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Abstract  

Visual attention is a kind of fundamental cognitive capability that allows human beings to focus on the region of 

interests (ROIs) under complex natural environments. What kind of ROIs that we pay attention to mainly depends on 

two distinct types of attentional mechanisms. The bottom-up mechanism can guide our detection of the salient objects 

and regions by externally driven factors, i.e. color and location, whilst the top-down mechanism controls our biasing 

attention based on prior knowledge and cognitive strategies being provided by visual cortex. However, how to 

practically use and fuse both attentional mechanisms for salient object detection has not been sufficiently explored. To 

the end, we propose in this paper an integrated framework consisting of bottom-up and top-down attention 

mechanisms that enable attention to be computed at the level of salient objects and/or regions. Within our framework, 

the model of a bottom-up mechanism is guided by the gestalt-laws of perception. We interpreted gestalt-laws of 

homogeneity, similarity, proximity and figure and ground in link with color, spatial contrast at the level of regions and 

objects to produce feature contrast map. The model of top-down mechanism aims to use a formal computational 

model to describe the background connectivity of the attention and produce the priority map. Integrating both 

mechanisms and applying to salient object detection, our results have demonstrated that the proposed method 

consistently outperforms a number of existing unsupervised approaches on five challenging and complicated datasets 

in terms of higher precision and recall rates, AP (average precision) and AUC (area under curve) values. 
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1 INTRODUCTION 

For human beings, our visual attention system is mainly made up by both bottom-up and top-down attention 

mechanisms that enable us to allocate to the most salient stimuli, location, or feature that evokes the stronger neural 

activation than others in the natural scenes [5-7]. Bottom-up attention helps us gather information from separated 

feature maps e.g. color or spatial measurements, which is then incorporated to a global contrast map representing the 

most salient objects/regions that pop out from their surroundings [11]. Top-down attention modulates the bottom-up 

attentional signals and helps us voluntarily focus on specific targets/objects i.e. face and cars [15].  However, due to 

the high level of subjectivity and lack of formal mathematical representation, it is still very challenging for computers 

to imitate the characteristics of our visual attention mechanisms. In [11], it is found that the two attentional functions 

have distinct neural mechanisms but constantly influence each other to attentions. To this end, we aim to build a 

cognitive framework where separated model for each attentional mechanism is integrated together to determine the 

visual attention refer to the salient object detection.  

To extract features at the bottom level, color plays an important role since it is a central component of the human 

visual system, which also facilitates our capability for scene segmentation and visual memory [22]. Color is 

particularly useful for object identification as it is invariant under different viewpoints. We can move or even rotate an 

object, yet the color we see seems unchanged due to the light reflected from the object into the retina remains the 

same. As a result, the salient regions/objects can be easily recognized intuitively for their high contrast to the 
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Fig. 1. Three examples of salient objects.  
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surrounding background.  

In addition to color features, our visual perception system is also sensitive to spatial signals, as the retinal ganglion 

cells can transmit the spatial information within natural images to the brain [25]. As a result, our human beings pay 

more attention to the objects and regions not only with dominant colors but also with close and compact spatial 

distributions. Therefore, the main objective of saliency detection is to computationally group the perceptual objects on 

the base of the way how our human visual perception system works. 

Although color and spatial features have been widely used for salient object detection, the efficacy can still be 

fragile, especially in dealing with large objects and/or complicated background in the scenes[23]. The salient object 

often cannot be extracted as a whole (see examples in Fig. 1), though it is still relatively easily for our HVS to identify 

the full range of the salient objects. This shows a gap between existing approaches to an ideal one that can better 

exploit the potential of our HVS for more accurate salient object detection. To this end, we propose a Gestalt-law 

guided cognitive approach to calculate bottom-up attention. As gestalt-laws can characterize the capabilities of HVS 

to yield whole forms of objects from a group of simple and even unrelated visual elements [27], e.g. edges and 

regions, we aim to employ these laws to guide/improve the process of salient object detection. 

For modelling top-down attention, Al-Aidroos et al [28] proposed a theory named ‘background connectivity’ to 

describe the stimulus-evoked response of our visual cortex. It is found that focus on the scenes rather than objects may 

increase the background connectivity. Inspired by this theory, we employed a robust background detection model to 

represent the background connectivity of top-down attention in the images as post-processing to further refine the 

saliency maps detected using gestalt-laws guided processing. 

Fig. 1 shows several examples in which the salient objects contain poor color and/or spatial contrasts. As such, 

conventional approaches either fails to detect the object as a whole or results in massive false alarms. Within the 

proposed cognitive framework, salient objects can be successfully detected whilst the false alarms are significantly 

suppressed. Descriptions of the proposed salient model and its implementation are detailed in Sections 3-4. 

The main contributions of this paper can be highlighted as follows: 

1) We propose gestalt laws guided optimization and visual attention based refinement framework (GLGOV) for 

unsupervised salient object detection, where bottom-up and top-down mechanisms are combined to fully 

characterize HVS for effective forming of objects in a whole; 
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2) We introduce a new background suppression model guided by the Gestalt law of figure and ground, where 

superpixel-level color quantization and adaptive thresholding are applied to determine object-level foreground 

and background for the calculation of the background correlation term and the spatial compactness term to 

further suppress the background and highlight the saliency objects;  

3) We have carried out comprehensive experiments on five challenging and complex datasets and benchmarked 

with eight state-of-the-art saliency detection models, where useful discussions and conclusions are achieved. 

The rest of this paper is organized as follows. Section 2 summarizes the related work on saliency detection. The 

proposed framework by combining bottom-up and top-down HVS mechanisms for saliency detection is presented in 

Section 3, where the implementation detail is discussed in Section 4. Section 5 presents the experimental results and 

performance analysis. Finally, some concluding remarks are drawn in Section 6. 

2 RELATED WORK 

In the past decades, a number of salient object detection methods have been developed to identify salient regions 

in terms of the saliency map and capture as much as possible human perceptual attention. In general saliency detection 

methods can be categorized into two classes, i.e. supervised and unsupervised approaches. Most supervised methods 

including those using deep learning [29-33] are able to obtain good saliency maps, where high performance 

computers even with particular graphic process units (GPU) are needed to cope with the lengthy training time. In 

addition, supervised methods may also suffer from lack of generality, especially when the training samples are limited 

and/or insufficiently representative. With deep learning, this drawback seems can be somehow overcome [32], yet at 

a cost of a large amount of data requested for training to learn the prior knowledge. On the contrary, it seems our 

human vision system can guide us to easily detect and recognize objects under complex scenes without supervision 

[34]. To this end, in this paper we focus mainly on unsupervised saliency detection.  

In a recent benchmark survey [35], quite a few unsupervised saliency detection methods are summarized and 

assessed, where the two main objectives of saliency detection are fixation prediction [4, 10] and salient object 

detection [36-39]. In fixation prediction, it aims to predict eye’s gaze or motion through detecting sparse blob-like 

salient regions [40], whilst salient object detection is to detect the salient objects/regions in the scene [41]. According 

to the survey [35], much more salient object detection methods are proposed than those using eye fixation prediction, 
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possibly due to their contributions to a wide range of applications including content-based image retrieval [42-44], 

image/video compression [45-47], image quality assessment [48-50], region of interest segmentation [51-53], and 

object detection [54-56], etc. 

