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Abstract—The principal component analysis (PCA) and 2-D 

singular spectral analysis (2DSSA) are widely used for spectral 

domain and spatial domain feature extraction in hyperspectral 

images (HSI). However, PCA itself suffers from low efficacy if no 

spatial information is combined, whilst 2DSSA can extract the 

spatial information yet has a high computing complexity. As a 

result, we propose in this paper a PCA domain 2DSSA approach 

for spectral-spatial feature mining in HSI. Specifically, PCA and 

its variation, folded-PCA are utilized to fuse with the 2DSSA, as 

folded-PCA can extract both global and local spectral features. By 

applying 2DSSA only on a small number of PCA components, the 

overall computational complexity has been significantly reduced 

whilst preserving the discrimination ability of the features. In 

addition, with the effective fusion of spectral and spatial features, 

the proposed approach can work well on the uncorrected dataset 

without removing the noisy and water absorption bands, even 

under a small number of training samples. Experiments on two 

publicly available datasets have fully demonstrated the superiority 

of the proposed approach, in comparison to several state-of-the-

art HSI classification methods and deep-learning models. 

Index Terms—Hyperspectral image (HSI); spectral-spatial 

feature mining; principal component analysis (PCA); singular 

spectrum analysis (SSA). 

I. INTRODUCTION

ith rich spectral and spatial information in a 3-D

hypercube, HSI can well characterize the material and 

objects based on their physical, e.g. moisture and temperature, 

and chemical properties. As a result, different HSI processing 

tasks, including data classification [1], spectral unmixing [2], 

and image restoration [3], have been explored to tackle various 

challenges in remote sensing.  

A HSI is usually composed of 2-D scenes in  hundreds of 

contiguous wavelengths, in which each pixel has a 1-D spectral 

signature [4]. Aside from spectral and spatial information, HSI 

data contains redundant content and noise due to environmental 

noise, sensor limitations and atmospheric impacts. As a result, 

even sophisticated classifiers like support vector machine 

(SVM) and deep learning (DL) models have limited 

classification accuracy.  Herein, the bottleneck is how to derive 

the most representative features from the HSI data, i.e. spectral 

and spatial feature mining especially of the uncorrected dataset. 

Considering the high redundancy in contiguous spectral 

bands, spectral feature extraction and dimensionality reduction 
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has been popularly used in some early studies. Although PCA 

is most widely used for unsupervised dimension reduction and 

spectral feature extraction, it often fails to extract the useful 

local spectral information. To tackle this issue, several 

variations have been explored, such as a correlation based 

segmented PCA (SPCA) [5], where the spectral bands are 

segmented into groups for group based PCA followed by 

feature concatenation. In Tsai et al [6], a spectrally segmented 

PCA was proposed and shown better performance than PCA 

and SPCA for mapping of the plant species. Similar to the 

SPCA, FPCA was also developed to extract both the local and 

global structures in the spectral domain [7]. However, the main 

difference is that FPCA reallocates the spectrum of each pixel 

into a matrix form, based on which, a partial covariance matrix 

can be directly determined and accumulated for subsequent 

Eigenvalue decomposition and data projection. In this case, it 

can be more efficient and effective than PCA and SPCA. More 

recently, Uddin et al [8], proposed a Segmented-FPCA 

approach, which was superior to PCA, FPCA and SPCA. 

However, due to noise caused intra-class variations and high 

inter-class similarity, those methods still suffer from lack of 

robustness and limited discriminability.  

Recently, a new techniques, named 1D-SSA [9], was 

developed for more effectively exploiting the spectral features. 

It can extract the trend from the original signal as well as the 

oscillations and noise components. By only taking the main 

trend and selected oscillations as features whilst abandoning the 

noisy components, the classification accuracy can be much 

improved. In an extended 2DSSA [4],  spatial features can be 

effectively extracted for significantly improved classification 

accuracy. However, 1D-SSA and 2DSSA needs to be applied 

either to every pixel or every spectral band of the HSI, thus it is 

very time-consuming. To reduce the overall computational 

complexity whilst maintaining the classification accuracy, fast 

implementation of 1D-SSA and 2DSSA were also developed 

[10], though the overall reduction of computational cost is still 

very limited. Recently, a 1.5D-SSA [11] has been proposed for 

near real-time HSI analysis yet with a much compromised 

classification accuracy.  

