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Abstract—In hyperspectral images (HSI), most feature extrac-
tion and data classification methods rely on corrected dataset, in
which the noisy and water absorption bands are removed. This
can result in not only extra working burden but also information
loss from removed bands. To tackle these issues, in this article,
we propose a novel spatial–spectral feature extraction framework,
multiscale 2-D singular spectrum analysis (2-D-SSA) with principal
component analysis (PCA) (2-D-MSSP), for noise-robust feature
extraction and data classification of HSI. First, multiscale 2-D-
SSA is applied to exploit the multiscale spatial features in each
spectral band of HSI via extracting the varying trends within
defined windows. Taking the extracted trend signals at each scale
level as the input features, the PCA is employed to the spectral
domain for dimensionality reduction and spatial–spectral feature
extraction. The derived spatial–spectral features in each scale are
separately classified and then fused at decision-level for efficacy.
As our 2-D-MSSP method can extract features and simultaneously
remove noise in both spatial and spectral domains, which ensures
it to be noise-robust for classification of HSI, even the uncorrected
dataset. Experiments on three publicly available datasets have fully
validated the efficacy and robustness of the proposed approach,
when benchmarked with 10 state-of-the-art classifiers, including six
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spatial–spectral methods and four deep learning classifiers. In addi-
tion, both quantitative and qualitative assessment has validated the
efficacy of our approach in noise-robust classification of HSI even
with limited training samples, especially in classifying uncorrected
data without filtering noisy bands.

Index Terms—Hyperspectral image (HSI), image classification,
multiscale 2-D-SSA, principal component analysis (PCA), spatial–
spectral feature extraction.

I. INTRODUCTION

HYPERSPECTRAL images (HSI) contains rich spectral
information in the hundreds of narrow spectral bands,

which improves the earth observation even with subtle spectral
differences [1], [2]. This makes HSI be applied to many appli-
cations, such as target detection and land-cover mapping [3].
In recent years, the supervised HSI classification has become
a research hotpot for earth observation, in which each pixel is
assigned to a certain class label based on the samples labeled in
advance for training [4]. For achieving this, many well-known
supervised classifier have been developed, such as the popularly
used support vector machines (SVM) [5].

However, in HSI, some bands would lack enough light caused
by the limitations of atmosphere and sensors, such as the atmo-
spheric water absorption bands and low signal-to-noise ratio
bands [6], which inevitably introduces various noise into the
image process [7], [8]. In addition, it is difficult to collect
sufficient training samples in practice [9], where limited and
unbalanced sampling in different classes can easily lead to the
lack of training data [7]. These limitations can degrade the
accuracy of target detection and image classification.

In order to alleviate these problems, during the last decades,
the feature extraction and dimension reduction in HSI have
been increasingly investigated. Some widely used spectral fea-
ture extraction approaches include principal component analysis
(PCA) [10], nonnegative matrix factorization [11], independent
component analysis [12] and singular spectrum analysis (SSA)
[13]. Here, PCA can realize dimensionality reduction through
a linear transformation and thus speed up the subsequent data
classification. It is fast and simple to implement without any
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label information on the input data [14]. However, these methods
perform worse when deal with the HSI scene with high intraclass
disparity and interclass similarity [15]. As presented in [16],
the HSI data are supposed to be processed as an image rather
than a collection of pixels. Thus, various spatial–spectral feature
extraction methods are developed to consider both spectral and
contextual information [17]. The Gabor filter [18], wavelets
[19], the extended morphological profile [15], Markov random
field [20], and sparse representation [21] have been applied to
the HSI classification. In [3], a 2-D extension to SSA method
(denoted as 2-D-SSA) is developed for effective spatial features
extraction of HSI, in which each band image is decomposed into
various components and reconstructed using trend and selected
oscillation information. The 2-D-SSA can extract the spatial
structural features by using the characteristics of neighboring
pixels in a specified embedding window. It performs better in
suppressing high noises and data classification. In 2-D-SSA, the
embedding window size is a key parameter that influences the
informativeness and noise level of extracted features. However,
it is a challenging task to select an optimal window size for all
the spectral bands in different HSI datasets.

Recently, many methods use the superpixel segmentation
technique to exploit adaptive spatial structures of image [4], [14].
In [5], a novel spatial–spectral model, adjacent superpixel-based
multiscale spatial-spectral kernel (ASMGSSK) is proposed.
This method employs the entropy rate superpixel segmentation
algorithm for multiscale superpixels and then calculate kernel
matrix on spatial–spectral features extracted within adjacent
superpixels. The ASMGSSK achieves superior classification
performance on HSI datasets with very limited training samples.
In [14], a superpixelwise PCA approach is proposed by incorpo-
rating the spatial context information generated from superpixel
technique into the spectral information with dimensionality re-
duction by PCA method. With the advantage of providing hidden
structure spatial–spectral features, the deep learning models
have also been successfully applied for classifying HSI [22]–
[24], such as the contextual deep convolution neural network
(CD-CNN) [25], the diverse region-based CNN (DR-CNN) [26],
the spatial–spectral generative adversarial networks (SS-GAN)
[27], and the spectral–spatial cascaded recurrent neural network
(SSCasRNN) [28]. However, most of the deep learning methods
demand more training samples to realize better classification
performance and would perform poor when the training size is
limited [5].

The aforementioned spectral and/or spatial feature extraction
methods show superiority on the classification of corrected HSI
data with image preprocessing where noisy and water absorption
bands are removed. However, this can lead to the loss of some
information in these noisy bands, which may be useful for the
classification of some land cover classes in HSI scene. On the
other hand, manually prefilter the unwanted bands inevitably
increase the image processing burden. Motivated by these, in
this article, we focus on the effective feature extraction and
classification on uncorrected HSI dataset.