Inspired by a biologically plausible architecture [6] and the feature integration theory [57], Itti et al [4] proposed 

an epic saliency detection model in 1998. With multiple image features extracted including luminance, color and edge 

orientation, the saliency map is generated by using center-surround difference across these features. In the following 

two decades, quite a few landmark saliency models are developed, which are briefly reviewed below. 

Depending on whether a salient object is detected from pixels or regions, saliency detection techniques can be 

further categorized into two groups, i.e. pixel based and region based. Herein the main difference between the two 

groups is whether the image is segmented into regions for saliency detection, using either color quantization or pixel 

clustering. In [9], a contrast based saliency map is proposed, where the color difference between the pixel and its 

neighbors is determined to extract the attended areas using the fuzzy theory [58]. In [10] a biologically plausible 

bottom-up visual saliency model is presented based on the Markovian approach and mass concentration algorithm. 

More recently, an efficient method is introduced in Achanta et al. [16] to build high quality saliency maps using 

low-level features such as luminance and color in the L*a*b*  color space. In [18], a salient region is detected by using 

the color difference between the pixels and their average value in the image, again in the L*a*b*  color space. In [19], 

instead of treating the whole image as the common surround for any given pixel, the saliency map is defined by using 

color difference between the given pixel and a local symmetric surround region. In Cheng et al [24], a global contrast 

based  method is proposed to determine the saliency value. The color is quantized into a number of bins in the L*a*b* 

color space with the global color contrast measured between color bins. Furthermore, a color space smoothing process 

is also introduced to reduce quantization artefacts before assigning similar saliency value to similar color bins.  

Although the aforementioned approaches are found to produce relatively good results on saliency detection, their 

robustness is limited when extending to large datasets due to increasing complexity of the scenes, especially the 

variations in terms of spatial size and layout between the salient objects and the image background. The reason here is, 

except for the color contrast, spatial contrast is also an important perception in our human visual system, regardless 

the extremely high computational cost for pixel-level saliency computation. To this end, region-based contrast and 

saliency detection has become increasingly popular in recent years, especially using the superpixel based approach. In 
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[24], a region-level saliency map is proposed based on both color and spatial difference across the regions, where the 

spatial prior is used to highlight the salient regions. In [59], a contrast-based saliency estimation is proposed, where a 

given image is segmented into a number of homogeneous regions by using superpixel. The contrast and spatial 

distribution of these regions are measured and smoothed by using high-dimensional Gaussian filters for saliency 

detection. In [14], a superpixel based saliency detection method is proposed, where color and spatial contrast across 

the superpixels are used for efficient saliency detection. In Kim et al [8], high-dimensional color transform is applied 

to over-segmented images for saliency detection.  

In general, the whole process of bottom-up saliency detection can be divided into at least three stages, i.e. 

pre-processing, feature based salient map generation, and post-processing. Apparently feature based salient map 

generation is the key in saliency models, where various color and spatial features are extracted and measured in 

determining the saliency maps. The pre-processing is often for spatial and illumination normalization, image 

enhancement and image segmentation (only for region-based approaches). The post-processing, on the contrary, 

serves mainly for normalization and/or fusion of saliency maps, where object prior is widely used in region-based 

approaches. One optional stage is to extract the binary template of the salient object via thresholding the salient map, 

where histogram based adaptive thresholding such as Otsu’s approach [60] is commonly used. 

In Table I, some typical unsupervised saliency detection approaches are summarized for comparison in terms of 

the features used and any adopted pre-processing and post-processing stages. First, color and spatial information is the 

Table I 

Overview of some popular unsupervised saliency detection models 

Method Pre-processing 
Features for initial saliency map 

generation 

Post-processing to refine the saliency 

map 
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IT[4] No Color, Intensity, Orientation Normalization of saliency map 

MZ[9] Image resizing, Color quantization Color Refinement via Fuzzy growing 

GB[10] No Color, Orientation, Intensity Normalization of saliency map 

SR[13] Log spectrum Intensity No 

AC[16] No Color, Luminance Fusion of multi-saliency maps 

FT[18] Gaussian filter Color, Luminance No 

MSS[19] No Color No 

SEG[21] No Color No 

HC[24] Color quantization Color, Luminance No 
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RC[3] 
Color quantization, 

Graph-based image segmentation 
Color, Luminance, Spatial 

Object prior with  color refinement and 

hard constraints 

SP[14] 
Color quantization, Superpixel 

clustering 
Color, Spatial Color and spatial refinement 

LMLC[1] Superpixel clustering Color, Spatial, Intensity Color refinement 

HDCT[8] Superpixel clustering Location, Color, Texture, Shape Object prior via Spatial refinement 
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most widely used features due to their importance in visual psychology [22, 25]. However, spatial features are 

excluded in some pixel-based approaches. For region-based approaches, color quantization and graph or superpixel 

based clustering is normally used. Combination of color and spatial features are then employed for saliency map 

determination and refinement. 

As shown in Table I, the principle of gestalt laws has been reflected in many existing approaches. This includes 

not only the color and spatial features in representing the HVS but also their applications in other key stages. 

Examples herein can be found in homogeneity based color quantization and pixel clustering in the pre-processing, 

similarity based feature measurement in saliency map generation and object-prior based grouping in post-processing. 

In fact, the concept of gestalt laws was first introduced as a series of mechanisms to explain the human visual 

perception, dated back to 1920s in [61, 62], where Gestalt law based detection is proved to fit the human perception 

[63]. Starting from low-level features of the salient stimuli that influence perception at the bottom level way up to high 

level cognition, gestalt can be naturally used to define bottom-up objects [64, 65]. Although the gestalt theories are 

gradually used in saliency detection models explicitly [66-68] or implicitly [59, 69], there is no specified structure to 

regulate the relationship between Gestalt law and saliency models. How these laws can be systemically applied for 

salient detection remains unexplored. As a result, we aim to further explore various aspects of gestalt laws when 

applying in a bottom-up model and also combined with the top-down model for feature contrast map generation, 

which is detailed in section 4. 

3 THE PROPOSED GLGOV FRAMEWORK FOR UNSUPERVISED SALIENCY DETECTION 

A new saliency detection framework inspired by the Gestalt laws of HVS is proposed. The proposed framework 

contains six main modules, i.e. homogeneity, similarity and proximity, figure and ground, background connectivity, 

two stage refinement and performance evaluation. The overall diagram of our saliency detection framework is 

illustrated in Fig. 2 where corresponding gestalt laws and visual psychology used in different modules are specified 

and also detailed below. 

The homogeneity module aims to group or cluster pixels into regions on the basis of human visual perception [62, 

70]. According to Gestalt law of homogeneity and the gestalt perceptual organization theory [62], if pixels have 

similar intensity, color, orientation or other features, they should be treated as homogeneity regions. To this end, there 
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can be a number of homogeneity regions extracted in one image. Specifically, the simple linear iterative cluster 

(SLIC) method [71] is used to separate the image into regions namely superpixels, where  the color quantization is 

applied to reduce the number of colors based on color homogeneity.  