When applying the DL-based approaches to HSI, some 

models prominent in computer vision are modified for data 
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classification [12]. Nonconvexity is also applied into DL 

models for improved interpretability in complicated real-world 

situations. As a result, many well-performing nonconvex DL 

models were investigated for HSI classification [3], often via 

extraction of spectral and/or spatial features, where the results 

can be fairly good in classification of HSI. However, they may 

suffer from either a very high computational cost or lack of 

sufficient training data. This is why classical machine learning 

models, such as SVM, is still widely used, in combination with 

an effective feature extractor, which may achieve comparable 

performance as deep learning models in classification of HSI 

for land cover mapping [13]. 

These challenges motivate us to propose a new framework of 

applying the 2DSSA on the PCA domain (PCA+2DSSA, 

FPCA+2DSSA), resulting in improved classification accuracy 

yet with significantly reduced computational complexity. By 

fusion of FPCA and PCA with 2DSSA, we further propose 

Fusion+2DSSA, for more improved data storage efficiency, 

classification accuracy and computation cost. The main 

contributions are summarized below: 

1) We proposed a new framework of PCA domain 2DSSA

for spectral-spatial feature extraction in HSI, where the

computation cost can be significantly reduced whilst

improving the classification accuracy.

2) In the proposed framework, three different schemes i.e.,

PCA+2DSSA, FPCA+2DSSA, and Fusion+2DSSA, are

introduced to balance the efficiency and efficacy to satisfy

various practical needs, with parameters adaptively

determined for ease of implementation.

3) The superiority of our approach has been validated in two

corrected HSI datasets and two uncorrected HSI datasets

when benchmarked with traditional feature extraction

methods and deep learning models.

II. PROPOSED APPROACH 

Fig. 1 shows the workflow of the proposed method, which is 

composed of three main steps, i.e., spectral feature extraction 

and dimension reduction in HSI, 2DSSA based PCA domain 

spatial feature extraction, and feature fusion, followed by data 

classification using SVM as detailed below. 

A. PCA based spectral feature mining in HSI

Given an HSI hypercube 𝐷 ∈ ℜ𝐷𝑥×𝐷𝑦×𝐷𝜆, the spectral vector

of a given pixel can be denoted as 𝑥𝑛 = [𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝐷𝜆
]

𝑇
,

where 𝑛 ∈ [1, 𝑁], and 𝑁 = 𝐷𝑥𝐷𝑦  is the total number of pixels.

The mean-adjusted vector 𝐼𝑛 of 𝑥𝑛 will be used to calculate the

covariance matrices of PCA. 

𝐶𝑃𝐶𝐴 =
1

𝑁
∑ 𝐼𝑛𝐼𝑛

𝑇
𝑁

𝑛=1
(1) 

Let 𝐴𝑛 ∈ ℜ𝐻×𝑊  be the converted matrix where H is the

number of band group and W is the band number in each band 

group and 𝐻𝑊 = 𝐷𝜆, the covariance matrices of FPCA can be

obtained by  [8] 

𝐶𝐹𝑃𝐶𝐴 =
1

𝑁
∑ 𝐴𝑛

𝑇𝐴𝑛

𝑁

𝑛=1
(2) 

For a covariance matrix, the Eigen problem can be solved by 

decomposing 𝐶 into the multiplication of three matrices as 

𝐶 = 𝛬𝐷𝛬𝑇 (3) 

where 𝐷 is the diagonal matrix composed by the Eigenvalues 

of 𝐶, and 𝛬 denotes the orthonormal matrix composed by the 

corresponding Eigenvectors [𝑣1, 𝑣2, … , 𝑣𝐷𝜆
] . To reduce the

dimension of spectral features, top Eigenvectors corresponding 

bigger Eigenvalues are selected. For PCA, we take the first 

𝑞𝑃𝐶𝐴 components as the spectral features of 𝑥𝑛 as follows.

𝑥𝑛(𝑃𝐶𝐴) = 𝛬𝑇𝐼𝑛 ∈ ℜ1×𝑞𝑃𝐶𝐴  (4)

For FPCA, we take the first �̂�  components for each band 

group, and the spectral features of 𝑥𝑛 can be derived as

𝑥𝑛(𝐹𝑃𝐶𝐴) = 𝛬𝑇𝐴𝑛 ∈ ℜ𝐻×�̂� (5)

where the total number of components in FPCA will be 

𝑞𝐹𝑃𝐶𝐴 = 𝐻�̂�. For convenience, the spectral feature of 𝐷 can be

represented as 𝐷(𝑃𝐶𝐴) ∈ ℜ𝐷𝑥×𝐷𝑦×𝑞𝑃𝐶𝐴  and 𝐷(𝐹𝑃𝐶𝐴) ∈

ℜ𝐷𝑥×𝐷𝑦×𝑞𝐹𝑃𝐶𝐴.