In recent years, many denoising techniques have been pro-
posed to deal with the uncorrected datasets without removing

noisy and water absorption bands [8], [29]. For example, Sun
et al. [30] present a fast superpixel-based subspace low-rank
learning method (termed as FS2LRL) for HSI mixed noise
removal. This method factorizes HSI data into two lower rank
submatrices in the spectral domain and exploit the local spatial
low rankness of superpixel regions in the decomposed subspace.
In [31], the low-rank representation (LRR) is combined with
superpixel segmentation (denoted as SS-LRR), in which LRR
is applied to each superpixel to excavate the spatial–spectral
information of HSI. These approaches can effectively remove
different types of noise simultaneously on the simulated and real
HSI datasets, however, achieve limited accuracy improvements
on uncorrected HSI classification.

In this article, a novel multi-scale 2-D-SSA with PCA ap-
proach (2D-MSSP) is proposed for noise-robust feature ex-
traction and effective data classification of HSI under limited
training size. We aim to fully exploit spectral and spatial features
directly on the uncorrected dataset without removing the noisy
bands. In detail, a multiscale 2-D-SSA model is first applied
to original uncorrected HSI dataset to adaptively extract the
main information and spatial structures with multiple window
sizes. Then, the PCA is utilized to derive informative spectral
features and decrease the computational burden for next image
processing. The extracted multiscale spatial–spectral features
are classified by SVM classifier and then fused on the classifi-
cation maps with a decision-level fusion technique, which can
further improve the robustness. The main contributions of this
article can be highlighted as follows:

1) The proposed 2-D-MSSP model can simultaneously de-
rive the informative spatial–spectral features, remove
noisy content, and reduce computational burden, which
is an effective and efficient noise-robust model for feature
extraction and classification of HSI especially on the un-
corrected HSI datasets without removing severely noisy
and water absorption bands.

2) The different scales used in 2-D-MSSP help to effectively
extract the discriminative features under various noise
levels, which is beneficial to the classification of different
complicated land cover classes in high dimensions.

3) By combining feature-level and decision-level fusion, our
2-D-MSSP method can achieve effective classification
in noise-robust HSI with limited training data. Results
on three public datasets have validated its superiority
than several state-of-the-art spatial–spectral classifiers and
even deep learning models.

The remainder of this article is organized as follows. In
Section II, our proposed 2-D-MSSP is presented in detail. Sec-
tion III describes the experimental setup, including the testing
HSI datasets and parameter settings. Experimental results and
analysis are discussed in Section IV, with some conclusions are
drawn in Section V.

II. PROPOSED METHOD

Fig. 1 shows the flowchart of proposed 2-D-MSSP approach,
which has three main stages, i.e., multiscale 2-D-SSA for



MA et al.: MULTISCALE 2-D SINGULAR SPECTRUM ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS 1235

Fig. 1. Flowchart of the proposed SMP method.

spatial feature extraction, PCA for spectral features extraction,
HSI classification, and fusion. More detailed implementation of
2-D-MSSP is presented as follows.

A. Spatial–Spectral Features Extraction by 2-D-MSSP

The SSA is an effective tool for the analysis and forecasting
of time-series data [32]. It can decompose a series into several
components, i.e., trend, oscillations, and noise. When applying
SSA to each spectral band of a hypercube, the 2-D scene can
be decomposed and then reconstructed using respective main
components with the noise information removal. Specifically,
for an HSI data I with a size Nx ×Ny ×D, where Nx and
Ny represent the band image size and D is the dimension size.
Then, one band image Id(d ∈ D) can be represented by the
following matrix:

Id =

⎛
⎜⎜⎜⎝

Id1,1 Id1,2
Id2,1 Id2,2

...
...

IdNx,1
IdNx,2

· · · Id1,Ny

. . . Id2,Ny

. . .
...

. . . IdNx,Ny

⎞
⎟⎟⎟⎠ . (1)

A 2-D window W with a size Lx × Ly is then defined as

W d =

⎛
⎜⎜⎜⎝

Idi,j Idi,j+1

Idi+1,j Idi+1,j+1
...

...
Idi+Lx−1,j Idi+Lx−1,j+1

· · · Idi,j+Ly−1

. . . Idi+1,j+Ly−1

. . .
...

. . . Idi+Lx−1,j+Ly−1

⎞
⎟⎟⎟⎠

(2)
where Lx ≤ Nx, Ly ≤ Ny; (i, j) is the spatial position of one
pixel in image Id. Given a reference position (i, j), the pixels in
the corresponding window W can be rearranged into a column
vector Ad

i,j ∈ �LxLy given as follows:

Ad
i,j =

(
Idi,j , I

d
i,j+1, . . . , I

d
i,j+Ly−1, I

d
i+1,j , . . . ,

Idi+Lx−1,j+Ly−1

)T

. (3)

This 2-D window would raw scan image Id from the top
left to bottom right in order to exploit all the possible position
over the whole image. Thus, the trajectory matrix Xd of all
these possible 2-D window in image Id with size LxLy ×
(Nx − Lx + 1)(Ny − Ly + 1) can be derived by

Xd = (
(
Ad

1,1

)T
,
(
Ad

1,2

)T
, . . . ,

(
Ad

1,Ny−Ly+1

)T

(
Ad

2,1

)T
, . . . ,

(
Ad

Nx−Lx+1,Nx−Lx+1

)T
). (4)

Note that the trajectory matrix Xd has a structure of Hankel-
block-Hankel (HbH). Here, Xd can be represented as

Xd =

⎛
⎜⎜⎜⎝

Hd
1 Hd

2

Hd
2 Hd

3
...

...
Hd

Lx
Hd

Lx+1

· · · Hd
Nx−Lx+1

. . . Hd
Nx−Lx+2

. . .
...

