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Abstract: Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced 
solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc 
edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S pro-
teasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. 
Dysfunction of the complex leads to many pathological disorders. The assays indicated selective 
activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the 
inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, 
inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to 
be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as 
novel inhibitors of 20S proteasome, increased the number of natural products that can be considered 
potential regulators of cellular processes. 
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1. Introduction 
The 26S proteasome is a large (2.4 MDa), multifunctional and ATP-dependent enzy-

matic complex with chymotrypsin-like (CT-L), trypsin-like (T-L), and caspase-like (C-L) 
activities [1–4]. In eukaryotic organisms, it recognizes and degrades proteins with cova-
lently attached ubiquitin (8.5 kDa protein) [5,6]. The 26S proteasome is composed of a 20S 
barrel-shaped core particle (700 kDa) responsible for proteolytic activity and one or two 
19S (890 kDa) regulatory subunits with ubiquitin-binding sites [3,4,7]. The 20S proteasome 
also occurs as a free complex that degrades proteins in the ubiquitin-independent path-
way [8,9]. In humans, the dysfunction of this proteolytic machinery leads to changes in 
protein profile and, ultimately, to serious health problems. Therefore, proteasome regu-
lators are explored as promising therapeutic agents for a range of diseases (e.g., cancer, 
autoimmune disorders, inflammation, malaria) [10–12]. The majority of the known 20S 
proteasome inhibitors belongs to peptide-based structures such as peptide aldehydes, 
boronates, epoxyketones, or peptide vinyl sulfones [13–15]. Some of the active com-
pounds are of natural origin. Leupeptin, isolated from several strains of Gram-positive 
bacteria of the order Actinomycetales, inhibits T-L activity of the 20S proteasome [16]. Ty-
ropeptin A, a peptide aldehyde produced by the soil Streptomycetales of the genus Kitasat-
ospora, strain MK993-dF2, inhibits mainly CT-L activity [17,18]. Marine fungus Peicillium 
fellutanum is a producer of fellutamide B, a strong inhibitor of CT-L activity (IC50 9.4 nM) 
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with mild effects on T-L (IC50 2.0 μM) and C-L (IC50 1.2 μM) activities [19]. The proteasome 
inhibition within the nanomolar to the micromolar range of IC50 was also documented for 
metabolites isolated from cyanobacteria Symploca sp., Scytonema hofmannii, and Nostoc. 

In our preliminary studies, fractions from Nostoc edaphicum CCNP1411 containing 
nostocyclopeptides (Ncps) inhibited the chymotrypsin-like activity of the 20S proteasome. 
Ncps constitute a small group of nonribosomal peptides solely produced by cyanobacteria 
of the genus Nostoc. The biological activity of the peptides was reported in several studies. 
According to Golakoti et al. [20], Ncp-A1 and Ncp-A2 have cytotoxic activity against hu-
man colorectal adenocarcinoma (LoVo) and human nasopharyngeal (KB) cell lines (IC50 
ca. 1 μM). Another nostocyclopeptide variant, Ncp-M1, was shown to inhibit the transport 
of toxic microcystin-LR and nodularin into hepatocytes by blocking organic anion trans-
porter polypeptides, OATP1B1, and OATP1B3. These polypeptides are also overex-
pressed in cancer cells [21,22]. The role of Ncp-M1 and its analogs as antitumor agents and 
as tools to study membrane transport was proposed [21,23,24]. 

Given the pharmaceutical potential of Ncps, the recognition of their action on differ-
ent cellular targets is important. In the current work, the effects of Ncps on the 20S pro-
teasome were explored. To determine structure-activity relationship, six different Ncps 
isolated from the Baltic cyanobacterium N. edaphicum CCNP1411 were tested, including 
linear and cyclic Ncp variants. 

