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ABSTRACT A growing number of oil and gas offshore infrastructures across the globe are approaching
the end of their operational life. It is a major challenge for the industry to plan and make a decision on
the decommissioning as the processes are resource exhaustive. Whether a facility is completely removed,
partially removed or left in-situ, each option will affect individual parties differently. Stakeholders’ concerns
and needs are collected and analyzed to obtain the most compromised decommissioning decision. Engaging
with hundreds of stakeholders is extremely complicated, hence time-consuming and costly. This issue can
be addressed using a predictive model to provide suggested decommissioning options based on the data of
previously approved projects. However, the lack of readily available relevant datasets is themain hindrance of
such an approach. In this paper, we introduce a new oil and gas decommissioning dataset extensively covering
all types of offshore infrastructures in the UK landscape over a 21-year period. An experimental framework
using several learning algorithms on the new dataset for predicting the decommissioning option is presented.
Various resampling methods were applied to tackle the imbalanced class distribution of the dataset for
improved classification. Promising results were achieved despite the exclusion of some stakeholder-related
features used in the traditional approach. This shows signs of a potential solution for the industry to
significantly reduce time and cost spent on a decommissioning project, and encourages more efforts put
into researching on this timely topic.

INDEX TERMS Classification, decision support tool, machine learning, offshore infrastructure, oil and gas
decommissioning, supervised learning.

I. INTRODUCTION
In light of the recent acceleration of energy transition,
the upcoming wave of offshore oil and gas decommission-
ing activities is creating significant anxieties for oil and gas
operators and governments. As many fields worldwide are
approaching the end of their lifespan, it is estimated that
the total oil and gas decommissioning expenditure globally
would amount to at least US$400 billion between 2021 and
2050 [42]. In addition to massive costs required to decom-
mission offshore facilities, the decommissioning operations
themselves are known to have significant environmental and
social impacts. As such, decisions pertaining to oil and gas
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decommissioning, whether the offshore structure will be fully
removed, partially removed or left in-place, tend to attract
considerable interests from a large quantum of different local,
regional, and global stakeholders.

As currently required by legislative bodies, oil and gas
decommissioning activities have to extensively involve stake-
holders [61]. The list of common stakeholders reported
in the literature is shown in Figure 1 [22], [65]. Hun-
dreds of stakeholders may be involved making the process
of gathering and analyzing information costly and time-
consuming. In addition, these stakeholders have different
interests and preferences, which can pull decommissioning
decisions in multiple directions [15]. This complicates the
decision-making process and makes the decommissioning
project even more lengthy. It has been evidenced that this part
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FIGURE 1. Stakeholders involved in oil and gas decommissioning
operations.

of a decommissioning project can take years and sometimes
up to ten years before an agreement is reached.1

Current best practice for balancing multiple stakeholders’
views and making decommissioning decisions relies heav-
ily on the use of multi-criteria decision analysis (MCDA)
tools [40], [64]. Examples of MCDA tools commonly
adopted for oil and gas decommissioning decision-making
include the Comparative Assessment (CA), Best Practicable
Environmental Option (BPEO), and Net Environmental Ben-
efit Analysis (NEBA). These MCDA tools weighs different
decommissioning options against a set of criteria to determine
the best decision using a scoring system. However, there
is no standard guidance on the score assignment to each
parameter in the criteria. The decision output can thus be
highly subjective. This has shown to cause public controversy
over the decommissioning plan such as in the famous case of
the Brent Spar field, which seriously damaged the operator’s
reputation [37].

As the emergence of technology as well as the growth
in oil and gas decommissioning data, machine learning will
be a good solution to the aforementioned problems. There
has been extensive research on the use of machine learning
in the oil and gas industry. In recent years, the number of
research works in this area reaches several hundred yearly
and is growing exponentially [24]. However, we see very
little progress on machine learning-driven approaches in the
field of oil and gas decommissioning. This could be mainly
attributed to the lack of public datasets. Accessing raw data
of decommissioning activities can done through the form of
reports, where the Offshore PetroleumRegulator for Environ-
ment and Decommissioning (OPRED) database 2 is currently
the biggest public source. Even so, extracting the information
from reports is a challenging task. Interpreting the data and
selecting potential variables to compile a dataset require inter-

1Brent Decommissioning Stakeholder Engagement Report: A
Supporting Document to the Brent Field Decommissioning Programmes
(https://www.shell.co.uk/sustainability/decommissioning/brent-field-
decommissioning.html)

2Oil and gas: decommissioning of offshore installations and pipelines
(https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-
installations-and-pipelines, Accessed on: Jul. 24, 2021)

disciplinary knowledge of engineering, management, law,
data science, etc.

There had not been any public oil and gas decommis-
sioning dataset readily available for machine learning tasks
until 2021 [71]. The authors introduced a new oil and gas
decommissioning dataset containing decommissioning activ-
ities of pipelines, which is the most common type of offshore
infrastructures. A successful application of machine learning
on predicting the decommissioning option for pipelines was
presented. The overall classification results were promising
although the issue of imbalanced class distribution was not
addressed leading to low accuracy in the smaller classes.
These results are similar to those presented in earlier work
of Martin et al. [46], which is, to the best of our knowledge,
the first published research work in machine learning-related
oil and gas decommissioning. However, the limitation of this
work is that only one out of several existing types of offshore
infrastructures was considered. Similarly, a key weakness
of Martin et al. [46]’s work is the very limited number of
real-world instances used in the experiments. The classifica-
tion results were based on only 14 oil and gas decommission-
ing activities.

In this paper, we introduce a new, extensive and up-to-date
oil and gas decommissioning dataset and present the use of
several machine learning techniques to build predictive mod-
els for the decommissioning option. The main contributions
are outlined as follows:
• A new oil and gas decommissioning dataset is pre-
sented to the research community. The dataset contains
1,846 instances covering all types of offshore oil and gas
infrastructures. The data was extracted from the reports
of 120 decommissioning programs undertaken by 31 oil
and gas companies over a 21-year period. This data is
very up-to-date as the last program approval included
was granted in June 2021. Exploratory data analysis
with in-depth technical discussion of the dataset is pro-
vided. This also includes removal of ineffective features
and redundant feature identification through correlation
analysis.

• We present an experimental framework using machine
learning for predicting the oil and gas decommissioning
option. Several supervised learning methods have been
applied. Results show that this approach is a potential
direction for the oil and gas industry in planning and exe-
cuting decommissioning activities. By following such an
approach, some information that usually takes year to
collect from hundreds of stakeholders can be dropped.
This is the first time it is proved by experimental evi-
dence that some of the key features considered in the
traditional approach can be omitted. This crucial finding
will facilitate significant reduction of costs and time
spent on a decommissioning project.

• Various data resampling techniques for handling
class-imbalance have been used to improve the clas-
sification. The obtained results will encourage further
efforts put into improving the prediction accuracy in
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order to motivate the adoption of this emerging tech-
nology in the industry, not only to save costs and time
but also to reduce human biases in determining the
decommissioning option. This research findings will
also pave the way for future exploration and study on
this timely topic.

The remainder of this paper is structured as follows.
Section 2 provides recent related applications of machine
learning in the oil and gas industry. Section 3 introduces
the new oil and gas decommissioning dataset with detailed
discussion on the dataset’s properties and statistical analy-
sis. In Section 4, an explanation of two sets of experimen-
tal setups for predictive decommissioning option is given.
Section 5 presents results and discussion in detail. Finally,
Section 6 concludes the paper, findings and potential future
directions.

II. MACHINE LEARNING IN OIL AND GAS
In recent years, machine learning has attracted considerable
attention from the oil and gas industry [7]. The annual number
of machine learning research papers in the industry reaches
several hundreds and is rising exponentially [24]. Exam-
ples of machine learning utilization are petroleum explo-
ration and production forecasting [53], [59], detection and
correction of equipment malfunctions [72], maintenance sup-
port system [33], reservoir modeling and characterization
[21], [31] and drilling performance optimization [30], [63].

In determining locations to develop oil fields takes sig-
nificant effort to manually process and interpret well log
data [60]. Many machine learning-driven approaches have
been proposed to address the lengthy and time-consuming
issue [10], [32], [53], [60]. However, none had succeeded
in a fully automated process without human intervention
in interpreting and concluding the results [10], [53], [60].
The significant amount of missing data in well logs is one
of the key hindrances in applying machine learning [25].
Nick et al. [10] showed the use of boosted trees to esti-
mate missing values in order to improve the lithology clas-
sification accuracy of a deep neural network. Geological
model matching is another tedious task in field exploration.
Roubickova et al. [53] proposed a semi-supervised clustering
approach to significantly reduce a number of models used
in determining locations for developing oil fields. Firstly,
regression analysis was used to estimate the amount of oil in
place (OIP) in each geological model. This was followed by
clustering the models based on OIP. By using representative
models from each cluster, they were able to reduce the num-
ber of final models to as low as 0.5%. This will help reduce
the time spent in model matching; nonetheless, experts are
still needed to complete the entire process.