. . . Hd
Nx

⎞
⎟⎟⎟⎠

Ly×(Ny−Ly+1)

(5)

where each submatrix Hd
k is Hankel structure as

Hd
k =

⎛
⎜⎜⎜⎝

Idk,1 Idk,2
Idk,2 Idk,3

...
...

Idk,Ly
Idk,Ly+1

· · · Idk,Ny−Ly+1

. . . Idk,Ny−Ly+2

. . .
...

. . . Idk,Ny

⎞
⎟⎟⎟⎠

Ly×(Ny−Ly+1)

.

(6)
With the obtained trajectory matrix Xd, the singular value

decomposition (SVD) is implemented to derive the eigenvalues
(λ1 ≥ λ2 ≥ . . . ≥ λLxLy

) and the corresponding eigenvectors
(U1, U2, . . . , ULxLy

) of Xd(Xd)T , and Xd can be rewritten as

Xd = Xd
1 +Xd

2 + . . .+Xd
LxLy

(7)

where the rth elementary matrix Xr =
√

λr UrV
T
r , its principal

components (PCs) Vr = (Xd)T Ur/
√

λr.
Afterwards, the eigenvalue grouping is carried out, in which

the total set of LxLy individual components in (7) is grouped
into m subsets, denoted asP = [P1, P2, . . . , Pm]. We can select
one or more elementary matrices Xr in each subset to derive the
main information of the image without high noisy content. Thus,
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trajectory matrix X is transformed as

Xd = Xd
P1

+Xd
P2

+ . . .+Xd
Pm

. (8)

Here, X is not necessarily an HbH type matrix. In order to
project it into a 2-D signal, a two-step Hankelization process is
applied first within each block (6) and then between blocks (5),
by averaging the antidiagonal values in the matrix [3], [32].
As a result, we obtain the reconstructed image Ispa, which
contain the informative spatial features based on local relevant
information in the defined 2-D window.

After extracting the spatial structural content of each band in
HSI, PCA is utilized for the main spectral features exploitation
and further noise removal as follows:

Ispa−spe = PCA(Ispa)Nx×Ny×L (9)

where L is the number of PCs derived by PCA technique. In this
way, the informative content and noisy information even in noisy
and water absorption bands can be processed simultaneously in
spatial and spectral domain.

In this article, multiple window sizes (Nx ×Ny) in
2-D-MSSP are utilized. At a given window size, the obtained
spatial–spectral features from 2-D-MSSP are taken as the input
of SVM classifier to generate the classification map. Then, we
can get multiple classification maps by using different window
sizes. Here, a decision fusion strategy is utilized to generate the
final classification result. Specifically, set T scales on the win-
dow size, then there would be T classification maps generated,
denoted as S = {S1, S2, . . . , ST }. For a given pixel with the
spatial position (i, j), its final class label is calculated through
majority voting, i.e., the label with the maximum number of
appearances within multiple classification maps S

Si,j = argmax
c=1,...,C

T∑
t=1

F (St
i,j , c) (10)

where c represents the possible class labels in one HSI data, C is
the number of class labels, and F is an indicator function given
by

F (p, q) =

{
1 if p = q
0 otherwise.

B. Noise Robustness Analysis on 2-D-MSSP

In HSI, each pixel through hundreds of bands can be char-
acterized as a sequential spectral vector, which contains high
noisy information especially in the water absorption bands [30].
By applying 2-D-MSSP, one pixel vector can be decomposed
and reconstructed based on the eigenvalues obtained in SVD.
In general, the component from the first eigenvalue contains the
main information of input data, while noise is usually existed in
those small eigenvalues [3]. Therefore, the newly reconstructed
HSI data only using more significant components and excluding
smaller eigencomponents can be clearer and more discriminative
for image analysis and interpretation.

In 2-D-MSSP, the 2-D embedding window size is a key
parameter which affects the informativeness and noise level
of reconstructed HSI. This parameter directly decides the total

Fig. 2. Application of 2-D-MSSP to a scene in HSI. (a) Original scene at 667
nm. (b) Original scene at 2499 nm (a water absorption band); and reconstructed
scenes from (b) with Lx = Ly = 5 (c) and Lx = Ly = 10 (d).

number of eigenvalues (components) available. A large window
size leads to more components generated. For example, when
the window size is Lx = Ly = 5, the 2-D embedding window
would provide 25 components for each spectral scene. The
grouping of these components denoted as a reconstruction. Thus,
when only used the basic trend information (the first eigenvalue
component) for image reconstruction, the reconstructed data
with small window size will contain more information, while
the large one could produce more smoothed results with most
of noisy content removed [33].

An example taken the 220th spectral band (at 2499 nm), which
is a water absorption band, from the uncorrected Indian Pines
dataset [3], Fig. 2 shows the reconstructed scene using first
component with different sized 2-D embedding window, along
with a clear spectral band (at 667 nm) for comparison. As seen by
comparing Fig. 2(a) and (b), it is clear that the water absorption
band contains much highly noisy content with less detailed
information, and that is why many methods remove noisy and
water absorption bands before processing HSI dataset. However,
these bands may still contain some useful information. As shown
in Fig. 2(c) and (d), when applying 2-D-SSA to the 220th spectral
band, detailed local spatial structures are preserved, and noisy
information is reduced. Besides, the 2-D-SSA with a larger 2-D
embedding window size generates more smoothed scene with
noise and details much reduced. In essence, for HSI data with
a high noise level, larger window sizes can remove most of the
noisy content. However, if the window size is too large, some
important details of the spectral scene may be lost. On the other
hand, small window sizes may result in the noise kept which
degrades the further image classification. Overall, it shows that
our proposed 2-D-MSSP can derive the main information and
spatial structures of HSI even on the water absorption bands,
which demonstrates its robustness to noisy content.