2. Materials and Methods 
2.1. Organism, Extraction, and Isolation of Compounds 

Nostoc edaphicum strain CCNP1411 (GenBank Accession Number: PRJNA638531) was 
isolated from the Gulf of Gdańsk, southern Baltic Sea. The cyanobacterium was grown in 
a Z8 medium enriched with NaCl [25]. The culture was kept in 2 L flasks at 22 ± 1°C and 
light of 5–10 μmol photons m−2 s−1. After three weeks, the biomass was harvested using a 
nylon net (mesh size 25 µm). 

The freeze-dried biomass of CCNP1411 (20 g) was homogenized and extracted four 
times with 75% methanol (MeOH) in MilliQ water (4 × 150 mL) by vortexing for 30 min. 
The extracts were centrifuged at 12,000 × g for 15 min at 4 °C. Combined supernatants 
were diluted with MilliQ water to achieve the final concentration of MeOH < 10%. Isola-
tion of Ncps was performed using the HPLC system (Shimadzu Corporation, Kyoto, Ja-
pan). During all chromatographic runs, the absorbance was monitored at 210 nm and 270 
nm. The diluted sample was loaded onto a preconditioned 120 g SNAP KP-C18-HS col-
umn (100 Å, 30 µm) (Biotage, Uppsala, Sweden). The flash chromatography was per-
formed with a mobile phase consisting of MilliQ water (phase A) and 100% MeOH (phase 
B) using a step gradient from 10 to 100% B over 180 min (flow rate 12 mL min−1). The 
volume of the fractions collected was 40 mL. Ncps-containing fractions were pooled, con-
centrated, and separated on Jupiter Proteo C12 column (250 × 21.2 mm; 90 Å; 4 µm) (Phe-
nomenex, Torrance, CA, USA). The mobile phase was composed of 5% CH3CN in MilliQ 
water (phase A) and 100% CH3CN (phase B), both containing 0.1% of formic acid (flow 
rate 12 mL min−1). The chromatographic run (15%–100% B) took 110 min, and 2 mL frac-
tions were collected. All fractions containing Ncps mixture were combined, concentrated, 
and subjected to further separation under modified conditions. The gradient started at 
15% B and for the first hour the content of phase B increased by 1% every 15 min up to 
19% B. This concentration was maintained for the next 20 min, and then within 30 min, it 
increased linearly to 100% B. Pure Ncps (Ncp-A2 and Ncp-E4-L) were present in fractions 
eluted in the range 15–25% of phase B. 

The remaining fractions containing Ncps were pooled, and the other four individual 
peptides were isolated using an analytical Agilent HPLC 1200 Series system (Agilent 
Technologies, Santa Clara, CA, USA) with a diode array detector (DAD) operating at 210 
and 270 nm. Ncp-A1 was isolated using Jupiter Proteo C12 column (250 × 4.6 mm, 90 Å, 4 
µm) (Phenomenex, Torrance, CA, USA), while Ncp-A2-L, Ncp-E2, and its linear analog 
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Ncp-E2-L, were isolated on Zorbax Eclipse XDB-C18 column (4.6 × 150 mm; 80 Å; 5 µm) 
(Agilent Technologies, Santa Clara, CA, USA). During all analytical chromatographic 
runs, the same mobile phase (at flow rate 0.5 mL min−1) was used as for the preparative 
separations. Ncps were eluted when the mobile phase contained 16%–43% B. Identifica-
tion and purity of peptides in individual fractions and subfractions were achieved by LC-
MS/MS analysis at each purification step. Analyses were carried out using Agilent 1200 
HPLC (Agilent Technologies, Santa Clara, CA, USA) coupled to a QTRAP5500 triple-
quadrupole/linear ion trap mass spectrometer (Applied Biosystems MDS Sciex, Concord, 
ON, Canada), as previously described [26]. Chromatographic separation was performed 
on a Zorbax Eclipse XDB-C18 column (4.6 × 150 mm; 80 Å; 5 µm) using gradient elution 
with the same mobile phase as for the HPLC-DAD analyses. The mass spectrometer op-
erated under the positive Turbo Ion Spray ionization mode (5.5 kV, 550 °C). Tandem mass 
spectra were acquired at collision energy 60 V. 