B. PCA domain spatial feature extraction with 2DSSA

After spectral feature mining, the original HSI hypercube 𝐷 

is represented by PCA features 𝐷(𝑃𝐶𝐴) ∈ ℜ𝐷𝑥×𝐷𝑦×𝑞𝑃𝐶𝐴  and

FPCA features 𝐷(𝐹𝑃𝐶𝐴) ∈ ℜ𝐷𝑥×𝐷𝑦×𝑞𝐹𝑃𝐶𝐴 . Note that each of

the PCA/FPCA component is actually of the same size as the 

original spectral band, i.e. 𝐷𝑥 × 𝐷𝑦 , to which the 2DSSA [4] is

applied to extract the spectral-spatial features. First, a squared 

window 𝐿 ∈ ℜ𝐿𝑥×𝐿𝑦 , where, 𝐿𝑥 ∈ [1, 𝐷𝑥] and 𝐿𝑦 ∈ [1, 𝐷𝑦], is

used to construct a trajectory matrix 𝑇 ∈ ℜ𝑆×𝐾  of featured

image (embedding step) where 𝑆 = 𝐿𝑥 × 𝐿𝑦 , 𝐾 = (𝐷𝑥 − 𝐿𝑥 +

1)(𝐷𝑦 − 𝐿𝑦 + 1). Often, we have 𝐿𝑥 = 𝐿𝑦 for simplicity.

For the derived trajectory matrix T, the singular value 

decomposition (SVD) is applied to extract the Eigenvalues 

𝑒1 ≥ 𝑒2 ≥ ⋯ ≥ 𝑒𝑆 and Eigenvectors 𝑈 ∈ ℜ𝑆×𝑆. As a result, T

Fig. 1. The workflow of our proposed PCA domain 2DSSA schemes. 
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is decomposed in 𝑇 = 𝑇1 + 𝑇2 + ⋯ + 𝑇𝑆  components. After

that, the grouping and diagonal averaging step are applied to 

invert the embedding step and obtain the reconstructed image 

Z. Accordingly, each featured image in 𝐷(𝑃𝐶𝐴) and 𝐷(𝐹𝑃𝐶𝐴)
can be represented by

𝐷(∙)′ = 𝑍1 + 𝑍2 + ⋯ + 𝑍𝑀 = ∑ 𝑍𝑚

𝑀

𝑚=1
 (6) 

where M is the number of selected Eigenvalues in the SVD. 

When M = S, the reconstructed image is equal to the original 

image. Herein, we denote 𝐷(𝑃𝐶𝐴 + 2𝐷𝑆𝑆𝐴) and 𝐷(𝐹𝑃𝐶𝐴 +
2𝐷𝑆𝑆𝐴) as the PCA-based spectral-spatial features and FPCA-

based spectral-spatial features, respectively. 

For consistency, the same configuration of  2DSSA in [4] is 

adopted, where L=10 and only the first Eigenvalue component, 

M=1, i.e. the trend, is used. Although varying parameters may 

affect the final classification performance for different datasets, 

the overall difference from different configurations is estimated 

to be less than 1%. Therefore, the parameters L and M are set to 

10 and 1 in all the experiments for simplicity. 

C. Feature fusion

Applying the 2DSSA on the PCA/FPCA domains can reduce

the computation cost compared to band-wise operations. On the 

other hand, as demonstrated in Fig. 2, the discrimination ability 

of features extracted from the Indian Pines dataset by 

PCA+2DSSA, and FPCA+2DSSA can be enhanced. In PCA, 

we choose 𝑞𝑃𝐶𝐴 = 10. For FPCA, we have H=10, W=20 and

𝑞𝐹𝑃𝐶𝐴 = 10, i.e. the 200 bands are grouped into 10 groups, and

only one component is extracted from each group. 