In similarity and proximity module, color contrast and spatial contrast across superpixels are measured for 

extraction of the feature contrast map and smoothing process. Based on Gestalt laws of similarity and proximity, 

elements/objects tend to be perceived as a whole in cognition if they are close enough to each other and/or share 

similar appearance of visual features. In other words, if a superpixel with a low saliency value is surrounded by those 

with high saliency values, this superpixel should be assigned with a high saliency value as determined by its 

 

 
Fig. 2. The proposed framework in six modules guided by various gestalt laws (specified in brackets) and visual psychology. 
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neighboring superpixels provided that their colors are similar to each other. As such, a smoothing process should be 

introduced to refine the extracted saliency map, which will be defined in two stage refinement.  

The saliency point detection module is to coarsely split the whole image into foreground and background based on 

a convex hull formed by the detected saliency points. Inspired by human visual psychology [22, 25], the greyscale 

image and color image are treated differently. Herein, we choose luminance-based operator for greyscale images and 

Color Boosted Harris (CBH) operator for color images for detection of saliency points [72]. As this module is relative 

quite straightforward, it is not detailed in this paper. 

In figure and ground module, Gestalt law of figure and ground is applied to suppress the background and highlight 

the foreground objects. According to HVS, human’s perception is comprised by objects and their surrounding 

background under observation, where salient objects can be automatically highlighted from the suppressed 

background. To this end, superpixel level color quantization, adaptive thresholding and a saliency points detection 

method [72] are well combined together for background suppression.  

The background connectivity module is to calculate the background probability of each super-pixels. Inspired by 

background connectivity theory [73], attention to the scene or background of the image will increase the background 

connectivity in our visual cortex. Herein, we employ a component from the background detection method [20] to 

represent the background connectivity mathematically.  

In the two-stage refinement module, the first refinement helps to smooth Gestalt law guided saliency maps by 

considering all superpixels from the foreground or background as well as fusion with the feature contrast map and 

background suppression map. The result from the first refinement will be fused with the background probability map 

derived from the background connectivity module and further smoothed in the second refinement process. Finally, the 

final saliency map is determined. 

In the performance evaluation module, comprehensive experiments are carried out against a number of 

state-of-the-art methods on several widely used publicly available databases. Some widely used evaluation criteria 

such as PR curve, ROC curve, AUC and AP value are used for quantitative assessment. Detailed results are reported 

in Section 5. 
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4 IMPLEMENTATION DETAIL OF THE PROPOSED GLGOV FRAMEWORK 

In this section, the implementation of the proposed saliency detection framework is detailed in five stages, i.e. 

homogeneity, similarity and proximity, figure and ground, background connectivity and two-stage refinement below.  

4.1 Homogeneity 

For a color image in three channels, it usually contains thousands of pixels with up to 2563 possible values, where 

pixel-based saliency detection suffers from high computational cost. Therefore, we use two operations to reduce the 

dimension of the image and simplify the problem. First, based on Gestalt law of homogeneity, similar pixels spatially 

close to each other in the image can be considered as a whole. To this end,  we use SLIC [71] to segment the image 

into a number of regions called superpixels which generally has inner color consistency and a compact shape with 

decent boundary adherence. As suggested by [8], we set the number of superpixels n to 500. Secondly, using the same 

scheme as suggested in [14], we uniformly quantize each color channel into q bins in order to reduce the number of 

colors to generate a new  image histogram H with 𝑞3 bins. Herein we define q=12 instead of 16, as this change has 

little effect to the experimental results yet the number of colors and associated computation cost has been significantly 

reduced, i.e. proportionally to the reduction from 163 to 123.  

From the quantized image, bins of dominant colors are selected to cover more than 95% of the image pixels. The 

rest color bins that cover less than 5% pixels are merged into the selected dominant color bins based on minimum 

Euclidean distance criterion. An example of the color quantization is shown in Module 4, Fig. 2. After 

superpixel-based image segmentation and color quantization, each superpixel 𝑆𝑖(𝑖 = 1,2, … 𝑛) has its histogram 𝐻𝑖  

normalized by ∑ 𝐻𝑖(𝑚) = 1𝑘
𝑚=1 , where k is the index of the color bins. 

4.2 Similarity and Proximity 

In human vision perception, usually we are aware of the image regions that have high contrast to their 

surroundings. According to the Gestalt law of proximity and similarity, HVS tends to perceive elements that are close 

or similar to each other in a group. This actually explains that, at the superpixel-level, those image regions are 

normally grouped by spatial closeness and color similarity of superpixels. In addition, those superpixels should have 

similar level of low inner contrast and highly different from the surrounding superpixels. In this section, we presented 

in detail the proposed saliency object detection method based on color and spatial contrast at superpixel level. 
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First, for two superpixels 𝑆𝑖  and 𝑆𝑗, their color distance 𝐶𝑑(𝑆𝑖 , 𝑆𝑗) is defined as the Euclidean distance between the 

mean colors of the two superpixels and scaled within the range of [0,1]. Here the color distance 𝐶𝑑 measures the 

similarity of the color appearance of the two superpixels. 

In addition to the color based similarity, the gestalt law of proximity for the two superpixels 𝑆𝑖  and 𝑆𝑗 is denoted as 

a spatial proximity distance 𝑃𝑑(𝑆𝑖 , 𝑆𝑗) , which is defined as the Euclidean distance between the centroids of the two 

superpixels. The larger the 𝑃𝑑(𝑆𝑖 , 𝑆𝑗) is, the higher proximity between 𝑆𝑖 and 𝑆𝑗 is.The spatial proximity distance can 

be further normalized within [0, 1] as follows:  

𝑃𝑑𝑛𝑜𝑟𝑚
(𝑆𝑖 , 𝑆𝑗) =

𝑃𝑑(𝑆𝑖 , 𝑆𝑗) − 𝑃𝑑_𝑚𝑎𝑥

𝑃𝑑_𝑚𝑖𝑛 − 𝑃𝑑_𝑚𝑎𝑥

 (1) 

where 𝑃𝑑_𝑚𝑖𝑛 and 𝑃𝑑_𝑚𝑎𝑥  refer respectively to the minimum and the maximum of all possible values of 𝑃𝑑  as 

determined from superpixels of the given image. 

Based on the defined color distance 𝐶𝑑 and the normalized spatial proximity distance 𝑃𝑑_𝑛𝑜𝑟𝑚, the global color 

contrast for a superpixel  𝑆𝑖 is defined by 

𝐶𝐺(𝑆𝑖) = ∑ 𝐴𝑗 ∙ 𝑃𝑑_𝑛𝑜𝑟𝑚(𝑆𝑖 , 𝑆𝑗) ∙ 𝐶𝑑(𝑆𝑖 , 𝑆𝑗)

𝑛

𝑗=1

 (2) 

where n is the number of superpixels, and 𝐴𝑗 is the normalized area of the superpixel 𝑆𝑗 where a larger one contributes 

more to the global color contrast value of 𝑆𝑖, where the sum of  𝐴𝑗 is 1. 