2.2. NMR Analysis 
The 1D 1H NMR and 2D homo- and heteronuclear NMR (COSY, TOCSY, ROESY, 

HSQC, and HMBC) were acquired with the application of Bruker Avance III spectrome-
ters, 500 MHz and 700 MHz (Bruker, Billerica, MA, USA). Spectra were recorded in 
H2O:D2O (9:1). NMR data were processed and analyzed by TopSpin (Bruker, Billerica, 
MA, USA) and SPARKY software (3.114, Goddard and Kneller, freeware 
https://www.cgl.ucsf.edu/home/sparky). 

2.3. Human 20S Inhibition Assay 
The 20S proteasome inhibition assay was performed following the procedure of Czer-

wonka et al. [27]. Human 20S proteasome (h20S) isolated from erythrocytes was used. 
Latent h20S was activated with 0.01% SDS (sodium dodecyl sulfate). The final concentra-
tion of the proteasome was 1 μg mL−1 (1.4 nM). The fluorogenic substrates, Suc-LLVY-
AMC, Boc-LRR-AMC, and Z-LLE-AMC, were used as probes in the chymotrypsin-like, 
trypsin, and caspase-like activity assays, respectively, at a final concentration of 100 μM. 
Stock solutions of Ncps (10 mM) were prepared in dimethyl sulfoxide (DMSO) and were 
tested in the concentration range of 5 to 50 μM. The content of DMSO never exceeded 3% 
of the final reaction volume. The assays were performed in a 96-well plate in 50 mM Tri-
sHCl, pH 8.0, at 37 °C. The percentage of the substrate hydrolysis was measured by the 
amount of the released AMC (aminomethyl coumarin) using Tecan Infinite M200 Pro (λ 
= 380–460 nm) spectrofluorimeter (Tecan Trading AG, Männedorf, Switzerland). The flu-
orescence measurements were performed at 2-min intervals for 60 min. The activity of 
h20S in the presence of isolated Ncps was calculated in relation to the control (DMSO). 
The known proteasome inhibitor PR11 [28] was used to ensure the correctness of the as-
say. The peptide at the final concentration of 0.2 μM decreases the relative CT-L activity 
of the h20S to 6% of the control. 

3. Results and Discussion 
Thus far, the presence of Ncps was reported in five strains of Nostoc isolated from 

different habitats [20,23,29–31]. This includes two Baltic strains: XSPORK 13A producing 
the cyclic Ncp-M1 [23] and CCNP1411 producing 10 other Ncps variants [31]. The puta-
tive structures of the five linear and five cyclic Ncps variants produced by CCNP1411 
were elucidated based on mass spectra fragmentation patterns [31]. Two of the cyclic 
forms, Ncp-A1 and Ncp-A2, enclosed by imino linkage between the N-terminal amine 
group of conserved Tyr and C-terminal aldehyde group of Leu or Phe, were previously 
identified in Nostoc sp. ATCC53789 isolated from lichen [20]. In position 6 of the Ncps 
from CCNP1411, 4-methylproline (MePro) or Pro is present, while Ile or Val is in position 
4 (Figure 1). In the current study, we were able to isolate 6 out of 10 Ncps produced by 
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CCNP1411 (Table 1): three cyclic variants (Ncp-A1, Ncp-A2, and Ncp-E2), two linear al-
dehyde forms of the cyclic variants (Ncp-A2-L and Ncp-E2-L), and the six-amino acid 
peptide Ncp-E4-L lacking the aldehyde group in the C-terminus. In the case of four other 
Ncps produced by CCNP1411 (Ncp-A1-L, Ncp-E1, Ncp-E1-L, Ncp-E3), their purity and/or 
quantities were not sufficient for inclusion in the study. Ncp-A2-L (Figure 1) was the only 
variant obtained in sufficient amounts for NMR analyses. The 1H NMR spectrum of Ncp-
A2-L displayed a typical pattern of a peptide. The COSY, TOCSY, and HMBC experiments 
allowed for the identification of the residues in Ncp-A2-L as Tyr, Gly, Gln, Ile, Ser, MePro, 
and phenylalaninal (Phe-H) (Table 2, Figure 1, Figure S1–S5). The amino acid sequence 
was confirmed by TOCSY data. The presence of two aromatic amino acid residues was 
recognized by the signals occurring in the aromatic region of the spectrum (δH 6.78–7.26 
ppm). One of them was identified as tyrosine-based on the AA’BB’ spin system between 
the aromatic protons (Tyr-H5/5′ and Tyr-H6/6′, JH, H = 8.0 Hz). The second aromatic res-
idue was identified as phenylalanine based on the TOCSY interaction between 34, 35, and 
36 protons and the HMBC correlation from two diastereotopic methylene protons 32a (δH 
2.57 ppm) and 32b (δH 2.98 ppm) to the aromatic 34/34′ carbons (Figure S3, S5). The 4-
methyl group of the proline residue was identified based on the 1H NMR doublet signal 
at δ 0.82 ppm (protons 29) and the HMBC correlation between the methyl protons with 26 
(δC 37.3 ppm) and 28 (δC 55.0 ppm) carbons (Figure S1, S5). The signal at δH 9.46 ppm was 
assigned to phenylalaninal aldehyde proton. The occurrence of the studied compound in 
the linear form was further confirmed by the lack of the ROESY correlation between tyro-
sine and phenylalanine residues. 