In real cases, the noise level varies throughout the hyperspec-
tral bands [8], [34], which also verified in Fig. 2(a) and (b). Thus,
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it is challenging to set an optimal window size for all the bands.
The proposed multiscale 2-D-SSA in this article can better solve
this problem and further improve the classification performance,
which will be further validated in Section III.

III. EXPERIMENTAL SETUP

In this article, we evaluated the performance of the proposed
method on three publicly available HSI datasets. The details of
these three datasets, experimental settings, and related ablation
study are described in this section.

A. Real Datasets Description

1) Indian Pines: The dataset was acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
[35] over the Indian Pines study site in Northwest Indiana
in 1992. The whole scene has 16 types of land-cover
classes and 145 × 145 pixels with a low spatial resolution
of 20 m/pixel. Each pixel contains 220 spectral bands
covering the wavelengths from 0.2−2.4μm. The spectral
bands used in most image analysis methods are usually
reduced to 200 by discarding 20 water absorption bands
(104–108, 150–163, and 220) [36].

2) SalinasA: We used a subscene from SalinasA image,
denoted SalinasA. It was also collected via AVIRIS in
the Salinas Valley in California, USA. This subscene was
composed of 86 × 83 pixels and six land-cover classes
with a geometric resolution of 3.7 m. Similarly, this scene
can be corrected by removing 20 water absorption bands
(108–112, 154–167, and 224) from 224 spectral bands
[37].

3) Pavia University: The dataset is named as PaviaU in this
article. It was acquired by the Reflective Optics System
Imaging Spectrometer sensor over Pavia, Northern Italy
[38], in 2001. This scene consists of 610 × 340 pixels
and eight dominant classes of land covers with a spatial
resolution of 1.3 m. Each pixel includes 114 spectral bands
in a spectral range of 0.43− 0.86 μm. For avoiding the
effect of water absorption, this scene can be corrected by
reducing the available number of bands to 103. Further
details including the sampling size of each class in these
three datasets can be found in [37], [39].

B. Experimental Settings

To investigate the robustness and classification performance
of the proposed method, several state-of-the-art spatial–spectral
classification approaches are employed to test on the uncor-
rected HSI dataset (with no bands removed), and the corrected
dataset (with removing the noisy and water-absorption bands).
These benchmarks include 2-D-SSA [3], MSuperPCA [14],
ASMGSSK [5], along with two advanced denoising methods,
SS-LRR [31], and FS2LRL [30], which show efficacy in classify-
ing uncorrected HSI data. In addition, we directly apply the SVM
on raw spectral profiles of HSI as the baseline for classification
with spectral-only information (denoted as SVM-spe).

TABLE I
LIST OF PARAMETER SETTINGS FOR OUR PROPOSED SMP FRAMEWORK AND

OTHER BENCHMARKING APPROACHES

The key parameters of these approaches are set according to
their recommended default values [13] as illustrated in Table I.
As for our proposed 2-D-MSSP, the sizes of 2-D embedding win-
dow are set to {5× 5, 10× 10, 20× 20, 40× 40, 60× 60}
with five scales. In [3], the 2-D-SSA was proposed for feature
extraction and data classification in HSI, where different window
sizes including 5× 5, 10× 10, 20× 20, 40× 40, and 60× 60
were tested. For Indian Pines and Pavia University datasets,
the optimal window size is found to be 10× 10 and 5× 5 to
produce the highest classification accuracy. As for the Salinas
dataset, the window sizes of 40× 40 and 60× 60 achieves the
best classification. As the optimal window size varies in different
datasets, the multiscale strategy is adopted in the proposed
method, aiming to improve the generalization ability on different
datasets. The size number of PCs selected in the PCA is set to 40
according to the ablation study in Section III-C. In this article,
the SVM is adopted as the default classifier for all the involved
methods, which are implemented using LIBSVM toolbox [40].
Here, the base kernel function is Gaussian radial basis function
with the kernel factor and penalty parameter set to 0.125 and
1024 based on the grid search, respectively. Such parameter
settings of SVM are kept same in all comparing experiments
to ensure a fair comparison.

In order to evaluate the efficacy of the proposed method under
various limited and unbalanced training sizes, we set the training
size varies within {1%, 3%, 5%, 10%} samples per class in the
training set using a stratified random scheme from ground truth
data. The remaining samples are left for test set. Note that there
are some minority classes named alfalfa, grass/pasture-mowed,
and oats in Indian Pines dataset [41]. The experiments in all
datasets are independently repeated 10 times, where the av-
eraged results in terms of the overall accuracy (OA), Kappa
coefficients (κ) and average accuracy (AA) are employed as
quantitative evaluation metrics.

All experiments in this article were implemented using the
MATLAB 2018a platform on the computer with an Intel (R)
Core (TM) i7-8700 CPU (3.20 GHz) and 16.0 GB of memory.
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Fig. 3. OA of 2-D-MSSP with various numbers of PCs for test datasets.

C. Parameter Analysis

The number of PCs (NPCs) in PCA directly affects the
informativeness in the spatial–spectral features, which further
influence the final classification results. In this subsection, we
discuss the effect of NPCs on the performance of our proposed
framework using three corrected datasets. Here, the value of
NPCs ranges from 20 to 60 with 5 as the interval. The numbers
of training samples were set to 1% per class and the remaining for
testing. Meanwhile, all tests are conducted for 10 times and the
corresponding averaged results are recorded to reduce possible
biases induced by random sampling.