Similarly, we define the global spatial contrast value for a superpixel 𝑆𝑖 below: 

𝑆𝐺(𝑆𝑖) =
∑ 𝑃𝑑_𝑛𝑜𝑟𝑚(𝑆𝑖 , 𝑆𝑗) ∙ 𝐶𝐼(𝑆𝑖 , 𝑆𝑗) ∙ 𝐿𝑗

𝑛
𝑗=1

∑ 𝐿𝑗
𝑛
𝑗=1 ∑ 𝑃𝑑_𝑛𝑜𝑟𝑚(𝑆𝑖 , 𝑆𝑗) ∙ 𝐶𝐼(𝑆𝑖 , 𝑆𝑗)𝑛

𝑗=1

 (3) 

where 𝐿𝑗 is the weight of the spatial layout, which is defined as the minimum distance from the centroid of superpixel 

𝑆𝑗 to any of the four image borders; 𝐶𝐼 is the inter superpixel color similarity defined below, where 𝐻𝑖  and 𝐻𝑗 refer 

respectively to the color histogram of the two superpixels 𝑆𝑖  and 𝑆𝑗 with 𝑚 as the index for the 𝑘 color bins. 

𝐶𝐼(𝑆𝑖 , 𝑆𝑗) = ∑ ((1 − |𝐻𝑖(𝑚) − 𝐻𝑗(𝑚)|)

𝐾

𝑚=1

∗ min (𝐻𝑖(𝑚), 𝐻𝑗(𝑚))) (4) 

Unlike conventional histogram intersection method, we introduce the term (1 − |𝐻𝑖(𝑚) − 𝐻𝑗(𝑚)|) rather than 

min (𝐻𝑖(𝑚), 𝐻𝑗(𝑚)) to measure the similarity of two histogram bins based on their frequencies. For example, given 
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two pairs of histogram bins: 𝐻𝑖(1) = 0.3, 𝐻𝑗(1) = 0.2 , and 𝐻𝑖(2) = 0.8, 𝐻𝑗(2) = 0.2 , conventional histogram 

intersection method will produce the same result of 0.2, which fails to reflect the difference between the histogram 

bins. On the contrary, in our modified definition, the similarity terms for the two cases become 0.9 and 0.4, 

respectively, which improves the similarity measurement and makes it more consistent to human perceptions than 

conventional histogram intersection approach.  

For simplicity, we define 𝐼𝐶𝑆 as a combined measurement of color similarity and spatial proximity between two 

superpixels 𝑆𝑖   and 𝑆𝑗: 

𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗) = 𝑃𝑑_𝑛𝑜𝑟𝑚(𝑆𝑖 , 𝑆𝑗) ∙ 𝐶𝐼(𝑆𝑖 , 𝑆𝑗) (5) 

Accordingly, Eq. (3) can be simplified as  

𝑆𝐺(𝑆𝑖) =
∑ 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗) ∙ 𝐿𝑗

𝑛
𝑗=1

∑ 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)𝑛
𝑗=1

 (6) 

Based on both the global color contrast 𝐶𝐺 and the global spatial contrast  𝑆𝐺 , the feature contrast value for 

superpixel 𝑆𝑖  is defined as  

𝐹𝐶(𝑆𝑖) = 𝐶𝐺(𝑆𝑖) ∙ 𝑆𝐺(𝑆𝑖) (7) 

Although a salient object usually has a high contrast to the background, it may contain some low-contrast parts. As 

a result, the salient object cannot be detected as a whole as these low-contrast parts will be missed due to their small 

sizes and low saliency values. To tackle these problems, a smoothing process (detailed in 4.5) is applied to filter such 

superpixels.  

4.3 Figure and Ground 

Although the image background can be very complicated and even similar to the foreground, in most cases people 

can still recognize the salient objects without difficulty, and this can be explained by the Gestalt law of figure-ground 

that human’s perception is the fusion of observed objects and their surrounding background. To this end, we can 

enhance the contrast of salient superpixels for their easier detection by suppressing the saliency value for the 

superpixels in the background. Based on gestalt law of similarity and proximity, salient objects in superpixel level 

image are composed of several superpixels with similar color appearance and close spatial distance. This actually 

indicates that salient objects are formed by several superpixels in a compact manner yet the distribution of background 

superpixels tends to be more dispersive. Based on this assumption, in this subsection, we introduce a novel 
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background suppression model, the spatial distribution of superpixels is utilized to highlight the objects and suppress 

the background.  

According to the dominant color theory [74], images are usually quantized into up to 8 dominant colors. Similarly, 

for a given superpixel level image, the colors of all superpixels can also be divided into 8 coarse clusters in the L*a*b* 

color space, where each of the three individual color components is divided into two parts by a threshold  𝑇(.). For 

each of the eight color clusters, the extracted dominant color is denoted as 𝐶𝑖 = [x̅i
L, x̅i

A, x̅i
B], 𝑖 ≤ 8, where x̅i

(.)
 is the 

average value in one of the three color components L*, a* and b*, and 𝐶𝑖  will be used as the center for the 

corresponding color cluster.  

Herein the color boosted Harris point (CBHP) operator [72] is employed to determine the coarse regions of 

foreground and background. For color or greyscale images, the CBHP operator and luminance operator are 

respectively applied to detect the salient points, where a convex hull is computed to enclose all these salient points. All 

superpixels within the convex hull are defined as the foreground and the remaining superpixels as the background (see 

for example in Fig. 2 module 4). Let  𝑀𝑃𝐺𝑓

(.)
 and 𝑀𝑃𝐺𝑏

(.)
 denote the mean color (with three components) of the 

foreground 𝐺𝑓 and the background 𝐺𝑏. To maximize the color contrast, in each color component the threshold T(.) is 

adaptively defined as 𝑇(.) =
1

2
(𝑀𝑃𝐺𝑓

(.)
+ 𝑀𝑃𝐺𝑏

(.)
). 

With the adaptively determined eight dominant colors above, we merge similar colors for simplicity below. We 

iteratively examine each pair of the extracted dominant colors and merge them if their Euclidean distance is less than 

a threshold 𝑇𝑑. For each image, the threshold is adaptively decided as half of the Euclidean distance between 𝑀𝑃𝐺𝑓

(.)
 

and 𝑀𝑃𝐺𝑏

(.)
 , and the upper limit of 𝑇𝑑 is set as 15.  

Let 𝐶𝑖  and 𝐶𝑗 be two color clusters, they can be merged by the weighted average agglomerative procedure [75]:  

𝐶(∙) = 𝜌𝐶i
(∙) + (1 − 𝜌)𝐶j

(∙)
 

𝜌 =
𝑝𝑖

𝑝𝑖 + 𝑝𝑗

 

(8) 

where 𝑝𝑖  and 𝑝𝑗 denote respectively the numbers of pixels in 𝐶𝑖  and 𝐶𝑗 . For each superpixel-level image, we can 

usually extract 3-8 dominant colors, located in background or foreground. In other words, we may have up to 16 color 

clusters obtained, where half of them are from the foreground group and others from the background group. As the 
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spatial information is excluded in color quantization, within each color cluster the superpixels are not necessarily 

spatially grouped together. This means that each color cluster may contain several separated objects composed of one 

or more superpixels. As a result, the superpixel-level image has now become object-level image. 