Numerical reservoir simulation is so far the most effec-
tive means for oil and gas production forecasting used in
the industry [6]. However, it requires accurate prior man-
ual operations and calculations, which is time-consuming.
A great deal of machine learning-based methods have been

proposed for production forecasting while getting rid of such
a limitation. Deep learning techniques have been used for
prediction of time-series data. Among several techniques,
Long Short-Term Memory Neural Network (LSTM) was
often adopted [2], [19], [41], [56], [62]. Similarly, Adaptive
Neuro-Fuzzy Inference System (ANFIS) is another efficient
algorithm for time-series prediction that was frequently used
for such a task [6], [73].

During drilling operations, unexpected hazards and equip-
ment failure can cost severe losses [47]. Attempts to mitigate,
early detect, or prevent such events using machine learning
have been proposed. A recent survey showed that deep learn-
ing, support vector machine and random forest had lately
become more popular in the application of hazard predic-
tion [50]. Mamudu et al. [43], [44] developed hybrid models
based on neural network and Bayesian network algorithms
that not only served as a risk monitoring system but also
as product optimization. Roy et al. [54] utilized ANFIS for
predicting fracture toughness to prevent rock failure during
drilling. They showed that such an approach provided sig-
nificantly higher accuracy than the traditional analysis using
multiple regression.

Lost circulation, which is loss of drilling fluid into a forma-
tion, is one of the most common issues that lead to many other
problems in oil and gas productions [34]. Both traditional
learning algorithms and neural network-based algorithms
were used in prediction of lost circulation [1], [4], [5], [34],
[55]. In [55], the authors presented regression analysis on the
severity of lost circulation using decision tree and artificial
neural network-based models. Since the data size was not
sufficiently large, it is not surprising that the decision tree
model provided higher accuracy than the other. Similarly,
Abbas et al. [1] reported superior results of SVM over neu-
ral network-based algorithms in predicting lost circulation
occurrence. In contrast, when dealing with a large amount of
data such as time-series data, Aljubran et al. [4] showed that
deep learning methods far outperformed traditional ones in
lost circulation detection.

In petroleum refining, product qualitymonitoring is critical
for industry’s profitability. The concentrations of the top and
the bottom streams in the distillation column needs to be well
controlled to achieve desired product purity. This is challeng-
ing for engineers since the distillation columns are complex
and highly unpredictive [51]. Application of machine learn-
ing has been proposed to handle such a task; however, not
manyworks have been seen due to limited available data [20],
[36], [52]. Fatima et al. [20] used ANFIS to estimate the top
and bottom compositions in a distillation column. Even with
limited samples, the ANFIS model provided good prediction
accuracy. Similarly, Ramli et al. [51], [52] proposed the use
of neural network for composition prediction. Since some
variables were not available from the plant, they obtained
these missing variables by means of simulation.

From well exploration to petroleum refining, the literature
shows that machine learning is capable of diminish human
effort in many processes. Despite, one missing important
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piece is the application of machine learning in decommis-
sioning of offshore infrastructures [46]. The complicated and
time-consuming nature of planning and decision making for
decommissioning [11] makes machine learning a potential
candidate for addressing such an issue. To the best of our
knowledge, there has been only two publications recently
in the topic of machine learning-driven approaches for oil
and gas decommissioning [46], [71]. This limitation was
due to the lack of oil and gas decommissioning datasets
readily available for researchers. Martin et al. [46] showed
that it was feasible to predict decommissioning option using
machine learning techniques. However, their experimental
results were based on bootstrapping of 14 real-world samples,
which was a very small number of data and hence prone
to cause errors and overfitting [67]. Another key drawback
of their approach is the inclusion of CA assessment scores.
In so doing, they did not get rid of time and resources
required to gather and analyze the information from several
hundreds of stakeholders. Moreover, assessment scoring is
known to be subjective since there is no standard prescriptive
guidance to follow [71]. These weaknesses were addressed
in the work of Vuttipittayamongkol et al. [71]. The authors
introduced the first publicly available oil and gas decom-
missioning dataset, where promising results on predictive
decommissioning option were presented. As opposed to the
earlier work of Martin et al. [46], CA scores were not taken
into account and hundreds of real samples were used in the
experiments. However, the limitation of this work is that out
ofmany types of oil and gas infrastructures [15], only pipeline
was considered.

III. DATASET
The new oil and gas decommissioning dataset is composed
of 1,846 instances, each of which represents the decommis-
sioning activity of an offshore infrastructure. Table III shows
part of the dataset in the CSV file. The full dataset is made
available online (See GitHub3). The class label is the final
decommissioning option: Full Removal, Partial Removal,
Leave In-Situ. Selection of features that potentially influence
decommissioning decision-making was based on an expert’s
review of decommissioning guidelines of various industries
worldwide. All types of offshore infrastructures, which com-
prises a total of 17 types, are included. It has to be noted that
we group these structure types into two categories regarding
the difference in features for classification purposes. Detailed
analysis and discussion on the dataset is given below.

A. DATA COLLECTION AND EXTRACTION
We extracted 1,846 decommissioning activities from
120 decommissioning program reports. The reports are open
to the public in the OPRED database,2 the sole source of
oil and gas decommissioning reports in the United Kingdom
landscape. The 120 decommissioning programs were under-

3https://github.com/fonkafon/OilGas/blob/main/Dataset_Full_Updated_
18June2021.csv TA
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FIGURE 2. Example of part a decommissioning program report from which we extracted the data.

taken by 31 different oil and gas companies and approved
by OPRED during 2000-2021. Each program report contains
four documents: 1) decommissioning proposal, 2) compar-
ative assessment report, 3) environmental statement and
4) stakeholder engagement report. Figure 2 shows part of
an information table in a decommissioning program report
from which we extracted data. In column 2 of the example,
PLUmeans umbilical. Electro in column 5 refers to electrical
parts, which implies that the structure was made of metal.
Information in column 6 and 10 indicates that chemical
residues were present. It is also worth noting that the reports
are in different formats. Thus, extracting data from hundreds
of these documents requires not only a great deal of effort but
also multidisciplinary knowledge of an expert in engineer-
ing, management, law, data science, etc. This is one of the
main reasons that oil and gas decommissioning datasets are
scarcely available to the research community.

The rationale that we selected the oil and gas UK landscape
for the study is as follows. Firstly, the source is publicly
available unlike other landscapes such as Thailand, where
data is only accessible to oil and gas operators in a Production
Sharing Agreement. Secondly, its public database of decom-
missioning project reports is the largest source in the world.

Table 2 contains the description of 17 features and the
class label. These features were selected based on extensive
literature review [11], [15], [18], [64], [66] and the analysis
of the report documents. It is found that the type of oil and
gas offshore infrastructure influences the decommissioning
option. This is because each type of structures also presents
its own safety, technical, environmental, social and economic
challenges [15], [23], [64]. Similarly, other technical spec-
ifications, namely, weight, size, diameter, length, materials
(metal, plastic, concrete), residues and position of the struc-
ture also impact the determined outcome of the CA process.

Numerical values of Weight, Size, Diameter and Length
needed to be converted into the same units to allow appropri-
ate comparison. In general, the larger and heavier the offshore
infrastructure, the more difficult it is to be fully removed [18].
The material that makes up the infrastructure can have an
effect on the decommissioning option because of potential
environmental impacts. Plastic materials, for example, are
preferably removed in full as they can degrade and release
harmful chemicals into the marine environment [58].

With regard to the residues, they are determined by the
function of the infrastructure. Storage tanks, for example,

are used for the purpose of storing hydrocarbons prior to
being transported to the shore. As such, despite cleaning and
flushing efforts, storage tanks are expected to contain hydro-
carbon residues. Similarly, umbilicals are used to transport
chemicals, e.g. methanol, and hence are expected to contain
some chemical residues. Residues would have an impact on
the decommissioning option as removing the infrastructure
would eliminate the risk of these residues leaking into the
marine environment, in the case the integrity of the infras-
tructure fails [17].

The position of the structure can either be surface (above
the waterline), seabed laid (on the seabed) or trenched and
buried. Buried pipelines, for example, are more difficult
to be fully removed as compared to surface laid pipelines.
Extensive dredging of the seabed is required to expose the
pipelines so that they can be accessed by cranes for removal.
Such an activity, which may cause leakage in the pipelines,
is an environmental concern that affects the decommissioning
decision [13].

As can be seen in Table 2, the qualitative analysis val-
ues of the five aspects in the CA, namely, technical, safety,
environmental, societal and cost, are also included in the
dataset. Following the OPRED guidance,2 decommission-
ing program reports of oil and gas fields in the UK land-
scapemust include the comparative assessment to incorporate
stakeholders’ opinions. As discussed earlier, these variables
are prone to be subjective and require tedious efforts. In later
sections, extensive analyses will be carried out to determine
the redundancy of the five aspects with other features and the
plausibility of excluding them in the classification task.

Finally, the class label is the decommissioning decision
approved and adopted for the activity. While there are
different decommissioning sub-methodologies, the eventual
decommissioning decision can largely be classify into three
main categories: full removal, partial removal and leave in-
situ [11]. Single-lift, piece-small, and multiple-lift method-
ologies, for example, are all sub-categories of full removal.
The reason for not considering multiple sub-categories of
decommissioning options is because firstly, they can be
largely influenced by external factors such as the availability
of tools and vessels, rather than actual features of the infras-
tructure itself. Secondly, many of these sub-methodologies
are only assessed after the comparative assessment process
through further front end engineering and design, and nego-
tiations with the supply chain.
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TABLE 2. Feature description.