 
Figure 1. ROESY and HMBC correlations in nostocyclopeptide Ncp-A2-L. 

Table 1. Structures of six nostocyclopeptide-variants isolated from Nostoc edaphicum CCNP1411 as 
pure compounds. 

Peptide Name Molecular Mass Structure 
Ncp-A1 756 [Tyr1+Gly2+Gln3+Ile4+Ser5+MePro6+Leu7] 
Ncp-A2 790 [Tyr1+Gly2+Gln3+Ile4+Ser5+MePro6+Phe7] 

Ncp-A2-L 808 Tyr1+Gly2+Gln3+Ile4+Ser5+MePro6+Phe-H7 
Ncp-E2 742 [Tyr1+Gly2+Gln3+Ile4+Ser5+Pro6+Leu7] 

Ncp-E2-L 760 Tyr1+Gly2+Gln3+Ile4+Ser5+Pro6+Leu-H7 
Ncp-E4-L 676 Tyr1+Gly2+Gln3+Ile4+Ser5+MePro6 

 



Biomolecules 2021, 11, 1483 5 of 10 
 

Table 2. Nuclear Magnetic Resonance (NMR) Spectroscopic Data for Ncp-A2-L (Tyr-Gly-Gln-Ile-
Ser-MePro-Phe-H). 

Residue Position δC, type δH (J in Hz) ROESY HMBCa 

Tyr 

1     

2 169.9, C    

3 54.6, CH 4.13, t (6.9, 6.9) NH(1), 6  

4 36.0, CH2 3.04, dd (7.3, 12.9) 6  

5/5′ 125.5, C    

6/6′ 130.9, CH 6.78, d (8.0)  2,4,5 
7 115.9, CH 7.04, d (8.0) 2, 3  

NH2 155.3, C    

OH     

Gly 
8 170.7, C    

9 42.4, CH2 3.84, m NH(2)  

NH(1)  8.46, t (5.6, 5.6) 2 1 

Gln 

10     

11 173.1, C  NH(3)  

12a 53.2, CH 4.30, m  10 
12b 27.2, CH2 1.88, m   

13  1.99, m   

14 31.1, CH2 2.26, t (7.3, 7.3)  11,12,14 
NH(2) 178.0, C  9  

NH2  8.25, d (7.6)  8 

Ile 

15 173.4, C    

16 58.2, CH 4.09, t (8.1, 8.1) NH(4) 17 
17 36.0, CH 1.77, m   

18 14.7, CH3 1.08, d (6.6)   

19 24.6, CH2 1.32, m   

20 10.0, CH3 0.79, t (7.3, 7.3) 22 17,19 
NH(3)  8.21, d (6.8) 11 10 

Ser 

21     

22 n.o.    