For each color cluster 𝐶𝑘 in either 𝐺𝑓 or 𝐺𝑏, denote 𝑀(𝐶𝑘) as its the geographic center. The spatial compactness 

term of 𝐶𝑘 is defined as the average distance between 𝑀(𝐶𝑘)  and each object 𝑂𝑖  it contains:  

𝑆𝑑𝑓(𝐶𝑘) =
1

𝑁𝑘

∑ ‖𝑀(𝑂𝑖) − 𝑀(𝐶𝑘)‖

∀𝑂𝑖⊂𝐶𝑘⊂𝐺𝑓

 (9a) 

𝑆𝑑𝑏(𝐶𝑘) =
1

𝑁𝑘

∑ ‖𝑀(𝑂𝑖) − 𝑀(𝐶𝑘)‖

∀𝑂𝑖⊂𝐶𝑘⊂𝐺𝑏

 (9b) 

where 𝑘 ≤ 8, 𝑁𝑘 denotes the number of objects in the cluster 𝐶𝑘 and  𝑀(𝑂𝑖) refers to the geographic center of the 

object 𝑂𝑖 . 

Similar to 𝑃𝑑𝑛𝑜𝑟𝑚
 in Eq. (1),  𝑆𝑑 can be scaled into [0, 1] by  

𝑁𝑆𝑑(𝐶𝑘) =
𝑆𝑑(𝐶𝑘) − 𝑆𝑑𝑚𝑎𝑥

𝑆𝑑𝑚𝑖𝑛 − 𝑆𝑑𝑚𝑎𝑥

 (10) 

where 𝑆𝑑(𝐶𝑘) is either 𝑆𝑑𝑓(𝐶𝑘) or 𝑆𝑑𝑏(𝐶𝑘); 𝑆𝑑𝑚𝑖𝑛  and 𝑆𝑑𝑚𝑎𝑥  refer respectively to the minimum and the maximum 

of all spatial compactness values of 𝑆𝑑. 

By applying the spatial compactness, the salient objects can be highlighted. Herein we introduce a new 

background correlation term to further suppress the background and enhance the salient objects. This term is used to 

measure the connection degree between an object O and the image borders, where a large value indicates a high 

degree of overlapping between O and the image borders. As a result, the object O will be more likely be classified into 

the background as we assume the salient object should be away from the image borders. The background correlation 

term is defined as 

𝐵𝑐(𝑆𝑖) =
𝑁𝑏

𝑁𝑐

,   𝑆𝑖 ⊂ 𝑂 (11) 

where 𝑁𝑐 denotes the total number of superpixels in O, among which 𝑁𝑏 is the number of superpixels in O that 

directly connects to the image borders. Using the maximum and the minimum of all possible values of 𝐵𝑐, denoted as 

𝐵𝑐_𝑚𝑎𝑥 and 𝐵𝑐_𝑚𝑖𝑛, we can obtain normalized 𝐵𝑐 within [0,1] below.    
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𝐵𝑐
̅̅ ̅(𝑆𝑖) =

𝐵𝑐(𝑆𝑖) − 𝐵𝑐_𝑚𝑎𝑥

𝐵𝑐_𝑚𝑖𝑛 − 𝐵𝑐_𝑚𝑎𝑥

 (12) 

4.4 Background connectivity 

In this subsection, an effective method of background detection [20] is employed to extract the background 

connectivity in a numerical value by determining the probability of each superpixels being the background. For a 

given superpixel 𝑆𝑖, the associated background probability can be determined by:  

𝐵𝑃(𝑆𝑖) =
𝐿𝑒𝑛(𝑆𝑖)

√𝐴(𝑆𝑖)
, (13) 

𝐴(𝑆𝑖) = ∑ 𝑒𝑥𝑝 (−
𝑑𝑔𝑒𝑜

2 (𝑆𝑖 , 𝑆𝑗)

2𝜎2
)

𝑛

𝑗=1

, (14) 

𝐿𝑒𝑛(𝑆𝑖) = ∑ exp (−
𝑑𝑔𝑒𝑜

2 (𝑆𝑖 , 𝑆𝑗)

2𝜎2
)

𝑛

𝑗=1

∙ 𝛿 (𝑆𝑗). (15) 

where 𝜎 is set to 10,  δ(∙) is 1 for superpixels on the image boundary and 0 otherwise as suggested in [65], and 𝑛 is the 

number of superpixels. 𝑑𝑔𝑒𝑜(𝑆𝑖 , 𝑆𝑗) is the geodesic distance between any two superpixels, which is calculated by 

accumulating the weights 𝑑𝑎𝑝𝑝, measured using the Euclidean distance along the shortest path formed by a sequence 

of adjacent superpixels between 𝑆𝑖 and 𝑆𝑗 on the graph, and 𝑙 is the total number of superpixels in the determined 

path. 

𝑑𝑔𝑒𝑜(𝑆𝑖 , 𝑆𝑗) = min
𝑆1=𝑆𝑖,𝑆2,…,𝑆𝑙=𝑆𝑗

∑ 𝑑𝑎𝑝𝑝(𝑆𝑖 , 𝑆𝑖+1)

𝑙−1

𝑖=1

 (16) 

To scale 𝐵𝑃 within [0,1], the parameter 𝜎𝐵𝑃 is set to 1, and the normalization process is defined as:  

𝑁𝐵𝑃(𝑆𝑖) = 1 − 𝑒𝑥𝑝 (−
𝐵𝑃2(𝑆𝑖)

2𝜎𝐵𝑃
2 ) (17) 

4.5 Two-stage refinement 

In the first stage refinement, the feature contrast map, spatial compactness term and background correlation terms 

will be smoothed separately and fused together to generate initial saliency map. 

For each superpixel, its saliency value is replaced using the weighted average of the saliency values of its 

surrounding superpixels. Similar to image filtering, the process applied to the superpixel level image can also smooth 
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the saliency values for more consistent detection of salient objects. In [24], a linear varying smoothing operator  is 

employed to smooth the color contrast  in the image.  However, this smoothing procedure fails to address the spatial 

factor. In our approach, we improve this procedure with Gestalt law of similarity and proximity, and apply it to 

superpixel level image filtering.  For robustness, for a given superpixel 𝑆𝑖, we choose 𝑘 = 𝑛/8 nearest neighbors for 

weighted average to refine the feature contrast value of 𝑆𝑖 locally as follows:   

𝑅𝐹𝐶(𝑆𝑖) =
1

(𝑘 − 1)𝑇
∑(𝑇 − 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)) ∙ 𝐹𝐶(𝑆𝑖) ∙ A𝑗

𝑘

𝑗=1

 (18) 

where 𝑇 = ∑ 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)𝑘
𝑗=1  is the sum of color similarity and spatial proximity between 𝑆𝑖  and its k nearest 

neighbors.  

For the input image in Fig. 3(a), Fig. 3(b) shows 

the contrast-based saliency map obtained from Eq. (7). 