B. EXPLORATORY DATA ANALYSIS
In this section, we will explore in detail the characteristics of
each feature in the dataset. Since different types of structures
have different forms, some features will be different and
hence in later sections classification will have to be carried
out separately. We subset the dataset into 2 categories that
are 1) Subsea Umbilicals, Risers and Flowlines (SURF) and
2) Non-SURF. SURF will have Diameter and Length due
to their cylindrical shapes whereas other types of structures,
which are at location, have Weight and Size. Detailed discus-
sion of the categorical and discrete features will be provided
followed by discussion of the continuous features.

1) TYPE
As shown in Figure 3, which presents the distribution of data
by type, there are 17 types of offshore structures. Pipeline,
umbilical and cable are in the categories of SURF whereas
the remaining types belong to Non-SURF. There are a total
of 1,133 instances in SURF and the remaining 713 are in Non-
SURF. Not surprisingly, pipeline, which is the most common
types of offshore infrastructures [61], is the majority in the
dataset.

2) CA ASPECTS
Figure 4 shows the distribution of each of the fives aspects in
CA in the SURF category. Interestingly, all 1,133 instances
have the same values in each of Technical, Environmental,
Societal and Cost. This can be justified as follows. Based
on the sizes and weights of SURF structures, technically, all

FIGURE 3. Data distribution by type and category.

could be fully removed. However, fully removing a SURF
structure requires cutting, dredging, and exposure of person-
nel to harsh offshore environment for a long period of time
hence compromising safety. As such, it is better to remove
the structure partially. Environmentally, fully removing all
SURF would be better to eliminate the risks of residues
leaking into the marine environment, in the case that the
SURF element degrades over time. It will also revert the
seabed to a pristine condition prior to oil and gas exploration.
Societal-wise, removing SURF structures would ensure the
safety of fishermen and other users of the sea. In terms of
cost, the operation will be the cheapest if the structure is just
left in-place. Therefore, in the classification task, it is clear
that the four features with single values, namely, Technical,
Environmental, Societal and Cost should be dropped as they
will not have any contribution.

For the Non-SURF category, as can be seen in Figure 5,
there are different values in each aspect. Even though there
are some values with small frequency, they should not be
ignored when performing classification. Technically, most
infrastructures in the Non-SURF category could be fully
removed. With further exploration, we found that the remain-
ing structures that should not be fully removed are extremely
large and heavy jackets. These jackets were designed to be
installed; hence, no considerations was given to its removal.
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FIGURE 4. Distributions of the five aspects in CA in SURF.

FIGURE 5. Distributions of the five aspects in CA in Non-SURF.

Based on current technology, it is technically not feasible to
remove them fully.

As for Safety, the 311 samples of full removal are the
smaller subsea equipment and floating production units. All
these equipment can be easily removed without significantly
compromising the safety of the personnel conducting the
removal work. The same eight cases of leave in-situ for
Technical and Safety are significantly heavy concrete gravity-
based jackets, which were not even feasible to be partially
removed. Similarly, the 394 partial removal are large struc-
tures. Full removal would pose risks to the personnel con-
ducting the removal.

In the environmental aspect, full removal is generally pre-
ferred because it eliminates the risk of residues leaking. The
19 Leave In-Situ cases consists of concrete gravity-based
jackets and drill cuttings. Removing concrete gravity-based
jackets requires a great deal of effort and power, which could
result in significant carbon emissions and disturbance to the
marine environment whereas disturbing drill cuttings will
release toxic materials into the marine environment. As such,

it is environmentally best to leave them in-situ. The 45 partial
removal items are drilling piles. Because they were ham-
mered deep into the seabed, removing them causes seabed
disturbance. As such, in the environmental aspect, it would
be best to partially cut the drilling piles and remove them.

The societal aspect is mainly driven by the impact to com-
mercial fisheries. Full removal is generally the most preferred
when possible. The partial removal cases are piles, which
could only be partially removed. The three leave in-situ cases
are large concrete-based jackets, which are preferred to be
left in-situ so that the legs can be seen above the waterline by
other users of the sea. In such cases, visual aids are usually
installed on the concrete-based jackets to further enhance
visibility.

In terms of cost, for themajority of the oil and gas facilities,
it is cheaper to not remove them; thus, leaving in-situ is
dominating here. However, the 12 floating production units
are better to be fully removed as there would not be much
economical benefits of leaving them in-situ. For the other
12 partial removal cases, these are the moorings and anchor
chains linked to the 12 floating production units. Removing
them fully would cost more than partially removing, but
there is not much difference in terms of cost between partial
removal and leaving in-situ. As such, partial removal was
preferred.

3) MATERIALS: METAL, PLASTIC AND CONCRETE
Three common materials of offshore oil and gas structures
are metal, plastic and concrete. A structure may be made
with a combination of two or more types of materials. Differ-
ent types of materials affect the decommissioning decision
differently. For example, a metal structure may have a very
highweight, or a structure containing plastic can degrade over
time [58].

All SURF items are generally metal pipes (made of steel,
aluminum or other composites of high grading). As such,
almost all of the SURF items contain metal as evident in
Figure 6. There are few exceptionswhere structures are solely

FIGURE 6. Distributions of the metal and non-metal structures.
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made of plastic. For Non-SURF items, the majority contain
metal as the main build-up material. Steel jackets, for exam-
ple, as its name suggests are made from high-grade steel
materials. Subsea components, anchors and moorings, for
example, are also made of metal so that they can withstand
higher pressure without deforming as compared to plastic
materials. However, there are Non-SURF structures that do
not contain metal. These are concrete-based items such as
concrete gravity-based jackets, concrete mattress and grout
bags.

As seen in Figure 7, the majority of SURF structures con-
tain plastic as part of their coating to prevent direct exposure
of the metal component to the marine environment. These
plastic coatings prevent corrosion and erosion of the metal
component to maintain the integrity of the infrastructure
throughout its operational lifetime. Another usage of plastic
is its flexibility to allow some degree of movements from both
transportation of fluids under high pressure flow rates and/or
to prevent SURF from buckling under high external metocean
forces. However, there are some SURF items that do not
contain plastic. These are generally older SURF structures
coated with layers of concrete, which were used early in the
1970s and 1980s where plastic manufacturing was not yet
popularized.

FIGURE 7. Distributions of the plastic and non-plastic structures.

Most Non-SURF items do not contain plastic. Non-SURF
structures such as manifolds, jackets, and topsides utilize
metal-based protective coatings as a corrosion/erosion pro-
tection method. Metal-based protective coatings are used
rather than plastic to prevent movements of these items.
Jackets and topsides movements should be restricted as much
as possible in order to ensure the safety of the workers on the
platforms.

From Figure 8, it can be seen that the majority of SURF
contain no concrete whereas there are a few exceptions,
which is discussed above. Non-SURFmaterials have a higher
concrete-to-non-concrete ratio as compared to SURF because
there are elements such as concrete gravity-based structures,

FIGURE 8. Distributions of the concrete and non-concrete structures.

grout bags and concrete mattresses that are solely made of
concrete. The majority of the non-SURF items, however, are
made of steels because they are much cheaper, quicker and
technically easier to design, transport and install.

4) RESIDUES
Hydrocarbons and chemicals are common residues left in
offshore structures after cleaning and flushing. Typically,
hydrocarbons, which contain radioactive materials, are con-
sidered more toxic than chemicals. The presence and type of
residues influence the decommissioning decision since they
can harm the environment.

As mentioned earlier, SURF are used to transport hydro-
carbons and chemicals between the wells and the surface
facilities for processing or the shore. It is highly likely that
residues of the transport materials would remain in the SURF
structures as reflected by Figure 9. Exceptions are cables,
which are used for transporting electrical signals to and from

FIGURE 9. Distributions of residue types.
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the topside controls for the purpose of controlling the flow
rate of hydrocarbons and or chemicals in the other SURF
elements. Thus, they do not have any residues.

Figure 9 shows clearly that the majority of non-SURF do
not contain residues because they have little to no contact with
hydrocarbons or toxic chemicals. Mattresses and grout bags,
for example, are just stabilizing features holding SURF items
in place. Jackets and piles are support structures that hold up
topsides.

5) POSITION
The position of the structure is also important in determining
the decommissioning option as it directly impacts the dif-
ficulty and safety in the removal. As shown in Figure 10,
all SURF are either seabed laid, or trenched and buried.
This is due to the fact a SURF item is an infrastructure
connecting a surface oil and gas facility to another located
on the seabed. The variation in burial status for SURF items
largely depends on the metocean conditions in the region,
e.g. wind speed, cyclone occurrences and pathways and wave
conditions.

FIGURE 10. Distributions of structure’s positions.

The dominance of seabed-laid Non-SURF elements is
attributed to mattresses and grout bags being used to stabi-
lize SURF structures on the seabed. Surface facilities, which
are visible above the waterline, include floating production
units, topsides and jacket. Trenched and buried structures are
mostly piles, which are hammered deep into the seabed to act
as a secure foundation holding up the surface facilities such
as topsides and jackets.

