WAGSTAFF, A., LAWTON, L.A. and PETRIE, B. 2022. Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. [Dataset]. *Chemosphere* [online], 288(Part 2), article 132578. Available from: <u>https://www.sciencedirect.com/science/article/pii/S0045653521030502?via%3Dihub#appsec1</u>

Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. [Dataset]

WAGSTAFF, A., LAWTON, L.A. and PETRIE, B.

2022

This document was downloaded from https://openair.rgu.ac.uk

Electronic supplementary material

Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs

Antony Wagstaff, Linda A Lawton, Bruce Petrie*

School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK

*Email: <u>b.r.petrie@rgu.ac.uk</u>

The electronic supplementary information contains four figures and two tables which includes pharmaceutical recoveries through different filters, isotherm data, pharmaceutical log D_{OW} values and drug speciation at varying pH, the MS/MS instrumental parameters, and the *p*-values from the statistical analysis.

Figure S1. Recovery of pharmaceuticals through different membrane filters

Figure S2. Equilibrium data of propranolol (a), amitriptyline (b), and fluoxetine (c) fitted to linear (blue dashed line), Freundlich (red dashed line) and Langmuir (black dashed line) isotherm models. The data points show the experimental data.

Figure S3. Speciation of atenolol (A), pseudoephedrine (B), metoprolol (C), tramadol (D), propranolol (E), fluoxetine (F), and amitriptyline (G) at different pH values. The orange line represents the positively charged species and the blue line represents the uncharged (neutral) species

Figure S4. Log *D*_{OW} of atenolol (*A*), pseudoephedrine (*B*), metoprolol (*C*), tramadol (*D*), propranolol (*E*), fluoxetine (*F*), and amitriptyline (*G*) at different pH values

Table S1. MS/MS parameters of all pharmaceuticals, including those used as internal standards

Pharmaceutical	R_t	Precursor	Fragmentor	Product	CE	Product	CE	Internal
	(minutes)	(m/z)	(V)	1 (m/z)	(eV)	2 (m/z)	(eV)	standard
Atenolol	3.4	266.9	110	189.9	20	145.0	30	Codeine
Pseudoephedrine	4.2	166.0	90	148.0	10	91.0	40	Codeine
Metoprolol	8.7	268.1	110	191.1	10	116.0	12	Acebutolol
Tramadol	8.5	264.1	90	58.1	20	-	-	Acebutolol
Propranolol	10.6	259.9	110	182.9	10	115.9	10	Carbamazepine
Fluoxetine	12.4	309.8	90	147.7	2	44.0	10	Carbamazepine
Amitriptyline	12.1	278.1	100	233.1	10	91.0	30	Carbamazepine
Codeine ^a	4.8	300.0	100	214.9	20	-	-	-
Acebutolol ^a	8.8	337.2	90	116.1	20	-	-	-
Carbamazepine ^a	11.5	236.8	130	193.9	20	-	-	-

Key: R_t , retention time; CE, collision energy ^aInternal standard

	Propranolol	Amitriptyline	Fluoxetine					
Wastewater parameters compared	Adjusted p-	Adjusted p-	Adjusted p-					
	value	value	value					
One-way ANOVA followed by Tukey's post-hoc multiple comparisons test								
pH 3 vs. pH 6	0.8663	0.0145	0.0002					
pH 3 vs. pH 7	0.1247	< 0.0001	< 0.0001					
pH 3 vs. pH 8	0.0478	< 0.0001	< 0.0001					
pH 3 vs. pH 11	< 0.0001	< 0.0001	< 0.0001					
pH 6 vs. pH 7	0.4572	0.0008	0.0002					
pH 6 vs. pH 8	0.2039	< 0.0001	< 0.0001					
pH 6 vs. pH 11	< 0.0001	< 0.0001	< 0.0001					
pH 7 vs. pH 8	0.9676	0.3084	0.0534					
pH 7 vs. pH 11	0.0004	< 0.0001	< 0.0001					
pH 8 vs. pH 11	0.0008	< 0.0001	< 0.0001					
100% wastewater vs. 75% wastewater	>0.9999	0.0878	0.0005					
100% wastewater vs. 50% wastewater	0.3937	0.0052	0.0014					
100% wastewater vs. 25% wastewater	0.0044	0.0019	0.0006					
100% wastewater vs. 0% wastewater	0.0009	0.0019	0.0032					
75% wastewater vs. 50% wastewater	0.4436	0.3943	0.9216					
75% wastewater vs. 25% wastewater	0.0051	0.1472	0.9993					
75% wastewater vs. 0% wastewater	0.001	0.1522	0.6315					
50% wastewater vs. 25% wastewater	0.0742	0.9463	0.9743					
50% wastewater vs. 0% wastewater	0.0125	0.9518	0.9708					
25% wastewater vs. 0% wastewater	0.776	>0.9999	0.7561					
0 g/L NaCl vs. 1 g/L NaCl	0.0028	0.7227	0.5886					
0 g/L NaCl vs. 2 g/L NaCl	0.0059	0.9999	0.3604					
0 g/L NaCl vs. 3 g/L NaCl	0.0034	0.9979	0.6205					
0 g/L NaCl vs. 4 g/L NaCl	0.004	0.8632	0.2244					
1 g/L NaCl vs. 2 g/L NaCl	0.9831	0.7961	0.9909					
1 g/L NaCl vs. 3 g/L NaCl	>0.9999	0.5537	0.0874					
1 g/L NaCl vs. 4 g/L NaCl	0.9988	0.9983	0.9254					
2 g/L NaCl vs. 3 g/L NaCl	0.9942	0.9909	0.0442					
2 g/L NaCl vs. 4 g/L NaCl	0.9988	0.9157	0.9959					
3 g/L NaCl vs. 4 g/L NaCl	>0.9999	0.7139	0.0254					
Unpaired t-test followed by Welch's correction								
20 °C vs. 5 °C	0.0095	0.001	0.0035					

Table S2. Adjusted *p*-values from the statistical analysis