Due to the shadow-caused low contrast parts in the 

flower, the saliency map actually contains many low 

saliency valued superpixels. This will inevitably affect 

the successful detection of the salient object from the 

image. As a result, the smoothing process and 

background suppression model is applied with the results shown in Fig. 3(c). After smoothing, the saliency map has 

been improved in several ways. First, the low saliency values from the salient object have been enhanced. Second, the 

saliency values for all the superpixels become more consistent, which are actually raised. This shows that the 

proposed smoothing procedure can not only filtering low-contrast defects but also normalize the overall saliency 

values. Consequently, the quality of the adjusted saliency map is significantly improved. 

For all the superpixels in 𝐶𝑘, they will be assigned the same spatial compactness term 𝑁𝑆𝑑(𝐶𝑘) as determined in 

Section 4.3. The lower this value is, the higher likeness the salient object it has. Although 𝑁𝑆𝑑(𝐶𝑘) can measure the 

spatial compactness of all superpixels within 𝐶𝑘 , it cannot differ between them even for incorrectly detected 

foreground superpixels. To overcome this drawback, using the similar process in Eq. (18), the Gestalt laws of 

similarity and proximity are applied to smooth the spatial compactness term for each superpixel 𝑆𝑖 as follows: 

(a) (b) (c)  

(d) (e) (f)  

Fig. 3. An example of proposed saliency computation: (a) The original 
image, (b) Feature contrast map, (c) background suppression map, (d) 

first-stage refinement, (e) final saliency map after second-stage 

refinement, and (f) the ground truth map. 
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𝑅𝑆𝑑(𝑆𝑖) =
1

(𝑛 − 1)𝑇
∑ (𝑇 − 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)) ∙ 𝑁𝑆𝑑(𝑆𝑗)

𝑛

𝑗=1

, 𝑆𝑗 ⊂ 𝐶 (19) 

where again n is the number of superpixels, 𝑇 = ∑ 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)𝑛
𝑗=1  is the sum of color similarity and spatial proximity 

between 𝑆𝑖 and other superpixels. Note that, in global refinement all superpixels rather than neighboring superpixels 

are selected for weight average because the spatial compactness term has been extended from superpixel-level to 

object-level. 

In addition, the background correlation term can also be globally refined by  

𝑅𝐵𝑐
(𝑆𝑖) =

1

(𝑛 − 1)𝑇
∑ (𝑇 − 𝐼𝐶𝑆(𝑆𝑖 , 𝑆𝑗)) ∙ 𝐵𝑐

̅̅ ̅(𝑆𝑗)

𝑛

𝑗=1

, 𝑆𝑗 ⊂ 𝑂 (20) 

Finally, the background suppression map is determined by using the conjunction of both the spatial compactness 

term 𝑅𝑆𝑑(𝑆𝑖) and background correlation term 𝑅𝐵𝑐
(𝑆𝑖) below: 

𝑂𝑃(𝑆𝑖) = 𝑅𝑆𝑑(𝑆𝑖) ∙ 𝑅𝐵𝑐
(𝑆𝑖) (21) 

Based on Eq.(18) and Eq. (21), our initial saliency map is formed by   

𝐼𝑆𝐴(𝑆𝑖) = 𝑅𝐹𝐶(𝑆𝑖) ∙  𝑂𝑃(𝑆𝑖) (22) 

In the second refinement stage, the initial saliency map and the background probability map are fused by adopting 

a cost function [20] to optimize the whole procedure. Let FSAi denote the final saliency value determined for the 

superpixel Si, the cost function is given by:  

𝐽(𝐹𝑆𝐴𝑖) = min
𝐹𝑆𝐴𝑖

[∑ 𝑁𝐵𝑃(𝑆𝑖) ∙ 𝐹𝑆𝐴𝑖
2

𝑛

𝑖=1

+ ∑ 𝐼𝑆𝐴(𝑆𝑖) ∙ (𝐹𝑆𝐴𝑖 − 1)2

𝑛

𝑖=1

+ ∑ 𝜔𝑖,𝑗 ∙ (𝐹𝑆𝐴𝑖 − 𝐹𝑆𝐴𝑗)
2

𝑛

𝑖,𝑗=1

], (23) 

𝜔𝑖,𝑗 = 𝑒𝑥𝑝 (−
𝑑𝑎𝑝𝑝

2 (𝑆𝑖 , 𝑆𝑗)

2𝜎2
) + 𝜇 (24) 

Note that 𝜎  is set to 10 as defined in Eq. (14). As seen in Fig. 3 (d-e), by adding the two-stage refinement, the 

salient object can be significantly highlighted whilst the saliency value for the background is effectively suppressed. 

5 EXPERIMENTAL RESULTS 

For performance evaluation of our proposed saliency detection method, in total 10 state-of-the-art algorithms are 

used for benchmarking, as listed below by the first letter of the name of methods. They are selected for two main 
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reasons, i.e. high citation and wide acknowledgement in the community and/or newly presented in the last 3-5 years. 

Introduction to the datasets and criteria used for evaluation as well as relevant results and discussions are presented in 

detail in this section. 

 Bayesian saliency via low and mid-level cues (LMLC) [1] 

 Dense and sparse reconstruction (DSR) [17] 

 Graph-based manifold ranking (GMR) [12] 

 Minimum barrier (MB+) [2] 

 Region based contrast (RC) [3] 

 Salient region detection via high dimension color transform (HDCT) [8] 

 Superpixel based saliency (SP) [14] 

 Robust background detection (RBD) [20] 

 Multiscale Deep Features (MDF) [23] 

 Deep Contrast Learning (DCL) [26] 

5.1 Dataset description 

In our experiments, five publicly available datasets including MSRA10K, DUTOMRON, THUR15K, ECSSD 

and PASCAL-S are employed for performance assessment. 

The MSRA10K dataset [3] contains 10000 images with pixel-level salient object labeling [35, 76]. This database 

has various image categories such as animals, flowers, humans and natural scenes, et al, where most images contain 

only one salient object. Given the large size and wide variety of contents, this dataset is very challenging for testing 

the efficacy of relevant saliency detection approaches. The THUR15K dataset [77] consists of 15000 images, which 

are divided into five categories: butterfly, coffee mug, dog jump, giraffe, and plane. Since it does not contain a salient 

region labeled for every image, we only use those labeled images (6232 in total) in our experiment for testing. The 

DUTOMRON dataset [12] is a very challenging database that contains 5166 images. Each image has one or more 

saliency objects and complex background. The ground truth is labeled by several experienced participants who are 

familiar with the goal of saliency detection.   

The ECSSD dataset [78] and the PASCAL-S dataset [79] are two other challenging databases. ECSSD has 1000 
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semantically meaningful images with the complicated background, which is also widely used for saliency detection 

[35]. PASCAL-S has 850 natural images and contains people, animal, vehicles, and indoor objects. This dataset is 

widely used to recognize an object from a number of visual object classes in the real world [80].  