Fig. 3 shows the OA results of the proposed 2-D-MSSP by
using different values of NPCs on the three datasets. As seen,
when using 1% training samples per class, the best NPCs settings
on Indian Pines is 40 and 55, while the optimal values on
SalinasA fall in the range (30, 40). As for the PaviaU dataset,
2-D-MSSP performs best when the NPCs equals to 45. Herein,
it is clear that the Indian Pines dataset is more sensitive to the
NPCs than other two datasets. This may be due to the fact
that the spatial resolution of Indian Pines is much lower and
thus its corresponding noises are relatively higher. Therefore,
the effect of PCA in noise reduction is more significant on the
Indian Pines dataset. Overall, we set NPCs to 40 in all experi-
ments as a tradeoff between the efficiency and accuracy in this
article.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, to investigate the robustness of our proposed
approach, the experiments are conducted on, respectively, the
uncorrected HSI dataset (without removing any bands), and the
corrected dataset (with the noisy and water-absorption bands
removed). Besides, the effectiveness of different strategies in
2-D-MSSP is also assessed, i.e., the multiscale 2-D-SSA, and
the PCA technique. To achieve this, we consider two cases: 1)
2-D-MSSP with only the multiscale 2-D-SSA but not PCA, de-
noted as 2-D-MSSA, and 2) the proposed 2-D-MSSP. Here, the
baseline SVM-spe is denoted as the method without the above
two strategies. Furthermore, our method is also compared with
several advanced deep learning approaches on three datasets.

A. Results From the Indian Pines Dataset

The quantitative and qualitative performances are evaluated
on the corrected and uncorrected Indian Pines datasets. First,
the quantitative evaluation in terms of the OA and the κ is
conducted between 2-D-MSSP and SVM-spe, 2-D-SSA [3],
MSuperPCA [14], ASMGSSK [5], SS-LRR [31], FS2LRL [30],
and 2-D-MSSA. Then, three best performing methods are se-
lected to assess the detailed visual and class-based performance
comparing with the proposed 2-D-MSSP. Note that the best
results in tables are labeled in bold face for comparison. As
for the visual assessment, the correct or incorrect classification
results of different methods are marked in black and magenta
circles, respectively.

1) Quantitative Evaluation: From Table II, it is clear that the
larger training size leads to higher classification accuracies for
all involved methods. Even on these limited and unbalanced
training samples, our proposed 2-D-MSSP achieve the best
performance in terms of OA and κ in all cases especially when
the training size is small. For instance, 2-D-MSSP yields about
6.5% better than the second-best method, MSuperPCA, in OA
when using only 1% training samples per class. This validates
the superiority of our method in dealing with the Hughes ef-
fect. Besides, by comparing SVM_spe with other methods,
it is obvious that the spatial feature introduction (2-D-SSA,
MSuperPCA, ASMGSSK, SS-LRR, FS2LRL, 2-D-MSSA, and
2-D-MSSP) can improve the classification performance by only
using spectral information. Herein, the SS-LRR and FS2LRL
are the denoising methods, which also exhibit promising results
on HSI classification. This demonstrates that the noisy content
would degrade the image quality and affect the performance of
image processing.

Through analyzing the results obtained by SVM-spe, 2-D-
SSA, 2-D-MSSA, and 2-D-MSSP, we can find that the multiscale
2-D-SSA and PCA has significantly enhanced the classification
results on the corrected and uncorrected Indian Pines dataset.
Specifically, the 2-D-MSSP using multiple window sizes has
outperformed 2-D-SSA which only uses one fixed window size,
with a gain up to 15% on uncorrected data and 18% on the
corrected one. This is mainly because that the different window
sizes can exploit multiscale local spatial features, which are
beneficial to model the different sized land cover classes. In
addition, by comparing 2-D-MSSA and 2-D-MSSP, we find that
the PCA enables the accuracy improvement up to 3.5%. This
may owe to the combination of spatial and spectral features.

As seen in Table II, the involved comparing methods per-
form differently on the corrected and uncorrected Indian Pines
datasets. Concretely, SVM-spe, FS2LRL, MSuperPCA, and AS-
MGSSK perform better on corrected dataset. On the contrary,
the 2-D-SSA can mitigate the image degradation from noisy
and water absorption bands and produce superior performance
on uncorrected Indian Pines dataset in most cases. With regard
to our proposed 2-D-MSSP, by only using multiscale 2-D-SSA,
2-D-MSSA is able to achieve better results on the uncorrected
datasets, which avoids the noise effects in all cases. Furthermore,
the 2-D-MSSP obtains superior accuracy on uncorrected dataset
to those from the corrected one. This validates the efficacy of
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TABLE II
OA (%) AND κ (IN PARENTHESES) OF DIFFERENT METHODS ON CORRECTED AND UNCORRECTED INDIAN PINES DATASETS UNDER VARIOUS TRAINING SIZES

TABLE III
CLASSIFICATION ACCURACY (%) OF COMPETITIVE METHODS FOR THE INDIAN

PINES DATA WITH 1% TRAINING SAMPLES PER CLASS

2-D-MSSP in noise-robust feature extraction. The operations
from multiscale 2-D-SSA and PCA can extract discriminative
features and reduce noises on both spatial and spectral domains.
As a result, 2-D-MSSP can be used as an efficient and effec-
tive tool for feature extraction and HIS classification without
removing unwanted bands.

2) Visual and Class-Based Performance Assessment: In or-
der to analyze the classification performance of each class on
corrected and uncorrected datasets, our method is benchmarked
with three best performing methods when using 1% training
samples per class as shown in Table II, i.e., 2-D-SSA, MSuper-
PCA, and ASMGSSK.