6) DECISION
The distributions of decommissioning decisions, which are
the class labels of the dataset, are provided in Figure 11. It is
worth noting that the classes in both SURF and Non-SURF
categories are not equally distributed. This will be explored
in the experiment section.

FIGURE 11. Distribution of decommissioning decisions.

7) WEIGHT AND SIZE
As discussed earlier, Weight and Size will be considered
in Non-SURF elements only. Figure 12 and Figure 13
present the density plots of weights and sizes, respectively.
The graphs suggest that the average weight and size are
on the lower end and there are scattered quantities towards
the upper end. For clearer visibility of the majority of the
values, an inset is given in the figure. Table 3, which pro-
vides statistics of the continuous features, clearly informs
that there are huge gaps among values in Weight and Size.
The largest value is extremely high and the smallest one is
extremely low, and the highest value is also significantly
far from the mean and the median. However, it has been
confirmed by an oil and gas decommissioning expert that
these extreme values are valid and are not outliers. They
are primarily topsides and concrete gravity-based jackets,
which are significantly larger in weight and size compared to

FIGURE 12. Probability distribution of weights.
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FIGURE 13. Probability distribution of sizes.

TABLE 3. Statistics of the continuous features.

other Non-SURF structures. Thus, when training a predictive
model, these extreme values should be included but handled
carefully. Moreover, the skewed distributions of Weight and
Size shown in the insets in Figure 12 and Figure 13 suggest
that normalization will be needed in the preprocessing step.

8) DIAMETER AND LENGTH
Diameter and Length are considered for SURF, which are
pipe-like structures. The probability distribution of Diameter
and Length are presented in Figure 14 and Figure 15, respec-
tively. Although diameters are not normally distributed, fortu-
nately, there is no extreme values in diameters. As can be seen
in Figure 14, there are fewer larger structures. These are found
to be the main production pipelines, where hydrocabons from
smaller in-field pipelines flow into and get transported to
the shore. Table 3 shows that the average diameter of SURF
structures is 5-6 inches. Values in Length are highly diverse
and there exist extreme cases as shown in Figure 15. Very long
structures are the main production pipelines whereas very
short ones are umbilicals, which are typically congregated
less than 2 kilometers.

IV. DATA PREPROCESSING
This section discusses in detail the preprocessing steps we
carried out to prepare the data for building predictive models.
The steps include handling missing values, redundant fea-
tures removal and data normalization.

FIGURE 14. Probability distribution of diameters.

FIGURE 15. Probability distribution of lengths.

A. MISSING VALUES
For SURF, 24 and 2 missing values are found in Diameter
and Length, respectively. There are a total of 24 instances
with missing values, which accounts for 2.12% of the dataset
(1,133 instances). For the ease of convenience and since the
remaining instances would be sufficient for the classification
purposes, we decided to remove those 24 instances from the
dataset. This resulted in 1,109 remaining instances in SURF.

As for Non-SURF structures, there are 19 missing val-
ues in Weight and 475 missing values in Size. The missing
values in Size is large compared to a total of 713 instances
in the dataset. Fortunately, we learned that the Pearson’s
correlation coefficient ofWeight and Size is 0.944 suggesting
a high linear correlation between the two features. These
are considered redundant features, and one of them should
be removed to avoid poor performance of learning algo-
rithms [39]. Thus, we dropped the Size feature from the
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dataset and then removed instances with missing values in
Weight. As a result, there are 649 remaining instances in the
Non-SURF dataset.

B. REDUNDANT FEATURES REMOVAL
We performed feature reduction by eliminating any redun-
dant features from the dataset. This was expected to reduce
computational time and improve the learning accuracy [14].
Following a common approach [28], [49], correlations among
features were examined to discover redundant features. Cor-
relation analyses were carried out on the remaining instances
after missing values and the Size feature were removed from
the dataset.

Since there are both numerical and categorical features in
the dataset, we performed three different sets of correlation
tests: 1) numerical - numerical, 2) numerical - categorical
and 3) categorical - categorical. For the correlation between
two numerical features, Pearson’s correlation coefficient was
used. The correlation between numerical and categorical
features was tested using Intraclass Correlation Coefficient
(ICC). Finally, the Chi-square test was performed to obtain
the relationship degree between two categorical features.
Note that ordinal features such as Metal, Plastic and Concrete
(presence or absence) have been one-hot encoded and were
treated as numerical. Nominal features with only two differ-
ent values, such as Safety in SURF and Cost and Residues in
Non-SURF, were also transformed into numerical values of
0 and 1 using one-hot encoding.

In this study, a pair of features that has a correlation
coefficient above 0.8 or below −0.8 will be considered
redundant [45]. Such a threshold was selected to ensure a
sufficiently high correlation while preventing excessive elim-
ination of features.

1) SURF
As can be seen in Figure 16, the Pearson’s correlation coeffi-
cients among all numerical features in SURF are low. Hence,
there is no concerning linear relationship among these vari-
ables. In Figure 17, Residues and Safety have a high ICC
of 0.97. This high degree of relationship coincides with our
discussion about the two features in Section III. To pursue our
objective of reducing costs and time in planning a decommis-
sioning project and considering that the residue information
can be readily obtainable, it was clear that Safety should be
the choice for elimination. In Figure 18, there is no corre-
lation coefficient above the elimination threshold among the
categorical features. Thus, only Safety was further removed
from the SURF dataset.

2) NON-SURF
Figure 19 shows that there is no concerning linear relationship
among the numerical features in Non-SURF. In Figure 20 and
Figure 21, it can be seen that Type has high correlations with
many other features, namely, Metal, Concrete, Technical,
Safety and Position. Thus, removing Typewould get rid of the
redundancies. Moreover, in Figure 20, Weight appears highly

FIGURE 16. Correlations among numerical features in SURF.

FIGURE 17. Correlations between numerical and categorical features in
SURF.

FIGURE 18. Correlations among categorical features in SURF.

correlated with Environmental and Societal. Following our
objective to minimize the use of comparative assessment
analysis and considering that the weight information can be
readily available, Environmental and Societal were the better
choice for feature reduction. Thus, Type, Environmental and
Societal will be excluded for the classification of the Non-
SURF dataset.

C. NORMALIZATION
Since varying scales of numerical features can cause biases
during learning of an algorithm, we applied normalization
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FIGURE 19. Correlations among numerical features in non-SURF.

FIGURE 20. Correlations between numerical and categorical features in
non-SURF.

to suppress this flaw. Min-Max scaling was used for this
purpose. Equation 1 expresses the formula of the Min-Max
scaling, where xmax and xmin are the maximum and minimum
values of the feature, respectively. This will scale the feature
values to be in the range of 0 and 1.

x ′ =
x − xmin

xmax − xmin
(1)

V. EXPERIMENTAL SETUP
To validate the applicability of the new dataset for pre-
dictive oil and gas decommissioning using machine learn-
ing approaches, two sets of experiments were carried out.
In Experiment I, several standard machine learning algo-
rithms were used for classification. Firstly, classification
results before and after feature reduction were statistically

FIGURE 21. Correlations among categorical features in non-SURF.

compared to validate the removal of redundant features.
Secondly, results were compared among the classification
models to find out the best outcomes on the datasets.
Experiment II involved improving the classification results
using data resampling methods to tackle the class-imbalance
problem. Details of the setups of the experiments including
data partitioning, the lists of learning algorithms and resam-
pling methods used along with their parameter settings, and
evaluation metrics are provided below.

A. DATA PARTITIONING
For all experiments, the same training and testing sets were
used. The dataset was partitioned into 80:20 of training and
testing sets. In the training phase, 10-fold cross-validation
was employed for the purpose of model selection based on
accuracy. Thus, in each round of model building, 72% and
8% of the dataset were used for training and validation,
respectively. Lastly, the testing set, which was unseen data,
was used for model evaluation.

B. EXPERIMENT I SETUP
In this experiment, selected standard learning algorithms
were Random Forest (RF), Decision Tree (DT), Support
Vector Machine (SVM), k-Nearest Neighbor (kNN), Naive
Bayes (NB) and Neural Network (NN). The objective of
the experiment is two-fold. First, to present results that will
ascertain the validity of the approach to the oil and gas indus-
try since some key features used in the traditional approach
such as comparative assessment scores were excluded in the
predictive model building. Paired T-test was used to eval-
uate significance of the differences in the results with and
without redundant feature removal. Second, to determine
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the best classification result on the presented dataset using
commonly-used supervised learning methods.

The default parameter settings of the learning algorithms in
the caret package [35] in Rwere used. Some parameters were
automatically tuned and selected during the cross-validation.
For RF, the number of features determined at each split,
mtry = 2, 3, 5, 7, 9. The number of trees, mtree = 500. For
DT, C4.5 decision tree, which is an improved extension of
the Iterative Dichotomiser (ID3) algorithm, was chosen. The
confidence threshold in the range of [0.01, 0.5] with a step
of 0.1225 was examined. The minimum instances per leaf
(M ) was set to 1, 2,. . . , 5. The radial bias function kernel was
used for SVM with cost C = 0.25, 0.5, 1, 2, 4 and γ = 1

f ,

where f is the number of features in the dataset. In NB,
Laplace correction, fL = 0 and bandwidth adjustment = 1,
and models with and without a kernel were compared. For
NN, the number of hidden units, size = 1, 3, . . . , 9 and the
weight decay, decay = 0 and 10−d , where d = 1, 2, 3, 4.

