values of � ∈
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1, 100], (a)
L2 MP and (b) L2-3P EVSE types.

100 scenarios were considered in each experiment, during which the dependence of integrated alternative
functions on the change of the parameters was examined.

As an example, Fig. 7 shows the first experiment results for L2-3P and L2 MP EVSE types. Similar
changes have been obtained for other alternatives. The behaviors of the Dombi Bonferroni funtion integrated
values for all EVSE types is shown in Fig. 8. It is clearly seen that the change of the parameters 1 ≤ � ≤ 100
significantly affects the change of the integrated values of the Dombi Bonferroni function. However, it is
observed that there is no drastic changes in the integrated values that can lead to any change in the ranking
of the alternatives. This experiment confirms the initial ranking result that is DCFC> DCFC MP> L2 MP>
L2-1P> L2-3P while DCFC is the best solution.

In the second experiment, the change of the parameters 1 ≤ �1, �2 ≤ 100 has been simulated. In each
scenario, the parameters �1 and �2 were assigned to the same values. As such, in the first scenario, the
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parameter value �1 = �2 = 1 is adopted. Then, the value of the parameters was increased by one in each
subsequent scenario. As an example, Fig. 9 shows the dependence of the integrated values of the Dombi
Bonferroni functions for L2-3P and L2 MP EVSEs. Similar changes occur in the behaviors of other EVSE
types. Fig. 10 displays a comparative overview of the change in the integrated values for each EVSE types
considered. As shown, it is confirmed that the change of the parameters �1, �2 affects significantly the change
of the integrated values of the Dombi Bonferroni functions. However, the changes happen proportionally for
each alternative across the scenarios that do not change the ranking of the alternatives. It can be concluded
that the valid ranking is to be DCFC> DCFC MP> L2 MP> L2-1P> L2-3P.
5.3. Comparative analysis

To validate the ranking result from the proposed method, it has been compared with other MCDM
models, including traditional WASPAS [47], MABAC [48], MAIRCA [49], and CoCoSo [50] methods.
Thesemethodswere implemented since they differ in theway of normalizing the data, which can significantly
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Table 9
Comparison of the rankings with various MCDM methods.

L2-1P L2-3P L2 MP DCFC DCFC MP

Proposed method 4 5 3 1 2
WASPAS 4 5 3 1 2
MABAC 3 5 4 1 2
MAIRCA 3 5 4 1 2
CoCoSo 4 5 3 1 2

affect the ranking of alternatives [51, 52]. After implementing each model individually, the ranking results
are obtained as summarized in Table 9.

It has been observed that the MCDM models implemented yielded very similar ranking results for each
alternative. DCFC is the best performing optimal configuration followed by DCFC MP while L2-3P is the
least feasible EVSE option for all approaches. The only difference found between the methodologies was
how the MABAC and MAIRCA methods ranked L2-1P and L2 MP EVSEs. However, based on the experts’
experience with EVSEs, L2 MP should in fact be a better alternative relative to L2-1P thanks to its relatively
less number of charging units and required charging time while both EVSE types displays very similar
performance for all aspects considered. Therefore, consistency with the majority of the MCDM models and
this additional expert validation serves to verify the reliability of the proposed model.

As compared to the MCDM methods considered, the main features of the proposed model that make it
outperformed can be summarized as follow. The Dombi Bonferroni based WASPAS model allows the input
parameters support each other. Furthermore, it can be applied to decision makers with different risk attitudes
based on flexible parameters. It can also eliminate the influence of extreme values from the decision matrix.
the Dombi Bonferroni WASPAS method differs from its counterparts for defining the relationships among
the decision variables thanks to the application of the logarithmic additive function and Dombi norms. That
is why it is a fully defined multi-criteria framework that enables the definition of criterion weights and the
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evaluation of alternatives. It can therefore be concluded that the Dombi BonferroniWASPASmethod is more
suitable for solving realistic decision-making problems.

6. Conclusion
This study has presented an integrated multi-objective optimization and multi-criteria decision-making

model to find the optimal EVSE configuration at workplaces. In the proposed approach, a multi-objective
optimization model for a given workplace charging station is first presented that yields the Pareto solutions.
To select the best performing solution, the Pareto frontier is then evaluated by a proposed multi-criteria
decision-making model in which charging station operator’s perspectives are included in weighting the
decision-making variables. The proposed multi-criteria decision-making model is an improved version of
conventional WASPAS method in which the Dombi Bonferroni fuctions are introduced for determining the
weight coefficients of the decision-making variables. Once the best performing Pareto points are identified
for all possible EVSE configurations, in the last step, the selected EVSE configurations are ranked by
implementing the proposed multi-criteria decision-making model. The ranking results have been validated
by comparing with those of other four state-of-the-art methods. Finally, a sensitivity analysis has been
performed to test the robustness of the ranking results.

Based on the workplace mobility pattern considered, the proposed integrated model chose DCFC as the
best EVSE option while L2-3P EVSE was found to be the least attractive option. The ranking order for the
other alternatives was found to be DCFC MP>L2 MP>L2-1P. The results demonstrate that the inclusion of
the multi-objective optimization model outputs into the decision-making process can reveal distinguishing
features in EVSE types. As a result, the proposed approach has identified a different ranking order than the
traditional EVSE selection practices at workplaces in which L2 MP types are typically installed. Moreover,
the comparison analysis revealed a consistency among the results of the implementedmulti-criteria decision-
making models. However, the proposed model is superior in terms of flexibility enabling the definition of
weights for decision-making variables and thus the evaluation of alternatives. The sensitivity analysis also
revealed that the ranking remains the same in response to changes of weightings of the model coefficients.

Appendix A
The proof of Theorem 1:
The expression (22) can be decomposed into segments in order to gradually derive expression (28). From

Expression (22), we get that:
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and
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Finally, the DBWi function is obtained as follow:
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Appendix B
The proof of Theorem 2:
The expression (23) can be decomposed into segments in order to gradually derive the expression (29).
From Expression (23) we get that:
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Finally, the DBGi function is obtained as follow:
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