From Table III, it is clear that the 2-D-MSSP has obtained
the best classification accuracy no matter if the noisy and water
absorption bands removed or not, where 2-D-MSSP produced
best results in 15 out of 16 classes on uncorrected dataset while
it achieved 11 out of 16 classes on corrected Indian Pines
dataset. The performance of 2-D-MSSP is about 6.5% better than
second-best on uncorrected Indian Pines. Especially, 2-D-MSSP
significantly suppress its peers especially in the classes 2, 3, 4,
10, 12, 15, and 16 (Corn-no till, Corn-min till, Corn, Soybeans-
no till, Soybeans-clean till, Bldg-Grass-Tree-Drives, Stone-steel
towers). In addition, 2-D-SSA and our proposed 2-D-MSSP
perform better on uncorrected dataset, while MSuperPCA and

ASMGSSK produce better results on the corrected one. This
validates the noise-robustness of 2-D-SSA and 2-D-MSSP when
training size is 1%. In Indian Pines dataset, there are some minor
classes alfalfa, grass/pasture-mowed, and oats, which have the
small number of samples for training. When using 1% training
size, there are only 5, 3, and 2 samples for training in classes
alfalfa, grass/pasture-mowed, and oats, respectively. From Ta-
ble III, we can find that 2-D-MSSP and MSuperPCA achieve
promising performance in classifying grass/pasture-mowed and
even realize correct identification of all corresponding pixels of
alfalfa and oats. Overall, 2-D-MSSP can effectively identify the
large homogeneous regions and some small objects simultane-
ously.

Fig. 4 shows the visual result comparisons between four
approaches on uncorrected and corrected datasets using 1%
training samples per class, respectively. As shown, these four
methods with spatial features have generated more accurate and
smoother results. However, there still exist many misclassifi-
cations on maps. Specifically, as marked in magenta circles in
Fig. 4, the classes Corn-no till and Soybeans-min till, Soybeans-
no till and Corn-no till are severely misclassified with each other.
As for 2-D-SSA, it better identifies these classes on uncorrected
datasets as seen in Fig. 4(c). Even so, on both uncorrected
and corrected data, 2-D-SSA yields wrong classifications at the
boundaries or small objects. This mainly because that there is
only one type of spatial features are extracted in 2-D-SSA with-
out considering boundary information. On the contrary, MSuper-
PCA and ASMGSSK give much better uniformity and boundary
location results as illustrated in Fig. 4(e)–(h). This may be due
to that they employ the superpixel segmentation techniques
which segment the land cover classes into different objects with
adaptive shapes and sizes. Though the geometrical distortions
in Fig. 4(c) and (d) are much corrected by MSuperPCA and
ASMGSSK, there are still several small uncorrected classifica-
tions Fig. 4(e)–(h). To be specific, MSuperPCA produces better
visual performance on corrected Indian Pines dataset where
misclassified regions of Soybeans-no till and Corn-no till are
reduced. However, the classes Corn-no till and Soybeans-min till
are still wrongly discriminated in some areas as highlighted in
magenta circles in Fig. 4(e) and (f). Besides, MSuperPCA gains
promising performance in identifying Woods on uncorrected
data while it better classifies Grass/pasture on the corrected one
as marked in black circle in Fig. 4(e) and (f). The ASMGSSK
obtain comparably similar results with MSuperPCA. It performs
better on corrected data, where classes Grass/trees and Corn-no
till are seriously misclassified on the uncorrected data. With
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Fig. 4. Classification maps on the Indian Pines data (1% samples per class). (a) False color image (R: 831 nm, G: 657 nm, B: 557 nm). (b) Ground truth in 16
classes. (c) 2-D-SSA on uncorrected data (OA = 78.96%). (d) 2-D-SSA on corrected data (OA = 75.07%). (e) MSuperPCA on uncorrected data (OA = 87.83%).
(f) MSuperPCA on corrected data (OA = 89.12%). (g) ASMGSSK on uncorrected data (OA = 87.76%). (h) ASMGSSK on corrected data (OA = 87.98%). (i)
2-D-MSSP on uncorrected data (OA = 94.30%). (j) 2-D-MSSP on corrected data (OA = 93.08%).

TABLE IV
OA (%) AND κ (IN PARENTHESES) OF DIFFERENT METHODS ON THE CORRECTED AND UNCORRECTED SALINAS DATASETS UNDER VARIOUS TRAINING SIZES

regard to our proposed 2-D-MSSP, as shown in Fig. 4(i) and (j),
it achieves better visual performance than others with improved
object boundaries and spatial consistency. As highlighted in the
circles, the results on uncorrected dataset are superior to those
on corrected one. The classes Corn-no till, Soybeans-min till,
Grass/pasture, Soybeans-no till are better identified by 2-D-
MSSP by exploiting more information from uncorrected data.
These visual results are consistent with the class-based results
in Table III, which again verify the efficacy of our method in
noise-robust feature extraction and HSI classification.

B. Results From the Salinas A Dataset

Similarly, the quantitative and qualitative performance are
also assessed on SalinasA dataset with or without noisy and
water absorption bands, denoted as uncorrected SalinasA and
corrected SalinasA, respectively. The comparisons on these two

types of data between SVM-spe, 2-D-SSA, SS-LRR, FS2LRL,
MSuperPCA, ASMGSSK, 2-D-MSSA, and 2-D-MSSP in terms
of OA and κ are summarized in Table IV. Furthermore, the
visual- and class-based results of top four methods also de-
scribed in detail.

1) Quantitative Evaluation: As shown in Table IV, all ap-
proaches achieve much higher classification results than those
on Indian Pines datasets. This mainly due to the high spatial
resolution and simple structured land covers in SalinasA image,
which leads to low noise level and less spectral and spatial con-
fusion in the scene. As a result, land cover classes are more easily
to identify. Overall, our proposed method 2-D-MSSP still ranks
first on both uncorrected and corrected datasets with the highest
OA and κ in six cases. This again demonstrates the efficacy
of 2-D-MSSP under various limited training samples. Besides,
2-D-MSSP generates better results on uncorrected dataset when
using 1% and 3% training samples per class, and correctly



MA et al.: MULTISCALE 2-D SINGULAR SPECTRUM ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS 1241

Fig. 5. Classification maps on the SalinasA dataset (1% samples per class). (a) False color image (R: 831 nm, G: 657 nm, B: 557 nm). (b) Ground truth in 16
classes. (c) 2-D-SSA on uncorrected data (OA = 99.04%). (d) 2-D-SSA on corrected data (OA = 98.86%). (e) SS-LRR on uncorrected data (OA = 97.67%). (f)
SS-LRR on corrected data (OA = 97.79%). (g) FS2LRL on uncorrected data (OA = 98.38%). (h) FS2LRL on corrected data (OA = 97.88%). (i) 2-D-MSSP on
uncorrected data (OA = 99.72%). (j) 2-D-MSSP on corrected data (OA = 99.59%).