C. EXPERIMENT II SETUP
In experiment II, eight resampling methods were applied
on the training data in order to address the class-imbalance
problem and improve classification results. The methods
used were random oversampling (ROS), the condensed near-
est neighbor decision rule (CNN) [29], oversampling using
Gaussian Noise (GN) [38],WEighted Relevance-based Com-
bination Strategy (WERCS) [9], Synthetic Minority Over-
sampling Technique (SMOTE) [16], Borderline-SMOTE
(BLSMOTE) [26], Density-Based Synthetic Minority Over-
sammpling Technique (DBSMOTE) [12] and the combina-
tion of SMOTE and GN methods (SMOGN) [8].

It should be also noted that there are limited choices of
available resampling methods for multi-class datasets [68],
[70]. The rationales behind the selection of these methods
are their notability, applicability to multi-class datasets, and
suitability to the problem. In many classification tasks of
imbalanced datasets, the minority class is the most important
class where the cost of misclassification can be unacceptably
high as compared to that of the majority classes [69]. How-
ever, in predictive oil and gas decommissioning, the classes
are equally important; hence, the goal is to achieve high
accuracy for all classes. These chosen resampling methods
can serve such a purpose making them suitable for our prob-
lem. We followed the parameter settings for all methods as
presented in their original works. For further details of these
methods, readers are referred to the references provided.

D. EVALUATION METRICS
To evaluate the classification results, common evaluation
metrics for multi-class problems were adopted. In Experi-
ment I, results were compared using average measures. The
measures include two different average measures of recall
– the geometric mean of recall (G-mean) and the arith-
metic mean of recall (mean accuracy), the overall accuracy,
the mean precision, the mean F1-score and the overall area

under the receiver operating characteristics curve (AUC).
In addition to these average measures, detailed results of each
class are also presented in Experiment II.

Equation 2 expresses the formula of the recall of class i,
where TPi is the true positive of class i and ni is the number
of test instances in class i.

recalli =
TPi
ni

(2)

The three different average accuracies, namely, G-mean,
mean accuracy and overall accuracy, were used for extensive
evaluation and comparison. The measures are expressed in
Equation 3, 4 and 5, respectively, where Nc is the number of
classes. The overall accuracy provides a good picture of the
total portion of correctly classified cases; however, it can be
highly influenced by the majority class [70]. G-mean always
gives values less than or equal to mean accuracy [70]. This
is because the geometric mean is more affected by lower
values, but the mean accuracy weighs all values equally.
Thus, G-mean will be useful when detecting significantly
low recalls among all classes, especially when there is an
occurrence of zero recall. In other situations, the mean accu-
racy may be preferable as it will not have a bias towards
lower values providing more accurate average of the class
accuracies.

G-mean = (
Nc∏
i=1

recalli)
1
Nc (3)

mean accuracy =

∑Nc
i=1 recalli
Nc

(4)

overall accuracy =

∑Nc
i=1 TPi∑Nc
i=1 ni

(5)

The precision of class i (precisioni) is calculated as in
Equation 6. The mean precision of all classes, which we will
refer to as precision for the ease of convenience, follows
Equation 7. Similarly, the formula for the mean F1-score,
F1-score, is given in Equation 9, where F1-scorei is F1-score
of class i (Equation 8).

precisioni =
TPi

TPi + FPi
(6)

precision =

∑Nc
i=1 recalli
Nc

(7)

F1-scorei = 2 ∗
precisioni ∗ recalli
precisioni + recalli

(8)

F1-score =

∑Nc
i=1 F1-scorei

Nc
(9)

For AUC, we adopted the calculation of multiclass AUC
defined by Hand and Till [27], which is a widely recognized
method for multi-class problems. The formula is given in
Equation 10, where i and j are two different classes andAUCi,j
is the AUC of the class i and class j pair.

AUC =
2

Nc ∗ (Nc − 1)
∗

∑
i,j

AUCi,j (10)
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FIGURE 22. Average accuracies of different learning algorithms on SURF.

VI. RESULTS AND DISCUSSION
This section provides detailed results and discussion in the
two sets of experiments.

A. EXPERIMENT I
In this experiment, results are presented and discussed
according to the two aforementioned objectives. Firstly,
classification results before and after removing redundant
features are thoroughly examined and validated using a statis-
tical tool. This is followed by a comparison among the results
achieved using different standard learning algorithms.

1) FEATURE REDUCTION VALIDITY
In Section IV, we determined correlations among the features
to minimize redundancy in the dataset. Results suggest that
some features related to the comparative assessment should
be excluded in classification. Since these features are key
aspects in the traditional approach of resolving the final oil
and gas decommissioning option, we validated the removal
by comparing the classification results carefully using paired
T-tests. Results are presented in Figure 22 - Figure 25 and
Table 4, where the first three rows show the accuracy of each
class.

In the SURF dataset, only Safetywas found to be redundant
with some other features and hence removed. As can be seen
in Figure 22 and Figure 23, the classification results on the

TABLE 4. P-values of paired T-tests.

SURF subset using full features and reduced features were
comparable on most algorithms in all measures. The p-values
of paired T-tests in Table 4 also confirm this finding. That is,
all p-values on SURF are greater than 0.05 suggesting that
at the significance level of 0.05 there is no strong evidence
to support that the results on full and reduced features are
statistically different.

Figure 22 and Figure 23 show that results with SVM and
kNN remained unchanged whereas RF and DT were hardly
affected by the removal. This can be attributed to the fact that
only one feature was removed from SURF.Moreover, most of
these algorithms have some advantageous properties to deal
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FIGURE 23. Precision, F1-score and AUC of different learning algorithms on SURF.

with redundant features. For example, the C4.5 decision tree
algorithm can prune redundant trees whereas RF adopts boot-
strapping and random feature selection. SVM is independent
of the feature space dimensionality and uses regularization
to avoid over-fitting [48]. Fortunately, in our experiments,
the regularization parameter C was tuned and properly set
during cross validation. This helped reduce the issue of
redundant features in the dataset. Similarly, the results with
NB were slightly impacted by the feature removal. This is
evidenced by small changes in most measures. The reduction
in G-mean of NB, which was relatively more noticeable, was
due to the bigger influence of the smaller class accuracy as
discussed in Section IV. Similarly, the reduction in precision
was greatly impacted by the domination of FP of the bigger
class even though the accuracy of the class of interest (TP)
contributed to a higher class accuracy rate (recall). Inter-
estingly, results with NN were clearly improved in most
measures. This could be attributed to performance improve-
ment of NN once the redundancy was eliminated. Automatic
feature selection is known to be one of the main advantages
of NN. However, its low performance on SURF with the
full features could be due to the use of small-sized training
samples, which reduced its ability in feature selection.

In the Non-SURF dataset, Type, Environmental and Soci-
etal were found to have high correlations with some other
features and hence excluded from the classification process.

Results for Non-SURF are shown in Figure 24 and Figure 25.
Similar to the results on SURF, most of the algorithms had
quite stable performance regardless of the feature removal.
These algorithms were RF, DT, kNN and NN, which pro-
vided unchanged or slightly changed results in all measures.
In contrast, classification results using SVM and NB clearly
decreased. This is not surprising as classification results can
be dependent on both learning algorithms and the dataset.
Since on some datasets, more features were preferred for
SVM to produce the best separating hyperplane. It is evi-
denced in the report of Salimi et al. [57], where reducing
features resulted in significant decreases in classification
accuracy onmost datasets. In the samemanner, it was demon-
strated in [3] that removing redundant features sometimes
greatly hurt the performance of NB.

In conclusion, we have shown that it is practical to reduce
features in determining the oil and gas decommissioning
option. This could be achieved using machine learning algo-
rithms that are robust to the changes such as RF, DT, kNN
and NN. It is worth noting that the removed features are
the key features used in the traditional approach for decom-
missioning decision-making. Specifically, they are factors in
the CA process, which involve gathering requirements and
opinions from several hundreds of stakeholders. This process
usually takes years to complete. Thus, the findings in this
experiment would be useful in convincing the oil and gas
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FIGURE 24. Average accuracies of different learning algorithms on Non-SURF.

industry and its stakeholders that some traditional practices
could be eradicated to save time and costs significantly.

2) LEARNING ALGORITHM PERFORMANCE COMPARISON
In this part, classification results achieved on the datasets with
reduced features using standard supervised learning methods
are compared. For SURF, Figure 22 and Figure 23 show
clearly that RF provided the best results in all measures.
It gave G-mean of 70.8%, the mean accuracy of 72.29%,
the overall accuracy of 80.66%, precision of 76.81%,
F1-score of 74.14% and AUC of 78.97%. The next best over-
all results were achieved usingDT, kNN andNN, respectively
whereas SVM and NB had the lowest accuracy.