As seen in Fig. 2, low-order principal components (PCs) have 

smoothed the spatial features while high-order PCs are quite 

noisy. Applying the 2DSSA to PCs can make these noisy 

components usable again in the derived trend signal. This has 

shown the added-value of 2DSSA on the PCA domain as the 

extracted spatial-domain trend signal can effectively suppress 

the noise and enhance the discrimination ability of the spectral-

spatial features. On the other hand, PCA can extract the global 

spectral structure using a small number of low-order PCs, 

whilst FPCA can preserve local spectral features. As seen, PCA 

and FPCA features are quite supplementary to each other, 

which has motivated our fused solution below.  

As the FPCA components are extracted from locally grouped 

spectral bands, they appear to be significantly smoother than 

those from PCA. This actually shows that FPCA is more robust 

to spectral noise, hence it has the potential to achieve noise-

robust feature extraction and data classification in HSI, 

especially from the uncorrected dataset without removing the 

noisy and water absorption bands. On the other hand, the 

features extracted from FPCA seem to be more redundant, due 

possibly to inappropriate grouping of bands. In addition, when 

applying 2DSSA to FPCA components, the effect of spatial 

smoothing is not as strong as those on the PCA components. 

This actually indicates potential limitations of FPCA+2DSSA 

hence the need for fusion with PCA+2DSSA.  

For an HSI, the obtained spectral-spatial features 𝐷(𝑃𝐶𝐴 +
2𝐷𝑆𝑆𝐴) and 𝐷(𝐹𝑃𝐶𝐴 + 2𝐷𝑆𝑆𝐴), can be separately used for 

classification of the HSI. Meanwhile, they can also be fused to 

form a combined feature vector, denoted as 

𝐷(𝐹𝑢𝑠𝑖𝑜𝑛 + 2𝐷𝑆𝑆𝐴) = { 𝐷(𝑃𝐶𝐴 + 2𝐷𝑆𝑆𝐴), 

𝐷(𝐹𝑃𝐶𝐴 + 2𝐷𝑆𝑆𝐴)} ∈ ℜ𝐷𝑥×𝐷𝑦×(𝑞𝑃𝐶𝐴+𝑞𝐹𝑃𝐶𝐴) 
(7) 

The combined feature has a dimension of (𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴),

which can be much smaller than 𝐷𝜆  , though the spatial

dimension remains the same. Note that 𝑞𝑃𝐶𝐴 and 𝑞𝐹𝑃𝐶𝐴 here are

adaptively decided as follows. For FPCA in Fusion+2DSSA, 

we divide each spectrum into 10 groups and select the first 

component of each group to form 10 combined components, 

i.e., 𝑞𝐹𝑃𝐶𝐴 = 10. For PCA, the 𝑞𝑃𝐶𝐴  is decided based on the

accumulated variance of the PCA components no less than a

threshold of the total variance, and this threshold is empirically

determined as 99.98% as it can help to produce particular good

results for all the datasets. Accordingly, the 𝑞𝑃𝐶𝐴 values for the

Indian Pines and Salinas are adaptively determined as 90, and

20, respectively. To this end, the total number of combined

features after the feature fusion for the Indian Pines and Salinas

is 100 and 30, respectively. The detail experimental results and

efficacy analysis of the PCA+2DSSA, FPCA+2DSSA and

Fusion+2DSSA schemes are presented in Section III.

III. EXPERIMENTS 

A. Data description

In our experiments, two publicly available HSI datasets are 

used for performance evaluation. The first is Indian Pines, 

which is collected by the AVIRIS in 1992 in the USA. This 

dataset is labelled in 16 land cover classes and contains 

145 × 145 pixels in 220 spectral bands. The second is Salinas, 

also collected by AVIRIS of the Salinas Valley in California, 

the USA, it has 512 × 217 pixels in 224 spectral bands labelled 

in 16 classes. After removing 20 noisy and water absorption 

bands, both HSI datasets will become corrected datasets.  

B. Experimental Setup

The optimal numbers of PCs for PCA, FPCA, PCA+2DSSA 

and FPCA+2DSSA are determined within [10, 100] at a step of 

10 by maximizing the KP (%). To validate the efficacy of the 

extracted features, a standard Support Vector Machine (SVM) 

classifier [14] is employed for data classification. 

Consequently, the radical base function (RBF) is used as the 

kernel for the SVM, where the cost (c) and the gamma (γ) are 

1st to 10th components extracted by PCA 1st to 10th components extracted by FPCA 

First dimension feature from 2DSSA on each PCA component First dimension feature from 2DSSA on each FPCA component 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

Fig. 2. Obtained spatial scenes from PCA, FPCA, and 2DSSA. 
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optimized through a grid search [7]. The overall accuracy (OA), 

average accuracy (AA) and Kappa coefficient (KP) are used for 

quantitative evaluation. Each experiment was repeated 10 

times, where training and testing samples are randomly selected 

without overlap. Average results are taken for statistical 

significance analysis and comparison. 