TABLE V
CLASSIFICATION ACCURACY (%) OF COMPETITIVE METHODS ON THE

SALINASA DATA WITH 1% TRAINING SAMPLES PER CLASS

classifies uncorrected and corrected data when the training size
is larger than 5%. This validates the noise-robust property of
2-D-MSSP, where the superior results are mainly owing to the
comprehensive spatial–spectral features even in noisy and water
absorption bands.

As for other methods, SVM-spe, SS-LRR, MSuperPCA, and
ASMGSSK produce better results on corrected SalinasA in most
cases. The 2-D-SSA performs inconsistently on the two kinds
of data, where it only achieves better classification performance
on uncorrected data when 1% and 10% training samples are
used. The denoising method FS2LR yields higher OA and κ
on uncorrected SalinasA in most cases. This has validated its
efficacy in noise removal and image recovery on the SalinasA
HSI data. Meanwhile, 2-D-MSSP performs better on corrected
data when the training size is larger than 5% per class.

Through the comparisons between SVM-spe, 2-D-SSA,
2-D-MSSA, and 2-D-MSSP, we can find that 2-D-SSA has
the potential in noise-robust feature extraction especially when
training size is 1% and 10%, and the incorporation of multiscale
window size (2-D-MSSA) improves its ability in suppressing
noise. Consequently, by combing the 2-D-MSSA and PCA, our
approach 2-D-MSSP shows strong noise robustness and high
classification accuracy on SalinasA image.

2) Visual and Class-Based Performance Assessment: Here,
we select three best performing methods on SalinasA, i.e.,
2-D-SSA, SS-LRR, and FS2LRL to compare with our 2-D-
MSSP in terms of class-based accuracy and classification maps
with 1% of training samples per class used. As shown in Ta-
ble V, our 2-D-MSSP still produces the best results on the
SalinasA dataset, especially in four out of six classes on the
uncorrected data, and generates the highest accuracy in all
classes on the corrected dataset. Especially, 2-D-MSSP pro-
duces significant better classification accuracy than its peers
on uncorrected SalinasA data in the classes #2, #3, and #6
(Corn senesced green weeds, Lettuce romaine 4wk, and Let-
tuce romaine 7wk). With 1% of training samples per class,
only the SS-LRR performs better on the corrected data, while
2-D-SSA, FS2LRL, and 2-D-MSSP all have better results on the
uncorrected one.

The visual results of these four approaches are depicted in
Fig. 5. As seen, our method 2-D-MSSP generates most accurate
classification maps with better uniformity and boundary location
on uncorrected SalinasA image. From these classification maps
in Fig. 5, it is clear that the classes Broccoli green weeds_1,
Lettuce romaine 4wk, and Lettuce romaine 5wk, and the classes
Lettuce romaine 6wk and Lettuce romaine 7wk are easily mis-
classified with each other. Specifically, SS-LRR and FS2LRL
fail to correctly identify them on either uncorrected or corrected
data as marked in magenta circles in Fig. 5(e)–(h). The 2-D-SSA
on corrected dataset [Fig. 5(d)], 2-D-MSSP on two kinds of
datasets [Fig. 5(i) and (j)] can better classify the Broccoli green
weeds_1 and Lettuce romaine 4wk as highlighted in the black
circles. However, all involved methods fail to correctly classify
the classes Lettuce romaine 6wk and Lettuce romaine 7wk.
Fortunately, as depicted in black circles in Fig. 5(i) and (j), the
proposed 2-D-MSSP can significantly improve the classification
performance on these two classes especially on uncorrected
datasets. This superiority thanks mainly to the combination of
multiscale spatial and spectral features in 2-D-MSSP. Overall,
2-D-SSA, FS2LRL, and 2-D-MSSP yield better classification
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TABLE VI
OA (%) AND κ (IN PARENTHESES) OF DIFFERENT METHODS ON THE

CORRECTED PAVIAU DATASET UNDER VARIOUS TRAINING SIZES

maps on uncorrected SalinasA image, which is consistent with
the class-based results.

C. Results From the PaviaU Dataset

We further analyze the quantitative, visual-, and class-based
results on the PaviaU dataset. Here we only test on the corrected
data since the uncorrected one is unavailable. The best results
in each row in tables are marked in bold and the correctly
or incorrectly classified regions in the classification maps are
highlighted with black and magenta circles, respectively.

1) Quantitative Evaluation: Table VI summaries the OA
and κ of comparing methods using different training sizes on
corrected PaviaU dataset. This image has higher spatial res-
olution and lower dimension size, which reduces the Hughes
phenomenon to some extent [4]. As shown, the classification
performances of many approaches with very limited training
samples are relatively better than those on Indian Pines dataset.
However, there are various types of land cover classes in PaviaU
leading it to be a complicated scene. As listed in Table VI,
our proposed 2-D-MSSP still achieves the high classification
accuracy and ranks first among these advanced methods in
all cases. In addition, the superiority of 2-D-MSSP is more
significant when the number of training samples is smaller.
This again validates the efficacy of proposed strategies in the
HSI classification with limited and unbalanced training samples.
By using multiscale superpixel segmentation, ASMGSSK and
MSuperPCA significantly improve the classification accuracy,
which just follows 2-D-MSSP. The two denoising methods also
exhibit promising performance though they pay more attention
on noise removal rather than HSI classification.