For Non-SURF, as can be seen in Figure 24, RF and
NN provided competitive accuracy and were among the best
algorithms. RF gave the highest G-mean of 69.87% whereas
NN had the highest mean accuracy of 71.23% and the highest
overall accuracy of 88.89%. Figure 25 shows that NN also
achieved the highest precision of 93.36% and the highest
F1-score of 78.05% while its AUC of 71.4% was competitive
with that of RF and kNN. Thus, it can be said that the best
overall results were of NN. The results with DT and kNN
were also among the top, however with lower G-mean and
mean accuracy than RF and NN suggesting that the accuracy
of a smaller class, i.e. Partial Removal or Leave In-Situ, was
relatively low. Lastly, results with SVM and NB were the
lowest.

B. EXPERIMENT II
The objective of Experiment II was to improve the clas-
sification results using different resampling techniques to
address the imbalanced class distribution of the decommis-
sioning dataset. In Experiment I, it was shown that promising
classification results on the decommissioning dataset can be
obtained using standard learning algorithms. RF provided the
highest accuracy on SURF andwas among the algorithms that
gave the best classification results on Non-SURF. Moreover,
it was shown to be robust to the feature reduction. For this
reason, we selected RF as the baseline for the purpose of
demonstration in this experiment.

Table 5 and Table 6 present detailed results of RF with sev-
eral resampling methods. None denotes the baseline, which
is RF with no data resampling applied. Recall, Precision,
F1-score of each class along with their means and AUC are
provided. The bold results indicate results that were improved
from the baseline.

For SURF, as can be seeen in Table 5, all resamping
methods but WERCS improved the accuracy in predicting
the minority class(es), i.e. Leave In-Situ and Partial Removal.
ROS, DBSMOTE and SMOGN helped increase the accu-
racy in both minority classes leading to higher precision
of the majority class (Full Removal) and improvement in
the overall AUC. ROS achieved such improvements while
maintaining competitive mean recall, mean precision and
mean F1-score with the baseline. This suggests that ROS
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FIGURE 25. Precision, F1-score and AUC of different learning algorithms on Non-SURF.

TABLE 5. Classification results on SURF with different resampling methods.

was an effective resampling method for the SURF dataset,
which provided improvements in the minority classes with
a desirable trade-off with the majority class’ accuracy. GN,
SMOTE and BLSMOTE resulted in higher accuracy in one of
the minority classes. However, the overall improvements and
tradeoffs were not as good as those of ROS and DBSMOTE.
Lastly, CNN was the only method that failed to improve the

results appropriately. It led to severe decreases in all average
measures.

For Non-SURF, Table 6 shows clearly that the result of
applying GN was outstanding. The method led to improve-
ments in all measures of all classes. DBSMOTE also con-
tributed to the increases in all average measures. Similarly,
WERCS and SMOTE provided competitive average results
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TABLE 6. Classification results on Non-SURF with different resampling methods.

with the baseline. SMOGN improved the mean recall and
AUC but did not give a good trade-off among the accuracy
of classes as the mean precision and F1-score decreased.
ROS, CNN and BLSMOTE did not help improve any average
measures.

In this experiment, we have shown a potential approach in
improving the classification on the decommissioning dataset
that is rebalancing the class distribution. The selected resam-
pling methods use different techniques to achieve a bal-
anced distribution of the classes and led to different results.
Nonetheless, it was shown that most of these methods helped
improve the classification. Our experimental findings suggest
that ROS and GN resulted in the highest improvements in the
classification of SURF and Non-SURF, respectively.

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new oil and gas decommission-
ing dataset and presented an experimental framework using
machine learning for predictive decommissioning options.
The new dataset comprises extensive information of decom-
missioning activities during 2000 - 2021. All types of offshore
oil and gas infrastructures were considered. Data exploratory
including correlation analyses to remove potential redundant
features were carried out. This was followed by classification
of the dataset using several standard machine learning algo-
rithms. Promising accuracies were achieved even with some
key features used in the traditional approach removed. Col-
lecting and analyzing information of these features usually
takes many years and a great deal of resources to complete.
Thus, these results provide a good level of confidence to
the oil and gas industry and its stakeholders in incorporat-
ing machine-learning approaches in the decommissioning
planning. This would eradicate some unnecessarily lengthy
processes and reduce time and costs in the activity signifi-
cantly. Moreover, we presented the use of data resampling
techniques to tackle the imbalanced class distribution of

the dataset and enhance the classification results. Various
rebalancing methods that are capable of handling multi-class
problems were employed, and most showed favorable result
improvements. The introduction of the new dataset fills the
lack of datasets readily available to the research community,
which is one of the main causes of extremely limited machine
learning-based studies in this topic. The encouraging results
on the predictive decommissioning option sheds light on
further efforts on this timely and challenging problem.

Potential future direction of this work includes considering
decommissioning activities in other oil and gas landscapes.
Different criteria may be used for decision making and
hence for predictive decommissioning. Accessing industries’
reports is challenging since not all are publicly available.
However, more studies and successful outcomes of machine
learning-based approaches in oil and gas decommissioning
will eventually allow the government and related bodies
around the world to see the importance of publicizing all
useful information. Another interesting direction would be to
further improve the classification results from the baseline
given in this work. More recent and complicated resam-
pling techniques such as genetic algorithm-based and deep-
learning based techniques may be explored.

REFERENCES
[1] A. K. Abbas, N. A. Al-Haideri, and A. A. Bashikh, ‘‘Implement-

ing artificial neural networks and support vector machines to predict
lost circulation,’’ Egyptian J. Petroleum, vol. 28, no. 4, pp. 339–347,
Dec. 2019.

[2] F. Abdullayeva and Y. Imamverdiyev, ‘‘Development of oil production
forecasting method based on deep learning,’’ Statist., Optim. Inf. Comput.,
vol. 7, no. 4, pp. 826–839, Dec. 2019.

[3] J. Abellán and J. G. Castellano, ‘‘Improving the naive Bayes classifier via
a quick variable selection method using maximum of entropy,’’ Entropy,
vol. 19, no. 6, p. 247, Jun. 2017.

[4] M. Aljubran, J. Ramasamy, M. Bassam, and A. Magana-Mora, ‘‘Deep
learning and time-series analysis for the early detection of lost cir-
culation incidents during drilling operations,’’ IEEE Access, vol. 9,
pp. 76833–76846, 2021.

137080 VOLUME 9, 2021



P. Vuttipittayamongkol et al.: Data-Driven Decision Support Tool for Offshore Oil and Gas Decommissioning

[5] H. H. Alkinani, A. T. T. Al-Hameedi, and S. Dunn-Norman, ‘‘Data–
driven decision–making for lost circulation treatments: Amachine learning
approach,’’ Energy AI, vol. 2, Nov. 2020, Art. no. 100031.

[6] A. M. AlRassas, M. A. Al-qaness, A. A. Ewees, S. Ren, M. A. Elaziz,
R. Damaševičius, and T. Krilavičius, ‘‘Optimized ANFIS model using
Aquila optimizer for oil production forecasting,’’ Processes, vol. 9, no. 7,
p. 1194, Jul. 2021.

[7] L. AlSuwaidan, ‘‘The role of data management in the industrial Internet
of Things,’’ Concurrency Comput., Pract. Exper., vol. 2020, p. e6031,
Sep. 2020.

[8] P. Branco, L. Torgo, and R. P. Ribeiro, ‘‘SMOGN: A pre-processing
approach for imbalanced regression,’’ in Proc. 1st Int. Workshop Learn.
Imbalanced Domains, Theory Appl., 2017, pp. 36–50.

[9] P. Branco, L. Torgo, and R. P. Ribeiro, ‘‘Pre-processing approaches
for imbalanced distributions in regression,’’ Neurocomputing, vol. 343,
pp. 76–99, May 2019.

[10] N. Brown, A. Roubíková, I. Lampaki, L. MacGregor, M. Ellis, and
P. V. de Newton, ‘‘Machine learning on crays to optimize petrophysical
workflows in oil and gas exploration,’’ Concurrency Comput., Pract.
Exper., vol. 32, no. 20, p. e5655, Oct. 2020.

[11] A. S. Bull and M. S. Love, ‘‘Worldwide oil and gas platform decom-
missioning: A review of practices and reefing options,’’ Ocean Coastal
Manage., vol. 168, pp. 274–306, Feb. 2019.

[12] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, ‘‘DBSMOTE:
Density-based synthetic minority over-sampling TEchnique,’’ Int.
J. Speech Technol., vol. 36, no. 3, pp. 664–684, Apr. 2012.

[13] D. Burdon, S. Barnard, S. J. Boyes, and M. Elliott, ‘‘Oil and gas infrastruc-
ture decommissioning in marine protected areas: System complexity, anal-
ysis and challenges,’’Mar. Pollut. Bull., vol. 135, pp. 739–758, Oct. 2018.

[14] J. Cai, J. Luo, S. Wang, and S. Yang, ‘‘Feature selection in machine learn-
ing: A new perspective,’’ Neurocomputing, vol. 300, pp. 70–79, Jul. 2018.