5.2 Evaluation criteria 

For quantitative performance assessment of the proposed saliency detection algorithm, several commonly used 

metrics are adopted in our experiments, which include the precision-recall curve (PR), average precision (AP), 

receiver operating characteristics (ROC) curve and area under the ROC curve (AUC). By varying a threshold from 1 

to 255 and applying it to the determined saliency map, a series of binary images indicating the detected saliency 

objects can be produced, from which the PR, ROC curve and AUC can be obtained for quantitative assessment.   

The PR curve is formed by the true positive rate (TPR, also namely recall) versus positive predictive value (PPV, 

also namely precision) and the ROC curve is formed by the false positive rate (FPR) versus TPR. The three rates 

including TPR, PPV and FPR are determined by  𝑇𝑃𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
, PPV =

𝑇𝑝

𝑇𝑝+𝐹𝑝
, 𝐹𝑃𝑅 =

𝐹𝑝

𝑇𝑛+𝐹𝑝
 ,  where 𝑇𝑝, 𝐹𝑝, 𝑇𝑛 and 𝐹𝑛 

respectively refer to the number of correctly detected foreground pixels of the salient object, incorrectly detected 

foreground pixels (false alarms), correctly detected background pixels (non-objects) and incorrectly detected 

background pixels (or missing pixels from the object). Specifically, these four numbers can be calculated by 

comparing the binary masks of the detected image and the ground truth. 

In addition, the F-measure defined below is also used for comprehensive performance assessment: 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽) ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (24) 

where the parameter 𝛽 is set to 0.3 to combine the precision and the recall rate as suggested in [18].  

5.3 Assessment of the obtained saliency maps 

To evaluate the performance of the proposed GLGOV method, we show comprehensive comparison results using 

the PR curve and AUC values on all the five datasets. For subjective assessment, several typical examples with either 

large objects or complicated backgrounds are shown in Fig. 4 for comparison. As can be seen, most of these 

benchmarking methods fail to highlight the objects as a whole or with a high contrast. However, our proposed method 

can successfully suppress the background regions and maintain the boundaries for the salient object due to the gestalt 
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law guided cognitive framework. In addition, since the object can be well highlighted, this can further facilitate some 

potential applications e.g. classification of butterflies (rows 7 and 8) and flowers (row 6) and recognition of people 

(rows 3 and 4). 

For quantitative assessment, the results are compared using AP, AUC measurement and running time for each test 

image in Table II. In total there are 10 approaches benchmarked with ours in Table II, where the first eight are 

unsupervised, and the last two are supervised ones using deep learning. All the approaches are tested on a computer 

with Intel Dual Core i5-4210U 1.7 GHz CPU and 4GB RAM, where for consistency GPU is absent for deep learning 

based approaches. Due to hardware configuration reasons, we cannot implement DCL hence we use their published 

saliency maps which are only available for two datasets, i.e. ECSSD and DUTOMRON.  

For unsupervised approaches, the proposed approach yields the highest AUC in all the five datasets, followed by 

DSR, though the AP value from our approach is slightly less than those of DSR except the MSRA10K dataset. 

However, our approach is 3.5 times faster than DSR. This has validated the efficacy of the proposed approach, 

especially the gestalt laws and background connectivity used in guiding the process of saliency detection. Although 

MB+ is the third or fourth place in this group of experiments, the extremely high efficiency makes it a good candidate 

            

            

            

            

            

            

            

            

            
Image GT GLGOV RC[3] MB+[2] HDCT[8] LMLC[1] DSR[17] GMR[12] RBD[20] SP[14] MDF[23] 

 

Fig. 4. Visual comparison. The ground truth (GT) in shown in the second column. 
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for particular applications, i.e. online processing. It is worth noting that although RC, GMR and RBD have very low 

running time, the AUC and AP measurements they achieve on these datasets seem inferior. For RC, the reason for the 

degraded performance is mainly due to the hard constraints it used to reduce the saliency value near the image 

borders. These seem to work fine in the MSRA10K dataset. However, given a large amount of images along with 

large variations in terms of image contents and complex background such as PASCAL-S, these constraints become 

less effective in refining the detected saliency maps. Similar to GMR, it works well on MSRA 10K and ECSSD, but 

fails to process complicated images such as THUR15K and DUTOMRON. For RBD, due to the lack of effective 

foreground detection, its precision isn’t good enough which also leads to its inferior segmentation performance (Table 

IV). For HDCT, the high dimensional color transform used increases the success of foreground and background 

separation but increase the running time as well. Moreover, as aforementioned, this method does not totally fit the 

HVS and results in undesirable results when both the foreground and background contain the same color elements. 

For LMLC and SP, regardless of the running time, their performance seems to be quite low due to the lack of effective 

post-processing to further refine the detected saliency maps. Thanks to our cognitive framework, the way our 

proposed method detects the salient object fit human visual attention very well. This has helped us suppress the 

background and highlight the main objects more effectively. Therefore, the results of several datasets show much less 

inconsistency. It is believed that our computation cost can be significantly improved by transplanting the code from 

Table II  
AUC, AP and running time measurement (top two unsupervised methods are highlighted in red and green). *: deep learning based method 

Method 
Time 

(s) 

MSRA10K PASCAL-S ECSSD DUTOMRON THUR15K Overall(OA) Average(AG) 

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP 

GLGOV 1.68 0.967 0.888 0.868 0.680 0.915 0.773 0.902 0.539 0.905 0.580 0.930 0.715 0.911 0.692 

MB+ [2] 0.05 0.955 0.835 0.859 0.633 0.906 0.695 0.893 0.484 0.900 0.542 0.921 0.665 0.903 0.638 

RC [3] 0.25 0.936 0.838 0.707 0.348 0.893 0.733 0.893 0.503 0.896 0.568 0.905 0.669 0.865 0.598 

LMLC [1] 140 0.936 0.721 0.793 0.516 0.850 0.570 0.818 0.374 0.853 0.447 0.878 0.557 0.850 0.526 

HDCT [8] 4.02 0.941 0.784 0.807 0.628 0.868 0.710 0.867 0.506 0.878 0.541 0.899 0.648 0.872 0.634 

DSR [17] 5.85 0.959 0.878 0.866 0.699 0.915 0.788 0.900 0.578 0.902 0.612 0.925 0.729 0.908 0.711 

GMR [12] 0.5 0.954 0.882 0.860 0.680 0.894 0.748 0.894 0.544 0.886 0.57 0.893 0.706 0.873 0.681 

RBD [20] 0.25 0.944 0.876 0.822 0.663 0.890 0.763 0.854 0.526 0.856 0.579 0.874 0.643 0.846 0.612 

SP [14] 1.2 0.923 0.810 0.780 0.576 0.848 0.682 0.837 0.475 0.843 0.518 0.917 0.701 0.898 0.644 

MDF* [23] 200 0.973 0.871 0.908 0.762 0.941 0.829 0.917 0.649 0.921 0.611 0.943 0.746 0.932 0.745 

DCL* [26] 75 - - - - 0.971 0.897 0.934 0.675 - - 0.940 0.711 0.952 0.786 
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MATLAB to C++ implementation.  