23a n.o. 4.59, m 20  

23b 61.0, CH2 3.69, m   

NH(4)  3.77, m   

OH  8.31, d (5.1) 16 15 

MePro 

24 173.8, C    

25 61.3, CH 4.15, dd (8.1, 9.3)  24 
26 37.3, CH2 2.13, m   

27 33.1, CH 2.04, m   

28a 55.0, CH2 2.84, t (10.5, 10.5) NH(5)  

28b  3.86, m  26 
29 15.2, CH3 0.82, d (6.6)  26,28 

Phe-H 

30  9.46, s   

31 n.o. 4.01, m 35  

32a 55.5, CH 
2.57, dd (10.6, 

14.0) 
34 34/34′ 

32b 34.2, CH2 2.98, dd (4.0, 14.5)   

33   32  

34/34′ 137.9, C 7.26, m   

35/35′ 129.5, CH 7.15, d (7.2) 31  

36 128.7, CH 7.18, m   

NH(5) 126.6, CH 7.46, d (9.3) 25 24 
a HMBC correlations are given from proton(s) stated to the indicated carbon atom. 
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In our preliminary studies with the application of the human 20S proteasome, the 
Ncp-containing fractions of CCNP1411 inhibited CT-L activity at micromolar concentra-
tions. In the current work, to unequivocally state which of the cyanobacterial metabolites 
are responsible for this activity, the six isolated Ncps were assayed. For three cyclic Ncps 
(Ncp-A1, Ncp-A2, Ncp-E2) and the six-amino acid linear variant without an aldehyde 
group (Ncp-E4-L), no effects on CT-L activity of the human 20S proteasome were ob-
served (Figure 2A). This activity was inhibited only by two linear peptide aldehydes, Ncp-
A2-L and Ncp-E2-L, applied at 50 µM (Figure 2A). As the two Ncps differ in position 6 
(Pro/MePro) and the C-terminal amino acid (Leu/Phe), it can be concluded that these res-
idues do not affect the CT-L activity. Nostocyclopeptide Ncp-E2-L, as well as the widely 
used synthetic proteasome inhibitor MG-132 [32,33], contain the aldehyde group on C-
terminal Leu. The potent activity of MG-132 (IC50 0.11 μM) [34] was attributed to the for-
mation of the hemiacetal covalent bond between the aldehyde group of C-terminal Leu 
and the hydroxyl group of Thr1 present in the active site of the proteasome [35]. Another 
bioactive linear nostocyclopeptide from CCNP1411, Ncp-A2-L, also has the C-terminal 
amino acid aldehyde (Phe), which again confirms the importance of the aldehyde group 
for the CT-L inhibition [14,36]. Due to the limited amounts of the isolated Ncps, their ef-
fects on T-L and C-L activities were examined with no replications. In the assays, only the 
cyclic Ncp-A2 showed concentration-dependent inhibition of T-L activity (Figure 2B) and 
had weak effects on C-L activity (Figure 2C). The other Ncp variants had no clear effects 
on the two proteolytic sites. 
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Figure 2. The effects of cyclic and linear (L) nostocyclopeptides (Ncps) on the CT-L (A), T-L (B), and 
C-L (C) activities of the human 20S proteasome. DMSO was used as a control, and PR11 was used 
to ensure the correctness of the assay. In the CT-L activity assay, all Ncp variants were tested in 
triplicate. 

The two linear Ncps, Ncp-A2-L and Ncp-E2-L, moderately decreased the CT-L activ-
ity (IC50 ca. 50 µM), compared with several known aldehyde-containing proteasome in-
hibitors [13]. However, this moderate potency of the Ncps is compensated by their high 
specificity. Unlike many other peptide aldehydes, which inhibit a wide range of proteases 
[13,36], the two Ncps interacted with the CT-L site but did not modify the T-L and C-L 
activities. 