[15] J. Chandler, D. White, E. J. Techera, S. Gourvenec, and S. Draper, ‘‘Engi-
neering and legal considerations for decommissioning of offshore oil
and gas infrastructure in Australia,’’ Ocean Eng., vol. 131, pp. 338–347,
Feb. 2017.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, 2002.

[17] T. Cresswell, S. Brown, H. Wong, and S. Apte, ‘‘Assessing the impacts
of scale residues from offshore oil and gas decommissioning on marine
organisms,’’ APPEA J., vol. 61, no. 2, pp. 379–383, 2021.

[18] M. Day and A. Gusmitta, ‘‘Decommissioning of offshore oil and gas instal-
lations,’’ in Environmental Technology in the Oil Industry. Hampshire,
U.K.: Oxoid, 2016, pp. 257–283.

[19] D. Fan, H. Sun, J. Yao, K. Zhang, X. Yan, and Z. Sun, ‘‘Well production
forecasting based on ARIMA-LSTM model considering manual opera-
tions,’’ Energy, vol. 220, Apr. 2021, Art. no. 119708.

[20] S. A. Fatima, N. Ramli, S. A. A. Taqvi, and H. Zabiri, ‘‘Prediction of
industrial debutanizer column compositions using data-driven ANFIS and
ANN-based approaches,’’ Neural Comput. Appl., vol. 2021, pp. 1–13,
Jan. 2021.

[21] D. Ferraretti, G. Gamberoni, and E. Lamma, ‘‘Unsupervised and super-
vised learning in cascade for petroleum geology,’’ Expert Syst. Appl.,
vol. 39, no. 10, pp. 9504–9514, Aug. 2012.

[22] S. Genter, ‘‘Stakeholder engagement in the decommissioning process,’’ in
SPE Symposium: Decommissioning Abandonment. London, U.K.: Society
of Petroleum Engineers, 2019.

[23] R. Gibson and M. Christou, ‘‘Metocean criteria for the fatigue analysis
of subsea pipelines,’’ in Proc. Int. Conf. Offshore Mech. Arctic Eng.,
vol. 58851. New York, NY, USA: American Society of Mechanical Engi-
neers, 2019, Art. no. V07BT06A010.

[24] Y. Hajizadeh, ‘‘Machine learning in oil and gas; A SWOT analysis
approach,’’ J. Petroleum Sci. Eng., vol. 176, pp. 661–663, May 2019.

[25] B. Hall, ‘‘Facies classification using machine learning,’’ Lead. Edge,
vol. 35, no. 10, pp. 906–909, Oct. 2016.

[26] H. Han, W.-Y. Wang, and B.-H. Mao, ‘‘Borderline-smote: A new over-
sampling method in imbalanced data sets learning,’’ in Proc. Int. Conf.
Intell. Comput. Berlin, Germany: Springer, 2005, pp. 878–887.

[27] D. J. Hand and R. J. Till, ‘‘A simple generalisation of the area under
the ROC curve for multiple class classification problems,’’ Mach. Learn.,
vol. 45, no. 2, pp. 171–186, 2001.

[28] A. U. Haq, D. Zhang, H. Peng, and S. U. Rahman, ‘‘Combining multiple
feature-ranking techniques and clustering of variables for feature selec-
tion,’’ IEEE Access, vol. 7, pp. 151482–151492, 2019.

[29] P. Hart, ‘‘The condensed nearest neighbor rule (corresp.),’’ IEEE Trans.
Inf. Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[30] C. Hegde, M. Pyrcz, H. Millwater, H. Daigle, and K. Gray, ‘‘Fully cou-
pled end-to-end drilling optimization model using machine learning,’’
J. Petroleum Sci. Eng., vol. 186, Mar. 2020, Art. no. 106681.

[31] T. D. Jobe, A. Research Center, E. Vital-Brazil, and M. Khait, ‘‘Geo-
logical feature prediction using image-based machine learning,’’ SPWLA
J. Formation Eval. Reservoir Description, vol. 59, no. 6, pp. 750–760,
2018.

[32] R. Kanfar, O. Shaikh,M.Yousefzadeh, and T.Mukerji, ‘‘Real-timewell log
prediction from drilling data using deep learning,’’ in Proc. Int. Petroleum
Technol. Conf., Jan. 2020, pp. 1–12.

[33] L. Kirschbaum, D. Roman, G. Singh, J. Bruns, V. Robu, and D. Flynn, ‘‘AI-
driven maintenance support for downhole tools and electronics operated in
dynamic drilling environments,’’ IEEE Access, vol. 8, pp. 78683–78701,
2020.

[34] S. Krishna, S. Ridha, P. Vasant, S. U. Ilyas, and A. Sophian, ‘‘Conventional
and intelligent models for detection and prediction of fluid loss events
during drilling operations: A comprehensive review,’’ J. Petroleum Sci.
Eng., vol. 195, Dec. 2020, Art. no. 107818.

[35] M. Kuhn, ‘‘Building predictive models in R using the caret package,’’
J. Statist. Softw., vol. 28, no. 5, pp. 1–26, 2008. [Online]. Available:
https://www.jstatsoft.org/v028/i05

[36] D. Kundu, T. Khanolkar, T. Shah, and S. Bangad, ‘‘Application of machine
learning technique to predict crude distillation column inlet tempera-
ture/furnace coil outlet temperature in order to maximize distillate yield
and to minimize fuel firing in furnaces,’’ Int. J. Comput. Appl., vol. 975,
p. 8887, Mar. 2021.

[37] A. T. Lawrence, ‘‘The drivers of stakeholder engagement: Reflections
on the case of royal dutch/shell,’’ in Unfolding Stakeholder Thinking.
Evanston, IL, USA: Routledge, 2017, pp. 185–199.

[38] S. S. Lee, ‘‘Noisy replication in skewed binary classification,’’ Comput.
Statist. Data Anal., vol. 34, no. 2, pp. 165–191, Aug. 2000.

[39] J. P. Li, A. U. Haq, S. U. Din, J. Khan, A. Khan, and A. Saboor, ‘‘Heart
disease identification method using machine learning classification in
E-healthcare,’’ IEEE Access, vol. 8, pp. 107562–107582, 2020.

[40] Y. Li and Z. Hu, ‘‘A review of multi-attributes decision-making models
for offshore oil and gas facilities decommissioning,’’ J. Ocean Eng. Sci.,
May 2021, doi: 10.1016/j.joes.2021.05.002.

[41] W. Liu, W. D. Liu, and J. Gu, ‘‘Forecasting oil production using
ensemble empirical model decomposition based long short-term mem-
ory neural network,’’ J. Petroleum Sci. Eng., vol. 189, Jun. 2020,
Art. no. 107013.

[42] W. Mackenzie. (Jul. 2021). Global Decommissioning Anxiety Rises.
Accessed: Jul. 22, 2021. [Online]. Available: https://www.woodmac.
com/reports/upstream-oil-and-gas-global-decommissioning-anxiety-
rises-507552

[43] A. Mamudu, F. Khan, S. Zendehboudi, and S. Adedigba,
‘‘Dynamic risk assessment of reservoir production using data-driven
probabilistic approach,’’ J. Petroleum Sci. Eng., vol. 184, Jan. 2020,
Art. no. 106486.

[44] A. Mamudu, F. Khan, S. Zendehboudi, and S. Adedigba, ‘‘A hybrid
intelligent model for reservoir production and associated dynamic risks,’’
J. Natural Gas Sci. Eng., vol. 83, Nov. 2020, Art. no. 103512.

[45] M. Mannil, K. Kato, R. Manka, J. von Spiczak, B. Peters, V. L. Cammann,
C. Kaiser, S. Osswald, T. H. Nguyen, J. D. Horowitz, H. A. Katus,
F. Ruschitzka, J. R. Ghadri, H. Alkadhi, and C. Templin, ‘‘Prognostic value
of texture analysis from cardiac magnetic resonance imaging in patients
with Takotsubo syndrome: A machine learning based proof-of-principle
approach,’’ Sci. Rep., vol. 10, no. 1, Dec. 2020, Art. no. 20537.

[46] I. D. Martins, L. Bahiense, C. E. D. Infante, and E. F. Arruda, ‘‘Dimension-
ality reduction for multi-criteria problems: An application to the decom-
missioning of oil and gas installations,’’ Expert Syst. Appl., vol. 148,
Jun. 2020, Art. no. 113236.

[47] C. F. Mason, ‘‘Policy brief—Regulating offshore oil and gas exploration:
Insights from the deepwater horizon experience in the Gulf of Mexico,’’
Rev. Environ. Econ. Policy, vol. 13, no. 1, pp. 149–154, Jan. 2019.

[48] A. Miller, Subset Selection Regression. Boca Raton, FL, USA: CRC Press,
2002.

[49] I. M. Nasir, M. A. Khan, M. Yasmin, J. H. Shah, M. Gabryel, R. Scherer,
and R. Damaševičius, ‘‘Pearson correlation-based feature selection for
document classification using balanced training,’’ Sensors, vol. 20, no. 23,
p. 6793, Nov. 2020.