For deep learning based supervised approaches including MDF and DCL, unsurprisingly they produce better 

results in terms of higher AUC and AP values than unsupervised ones, however, they suffer from lengthy training and 

testing time, also their results seem sensitive to the learning strategies used. This has constrained their applicability for 

specific tasks that needs nearly real-time response. For MDF, it gains 2% in AUC and 3.5% in AP than unsupervised 

approach, possibly due to the introduced multiscale CNN deep learning. Nevertheless, for the challenging MSRA10K 

 
PR curve 

  

  
ROC curve 

  

  
Fig. 5. PR and ROC curve. 
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dataset, MDF gains 0.6% in AUC but loses 1.6% in AP when comparing to our proposed unsupervised approach, 

despite of the fact it uses 25% of the samples i.e. 2500 images for training. This again shows the potential limitation of 

the supervised approach where unsupervised approach can supplement.  

To further evaluate the performance of these approaches, we plot in Fig. 5 the PR curves and the ROC curves for 

the results obtained from the five datasets. For better visual effect, we only compare in Fig. 5 the results from the 

unsupervised approaches, as the advantages of deep learning based supervised methods have been discussed 

according to the results in Table II. As seen in Fig. 5, our approach almost outperforms all other unsupervised methods, 

especially on the MSRA10K and ECSSD datasets, yet the performance on the rest three datasets appears quite 

comparable to DSR. Although the curves from MB+ are close to those from our GLGOV approach, the much lower 

AP as shown in Table II indicates more false alarms in the detected results.  

5.4 Key component analysis 

In this subsection, we discuss the effect of several 

key components in the proposed method, where all 

the evaluations are carried out on the MSRA 10k 

dataset due to its popularity. As the proposed 

GLGOV framework is actually a multi-stage 

approach, in the following we assess the 

contributions of three major components of our 

algorithm, which include the feature contrast map 

FC, initial saliency map after the first refinement 

ISA, and the final saliency map with the second 

refinement FSA.  

Fig. 6 shows the ROC curves obtained from these three settings, where the AUC measurements are given and 

compared in Table III. For the feature contrast map FC, the result with an AUC at 93.3% seems undesirable. After 

applying the figure and ground in the first-stage refinement, the AUC reaches 95.58% with an increase of 2.28%. By 

further adding background connectivity model for the second-stage refinement, the AUC becomes 96.67%, i.e. an 

additional gain of 1.09%. Meanwhile, the running time has been increased from 1.16s to 1.47s and 1.68s after 

 
Fig. 6. Results of GLGOV with various settings on the MSRA10K dataset.   

Table III 
AUC values and running time for our GLGOV approach  

under various settings on the MSRA 10K dataset. 

Components FC ISA FSA 

AUC 0.9330 0.9558 0.9667 

Time (s/image) 1.16 1.47 1.68 
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introducing the first and second stage refinement, respectively. This has clearly demonstrates the contribution of the 

key components in our proposed GLGOV framework.  

5.5 Validation on image segmentation 

 

Based on the determined saliency maps, the salient objects can be extracted as binary masks, which can be further 

applied for performance assessment of the saliency detection approaches. Herein the OTSU approach [60] is used for 

adaptive thresholding to generate the binary masks of salient objects. For quantitative performance assessment, we 

calculate the average F-measure of all the test images over their ground truth maps and report the results in Table IV. 

As can be seen, our proposed GLGOV model consistently produces the highest F-measure on the MSRA10K, 

PASCAL-S and the ECSSD datasets in comparison to other unsupervised peers, and also the second best on the 

DUTOMRON and THUR15K datasets after DSR. If taking the five datasets as a whole, our proposed approach 

outperforms the second best, DSR, 1.5% and 1.1% in terms of the overall and average F-measure, respectively.  

It is worth noting that the deep learning based supervised approaches are unsurprisingly high and surpass all 

unsupervised ones. Nevertheless, there is still some space for further improvement of their learning strategies. For 

example, the F-measure from MDF is slightly less than our approach on the MSRA10K dataset, which shows that 

training on 2500 images seems insufficient to fully learn the characteristics of 10k images. This drawback is possibly 

overcome in DCL, as DCL seems more effective than MDF in the tested two datasets, ECSSD and DUTOMRON. 

Again, it shows that the performance of deep learning based approaches can be very sensitive to the learning strategy 

Table IV  
F-measure of segmented results (top two unsupervised methods are highlighted in red and green). *: deep learning based method 

Method MSRA10K PASCAL-S ECSSD DUTOMRON THUR15K Overall(OA) Average(AG) 

Proposed 0.8810 0.6625 0.7592 0.6041 0.6042 0.7320 0.7022 

RC [3] 0.8395 0.4191 0.7277 0.5647 0.5947 0.6926 0.6291 

HDCT [8] 0.8348 0.6074 0.7105 0.5947 0.5881 0.7017 0.6671 

LMLC [1] 0.7501 0.5328 0.5880 0.4340 0.4816 0.5930 0.5573 

SP [14] 0.8106 0.5689 0.6737 0.5367 0.5456 0.6640 0.6271 

GMR [12] 0.8521 0.6467 0.7425 0.5959 0.5924 0.7133 0.6859 

DSR [17] 0.8374 0.6476 0.7388 0.6205 0.6114 0.7174 0.6911 

MB+ [2] 0.8484 0.6614 0.7226 0.5939 0.5977 0.7124 0.6848 

RBD [20] 0.8610 0.654 0.7178 0.6011 0.5851 0.7156 0.6838 

MDF* [23] 0.8794 0.7346 0.8173 0.6948 0.6429 0.7670 0.7538 

DCL* [26] - - 0.8968 0.7375 - 0.7633 0.8172 
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used, regardless the extremely high computational resources and computational cost needed.  

6 CONCLUSIONS 

Inspired by both Gestalt laws optimization and background connectivity theory, in this paper, we proposed 

GLGOV as a cognitive framework to combine bottom-up and top-down vision mechanisms for unsupervised saliency 

detection. Experimental results over five publicly available datasets have shown that our method helps to produce the 

best overall accuracy and average accuracy when benchmarking with a number of state-of-the-art unsupervised 

techniques. Additional assessments in terms of the PR curve, ROC curve, F-measure, AUC and AP have also verified 

the efficacy of the proposed approach.  

The most important finding in this paper is the efficacy of bottom-up and top-down mechanisms for saliency 

detection, which are actually guided by necrologies such as Gestalt laws and background connectivity. On the one 

hand, the aim of saliency detection is to enable computers to recognize the salient object like human. On the other 

hand, Gestalt laws are the main theories that describe the mechanism of HVS, whilst background connectivity can 

reflect our visual cortex reaction to stimuli. As such, these necrologies can be well introduced into the process of and 

support the modelling of saliency detection. Our outcomes showed that with the guidance of necrologies, the 

proposed unsupervised saliency methodology consistently produces good results on different datasets. Although there 

is still some gap to deep learning based supervised approaches, unsupervised approach may supplement in cases there 

are no sufficient training samples and/or with limited computational resources.  

For future work, we will focus on more in-depth guidance from Gestalt laws on saliency detection, where the laws 

of closure and continuity can be injected to further improve the performance. Texture feature and deep learning 

models will also be considered for saliency detection beyond color contrast where semi-supervised or weakly 

supervised learning can be explored.  
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