In order to investigate the effectiveness of different strategies
in our methods, we further compare the results generated by
SVM-spe, 2-D-SSA, 2-D-MSSA, and 2-D-MSSP. From Ta-
ble VI, it is clear that the spatial features extracted from 2-D-SSA
can improve the accuracy by only using spectral information in
SVM-spe with a gain up to 4.6%. Then through using multiscale
spatial feature, the 2-D-MSSA further enhances the classifica-
tion performance with a maximum gain of 2.6%. Finally, by
combining multiscale spatial–spectral features from multiscale
2-D-SSA and PCA, our proposed method 2-D-MSSP achieve
high classification accuracy in the PaviaU data.

2) Visual and Class-Based Performance Assessment: Here,
the best performing methods, 2-D-SSA, MSuperPCA, and AS-
MGSSK are selected to compare with 2-D-MSSP in terms of

TABLE VII
CLASSIFICATION ACCURACY (%) OF COMPETITIVE METHODS FOR THE

CORRECTED PAVIAU DATA WITH 1% TRAINING SAMPLES PER CLASS

visual- and class-based performance. As shown in Table VII,
the proposed 2-D-MSSP achieves best results in terms of OA,
κ, and AA. As for the class-based performance, it ranks first in
six out of nine classes, which is followed by ASMGSSK that
exhibits superiority in three out of nine classes. The 2-D-SSA
and MSuperPCA show potential on the identification of class
Shadows, though it generates inferior results of OA, κ, and AA.

The classification maps of ASMGSSK, MSuperPCA, 2-D-
SSA, and 2-D-MSSP are shown in Fig. 6. As seen, the classes
Meadows, Trees, and Bare Soil are easily confused with each
other. From Fig. 6(c)–(f), it is clear that the 2-D-SSA fails to
correctly discriminate the Meadows and Trees as marked by
magenta circles in Fig. 6(c). Most of these misclassifications
are further corrected by the MSuperPCA, ASMGSSK, and 2-D-
MSSP as shown in black circles in Fig. 6(d) and (e). However,
the 2-D-SSA, MSuperPCA, and ASMGSSK all have difficulty
in correctly classifying the Meadows and Bare Soil. This mainly
because that the visually sparse Meadows regions are easily to
be spectrally confused with Bare Soil. As depicted in Fig. 6(c)–
(e), many small misclassified areas spread all over Bare Soil
regions in the classification maps of 2-D-SSA and ASMGSSK.
With regard to the identification of class Gravel, the 2-D-SSA
seriously misclassifies it with class Self-Blocking Bricks, while
MSuperPCA, ASMGSSK, and 2-D-MSSP can better identify it.
However, 2-D-SSA yields superior classification performance
on discrimination of classes Asphalt and Trees than the other
three methods. Overall, our 2-D-MSSP yields promising visual
performance in PaviaU dataset with better region uniformity and
boundary outlining. This validates the efficacy of 2-D-MSSP in
HSI classification under limited training samples.

D. Comparing With Deep Learning Methods

In this subsection, our 2-D-MSSP is further compared with
four state-of-the-art deep learning methods, including CD-CNN
[25], DR-CNN [26], SS-GAN [27], and SSCasRNN [28] on the
corrected Indian Pines and PaviaU datasets with quantitative
results summarized in VIII. Note that the exhibited results of
our 2-D-MSSP using 1% training samples (equaling to 6 or 47
samples per class for Indian Pines and PaviaU, respectively),
in comparison to 10% training samples used in SSCasRNN
(equaling to 65 and 475 samples per class for two datasets).
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Fig. 6. Classification maps on the corrected PaviaU data (1% samples per class). (a) False color image (R: 834 nm, G: 650 nm, B: 550 nm), (b) Ground truth
with nine classes. (c) 2-D-SSA (OA = 93.30%). (d) MSuperPCA (OA = 95.43%). (e) ASMGSSK (OA = 98.17%). (f) 2-D-MSSP (OA = 98.29%).

TABLE VIII
OA (%) OF 2-D-MSSP AND FOUR DEEP LEANING METHODS ON TWO

DATASETS WITH DIFFERENT TRAINING SIZES (IN PARENTHESES)

The CD-CNN and DR-CNN use 50 training samples per class
in each dataset, while the SS-GAN uses in total 300 training
samples, which equals to around 19 and 33 samples per class in
corrected Indian Pines and PaviaU datasets, respectively.

As seen in Table VIII, our 2-D-MSSP outperforms the
deep learning approaches with smaller training size in the two
datasets. Deep learning methods usually need more training sam-
ples to reach promising performance. Hence, we can conclude
that when the training size is limited, the proposed 2-D-MSSP
is more advantageous than these state-of-the-art deep learning
methods. This experiment further demonstrates the superiority
of our method in HSI classification.

V. CONCLUSION

In this article, we have proposed a novel spatial–spectral
method for noise-robust feature extraction and effective HSI
classification under limited and unbalanced training size, even
without filtering out the unwanted noisy and water absorption
bands. First, the 2-D-SSA with multiscale embedding window
sizes are applied to exploit the multiscale local spatial features at
different noise levels. Then, in each scale, the PCA is used to fur-
ther extract spectral features and remove noisy information. The
comprehensive combination of multiscale spatial–spectral fea-
tures can effectively characterize image structures and remove
noisy content, which can directly deal with the uncorrected HSI
data even with very limited training samples. The experimental
results on three HSI datasets have validated that our 2-D-MSSP
model outperforms the other state-of-the-art approaches includ-
ing several advanced deep learning methods with much larger

training size. Especially, the superior classification results on
uncorrected datasets provide potential to automatically interpret
HSI without prefiltering noisy bands.

In the future, we will focus on the adaptive window size se-
lection in 2-D-SSA to automatically assign the optimal window
size to each pixel for more efficient HSI classification.
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