VOLUME 9, 2021 137081

http://dx.doi.org/10.1016/j.joes.2021.05.002


P. Vuttipittayamongkol et al.: Data-Driven Decision Support Tool for Offshore Oil and Gas Decommissioning

[50] A. U. Osarogiagbon, F. Khan, R. Venkatesan, and P. Gillard, ‘‘Review
and analysis of supervised machine learning algorithms for hazardous
events in drilling operations,’’ Process Saf. Environ. Protection, vol. 147,
pp. 367–384, Mar. 2021.

[51] N. M. Ramli, M. A. Hussain, B. M. Jan, and B. Abdullah, ‘‘Composition
prediction of a debutanizer column using equation based artificial neural
network model,’’ Neurocomputing, vol. 131, pp. 59–76, May 2014.

[52] N. M. Ramli, M. A. Hussain, and B. M. Jan, ‘‘Multivariable control
of a debutanizer column using equation based artificial neural network
model inverse control strategies,’’Neurocomputing, vol. 194, pp. 135–150,
Jun. 2016.

[53] A. Roubickova, N. Brown, and O. Brown, ‘‘Using machine learning to
reduce ensembles of geological models for oil and gas exploration,’’ in
Proc. IEEE/ACM 5th Int. Workshop Data Anal. Reduction Big Sci. Data,
Dec. 2019, pp. 42–49.

[54] D. Guha Roy, T. N. Singh, and J. Kodikara, ‘‘Predicting mode-I fracture
toughness of rocks using soft computing and multiple regression,’’ Mea-
surement, vol. 126, pp. 231–241, Oct. 2018.

[55] M. Sabah, M. Talebkeikhah, F. Agin, F. Talebkeikhah, and
E. Hasheminasab, ‘‘Application of decision tree, artificial neural networks,
and adaptive neuro-fuzzy inference system on predicting lost circulation:
A case study from Marun oil field,’’ J. Petroleum Sci. Eng., vol. 177,
pp. 236–249, Jun. 2019.

[56] A. Sagheer and M. Kotb, ‘‘Time series forecasting of petroleum produc-
tion using deep LSTM recurrent networks,’’ Neurocomputing, vol. 323,
pp. 203–213, Jan. 2019.

[57] A. Salimi, M. Ziaii, A. Amiri, M. Hosseinjani Zadeh, S. Karimpouli, and
M.Moradkhani, ‘‘Using a feature subset selectionmethod and support vec-
tor machine to address curse of dimensionality and redundancy in hyperion
hyperspectral data classification,’’ Egyptian J. Remote Sens. Space Sci.,
vol. 21, no. 1, pp. 27–36, Apr. 2018.

[58] M.-L. Schläppy, L. M. Robinson, V. Camilieri-Asch, and K.Miller, ‘‘Trash
or treasure? Considerations for future ecological research to inform oil and
gas decommissioning,’’ Frontiers Mar. Sci., vol. 8, pp. 1–8, Jun. 2021.

[59] F. Silva, S. Fernandes, J. Casac ao, C. Libório, J. Almeida, S. Cersósimo,
C. R. Mendes, R. Brand ao, and R. Cerqueira, ‘‘Machine-learning in oil
and gas exploration: A new approach to geological risk assessment,’’ in
Proc. 81st EAGE Conf. Exhib., 2019, pp. 1–5.

[60] H. Singh, Y. Seol, and E. M. Myshakin, ‘‘Automated well-log processing
and lithology classification by identifying optimal features through unsu-
pervised and supervised machine-learning algorithms,’’ SPE J., vol. 25,
no. 5, pp. 2778–2800, Oct. 2020.

[61] B. Sommer, A. M. Fowler, P. I. Macreadie, D. A. Palandro, A. C. Aziz,
and D. J. Booth, ‘‘Decommissioning of offshore oil and gas structures—
Environmental opportunities and challenges,’’ Sci. Total Environ., vol. 658,
pp. 973–981, Mar. 2019.

[62] X. Song, Y. Liu, L. Xue, J. Wang, J. Zhang, J. Wang, L. Jiang, and
Z. Cheng, ‘‘Time-series well performance prediction based on long short-
term memory (LSTM) neural network model,’’ J. Petroleum Sci. Eng.,
vol. 186, Mar. 2020, Art. no. 106682.

[63] S. E. Z. Lashari, A. Takbiri-Borujeni, E. Fathi, T. Sun, R. Rahmani,
and M. Khazaeli, ‘‘Drilling performance monitoring and optimization:
A data-driven approach,’’ J. Petroleum Explor. Prod. Technol., vol. 9, no. 4,
pp. 2747–2756, Dec. 2019.

[64] A. Tung, ‘‘Co-creation of knowledge—An effective mechanism for
managing decommissioning stakeholders,’’ APPEA J., vol. 61, no. 1,
pp. 48–57, 2021.

[65] A. Tung, ‘‘A comparison of stakeholder engagement strategies for off-
shore decommissioning projects in the united kingdom and Australian
landscape,’’ in Proc. Offshore Technol. Conf., May 2020.

[66] A. W. J. Tung, ‘‘An exploration of stakeholder impacts on the decom-
missioning of offshore oil and gas facilities–the design, development, and
analysis of stakeholder oriented critical paths for United Kingdom and
Australia,’’ Ph.D. dissertation, SchoolManage., Curtin Univ., Bentley,WA,
Australia, 2021.

[67] G. Varoquaux, ‘‘Cross-validation failure: Small sample sizes lead to large
error bars,’’ NeuroImage, vol. 180, pp. 68–77, Oct. 2018.

[68] P. Vuttipittayamongkol and E. Elyan, ‘‘Improved overlap-based undersam-
pling for imbalanced dataset classification with application to epilepsy
and Parkinson’s disease,’’ Int. J. Neural Syst., vol. 30, no. 8, Aug. 2020,
Art. no. 2050043.

[69] P. Vuttipittayamongkol and E. Elyan, ‘‘Neighbourhood-based undersam-
pling approach for handling imbalanced and overlapped data,’’ Inf. Sci.,
vol. 509, pp. 47–70, Jan. 2020.

[70] P. Vuttipittayamongkol, E. Elyan, and A. Petrovski, ‘‘On the class overlap
problem in imbalanced data classification,’’ Knowl.-Based Syst., vol. 212,
Jan. 2021, Art. no. 106631.

[71] P. Vuttipittayamongkol, A. Tung, and E. Elyan, ‘‘Towards machine
learning-driven practices for oil and gas decommissioning—Introduction
of a new offshore pipeline dataset,’’ in Proc. 9th Int. Conf. Comput.
Commun. Manage., Singapore, 2021, doi: 10.1145/3479162.3479179.

[72] T. R. Wanasinghe, L. Wroblewski, B. K. Petersen, R. G. Gosine,
L. A. James, O. De Silva, G. K. I. Mann, and P. J. Warrian, ‘‘Digital twin
for the oil and gas industry: Overview, research trends, opportunities, and
challenges,’’ IEEE Access, vol. 8, pp. 104175–104197, 2020.

[73] M.Wei, B. Bai, A. H. Sung, Q. Liu, J.Wang, andM. E. Cat her, ‘‘Predicting
injection profiles using ANFIS,’’ Inf. Sci., vol. 177, no. 20, pp. 4445–4461,
2007.

PATTARAMON VUTTIPITTAYAMONGKOL was
born in Lampang, Thailand. She received the B.Sc.
degree in electrical engineering from the Uni-
versity of Illinois at Urbana–Champaign, Urbana,
IL, USA, in 2011, the M.Sc. degree in electri-
cal engineering from the University of Southern
California, Los Angeles, CA, USA, in 2013, and
the Ph.D. degree from the School of Comput-
ing, Robert Gordon University, Aberdeen, U.K.,
in 2020. Since 2013, she has been a Faculty Mem-

ber at the School of Information Technology, Mae Fah Luang University,
Thailand. Her research interests include data analytics and machine learning
with focus on supervised learning on class-imbalanced datasets.

AARON TUNG was born in Johor Bahru,
Malaysia, in 1993. He received the B.Eng. degree
in petroleum engineering from Curtin University,
Australia, in 2016, the Ph.D. degree in law from
the University of Aberdeen, U.K., in 2021, and the
Ph.D. degree in management from Curtin Univer-
sity, in 2021. He is currently working as a Project
Engineer at Woodside Energy. His research inter-
ests include several disciplines revolving around
the topic of oil and gas decommissioning, includ-

ing engineering, project management, stakeholder engagement, regulatory
law, and data science. He was a finalist of the 2021 Decom North Sea Rising
Star in Decommissioning Award.

EYAD ELYAN received the bachelor’s degree in
computer science from Al-Quds University, Pales-
tine, in 1999, and the M.Sc. degree in software
engineering and the Ph.D. degree in 3D facial
modeling and recognition from Bradford Univer-
sity, in 2004 and 2008, respectively. He is currently
a Professor in machine learning and computer
vision with the School of Computing, Robert
Gordon University. He is leading the machine
learning and vision applications research theme at

the School. His primary research interests include machine learning, deep
learning, and applied computer vision. He is a fellow of British Higher Edu-
cation Academy. He also serves as the Scotland Data Laboratory Innovation
Centre Ambassador.

137082 VOLUME 9, 2021

http://dx.doi.org/10.1145/3479162.3479179

	coversheet_template
	VITTIPITTAYAMON 2021 A data-driven decision (VOR).pdf