Among cyanobacteria metabolites, α,β-epoxyketones carmaphycin A and B, isolated 
from Symploca sp., were found to inhibit CT-L activity of the Saccharomyces cerevisiae 20S 
proteasome at low nanomolar concentrations [37]. The authors suggested that the sulfox-
ide/sulfone moieties in the methionine-derived residues of the inhibitor are crucial for the 
interaction with the enzyme complex. Nostodione A from Scytonema hofmannii, which in-
hibits CT-L activity (IC50 50 µM), contains indole moiety fused with diketone system [38]. 
Other cyclic metabolites from cyanobacteria have demonstrated inhibitory effects against 
20S complex. For example, scytonemide A from S. hofmannii, a cyclic peptide character-
ized by the presence of a unique imino linkage, inhibited catalytic activity of proteasome 
at IC50 96 nM [39]. Krunic et al. [39] suggested that Gln residue contributed to structural 
conformation in this peptide, enabling optimal binding at the active site. On the other 
hand the presence of an imine enabled the formation of a covalent bond. Nostoc-derived 
(Nostoc sp. UIC 10022A) cylindrocyclophanes were active against the 20S proteasome in a 
wide range of activities (IC50 2.2–100 μM). According to the authors, dichloromethyl moi-
ety was crucial to achieving a higher level of inhibition [40]. 

The proteasome is an important drug target in a variety of diseases [10–12]. Cur-
rently, three proteasome inhibitors, approved by the American Food and Drug Admin-
istration (FDA), are clinically used for the treatment of multiple myeloma (MM) and man-
tle cell lymphoma (MVL) patients: bortezomib (Velcade) [41], carfilzomib (Kyprolis) [42] 
and ixazomib (Ninlaro) [43]. Unfortunately, despite the initial promising effects and high 
efficacy of the proteasome inhibitors in MM treatment, in many patients, resistance has 
developed. Moreover, some patients do not respond to this treatment, or the side effects 
of the drugs are too severe [44–47]. 

Currently, the application of proteasome inhibitors in the treatment of other diseases, 
e.g., in autoimmune disorders, inflammation, or malaria, is explored [4,48]. Further stud-
ies are also performed to better understand the effect of specific proteasome inhibitors on 
general protein homeostasis. In parallel, screening for novel agents with a potential ther-
apeutic application as regulators of the 20S proteasome and other components of the ubiq-
uitin-proteasome system is continued [49,50]. Regardless of the low potency, Ncps still 
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can be considered as starting points for drug development. As in the case of many bioac-
tive natural products, their activity and selectivity can be optimized by structural modifi-
cations so that the final compound can demonstrate a better therapeutic potential. 

4. Conclusions 
Nostoc edaphicum strain CCNP1411 produces 10 nostocyclopeptides, including cyclic 

and linear forms. In the current work, the effect of six isolated Ncps structural variants on 
the activity of the human 20S proteasome was examined. The results indicate the differ-
ences in the activity of the cyclic and linear Ncp variants and show their selectivity in 
interaction with the proteasome active sites. Two of the linear peptides, Ncp-A2-L and 
Ncp-E2-L, inhibited the CT-L activity of the enzymatic complex without any effect on T-
L and C-L sites. On the other hand, the cyclic Ncp-A2 had an inhibitory effect on T-L 
activity. The study also confirmed the importance of an aldehyde group for the interaction 
with the active center responsible for the CT-L activity. This is the first report on the in-
hibitory effect of Ncps on the 20S proteasome, which is an important drug target in vari-
ous diseases. 
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Figure S4: HSQC spectrum of Ncp-A2-L in H2O:D2O (9:1) 



 

Figure S5: HMBC spectrum of Ncp-A2-L in H2O:D2O (9:1) 


	Binder1.pdf
	coversheet_template
	FIDOR 2021 Nostocyclopeptides (VOR)
	1. Introduction
	2. Materials and Methods
	2.1. Organism, Extraction, and Isolation of Compounds
	2.2. NMR Analysis
	2.3. Human 20S Inhibition Assay

	3. Results and Discussion
	4. Conclusions
	References


	biomolecules-1385195-supplementary.pdf