C. Experimental results

The quantitative comparison between our proposed method 

and other benchmarking techniques on two HSI datasets is 

shown in Table I and Table II. ND is the number of feature 

dimensions. Time is the running time of each method. The best 

results and the second-best results are highlighted in bold and 

italic shading, respectively. The optimal selection of the PC 

number in PCA+2DSSA, FPCA+2DSSA, PCA and FPCA is 

decided after massive experiments. As seen, Fusion+2DSSA 

always leads to a higher accuracy, thanks to the strong fusion 

of PCA, FPCA and, making full use of local/global-spectral, 

and spatial information while suppressing data noise. 

PCA+2DSSA and FPCA+2DSSA consistently produce better 

results than 2DSSA, and this is because PCA and FPCA reduce 

the redundant information in the spectral domain making 

2DSSA more effective. In contrast, absence of spatial 

information causes PCA, FPCA, and 1D-SSA to generate low 

accuracy in benchmarking approaches. In addition, PCA and 

1DSSA produce worse performance than raw data in Indian 

Pines and Salinas, respectively. All these adverse factors reflect 

the importance of combining spatial and spectral features for 

HSI classification. Last but not the least, applying 2DSSA on 

PCA domain makes the computation cost much lower which 

reflects on the running time. It can be seen that three proposed 

schemes can produce faster and better classification results than 

2DSSA. Among our three schemes, FPCA+2DSSA has the 

fastest running speed, Fusion+2DSSA has the best 

classification performance and PCA+2DSSA is a balanced 

solution. Compared with other benchmarking methods such as 

CCJSR [15], SuperPCA [16] and JSRC[17], our methods are 

more effective and efficient. 

D. Comparison with deep learning methods

To further validate the efficacy of our proposed method, we 

also do the comparison against another 4 deep learning models 

[18-21] using 200 training pixels per class (Table III). To be 

more specific, after removing classes with fewer than 200 

pixels, only nine classes are used in the Indian Pines dataset. 

The experimental results shown that our proposed frameworks, 

Fusion+2DSSA and PCA+2DSSA, can consistently yield the 

best and second-best OA on both datasets. In this way, the 

effectiveness of our approaches is validated. 

E. Computational complexity

The suggested spectral-spatial fusion approach improves the 

efficiency of the standard 2DSSA by integrating PCA and 

FPCA to minimize dimensionality in the spectral domain. In 

this subsection, we briefly analyze the computational 

complexity and memory requirement of each implementation 

stage in Table IV and Table V. As seen the saving factor 

referring to 2DSSA in Table IV, applying 2DSSA on PCA 

domain decreases the 2DSSA band repetition process, which 

turns to lower computation burden. Fusion+2DSSA has slightly 

higher complexity than the other two, because of the fusion of 

both PCA and FPCA. As we only apply on the PCs, this has 

significantly reduced the computational cost from conventional. 

As shown in Table V (D.M, C.M and P.M represent the size of 

input data matrix, covariance matrix and projection matrix, 

respectively), our proposed three frameworks need slightly 

more memory than the 2DSSA and PCA/FPCA alone due to the 

TABLE III  
THE OA OF OUR PROPOSED METHODS COMPARED WITH DEEP-LEARNING 

METHODS USING 200 TRAINING SAMPLES PER CLASS 

Datasets [18] [19] [20] [21] 
PCA+ 

2DSSA 

FPCA+ 

2DSSA 

Fusion+ 

2DSSA 

Indian Pines 95.81 98.43 96.76 98.99 99.04 97.75 99,36 

Salinas 96.07 98.33 97.42 99.58 99.64 98.51 99.77 

TABLE I  

CLASSIFICATION PERFORMANCE FOR INDIAN PINES DATASET WITH 5 PIXELS PER CLASS FOR TRAINING. 

RAW PCA FPCA 1DSSA 2DSSA CCJSR SuperPCA JSRC 
PCA+ 

2DSSA 

FPCA+ 

2DSSA 

Fusion+ 

2DSSA 

ND 200 20 20 200 200 200 30 200 40 40 100 

Time(s) 0.14 0.27 0.74 12.01 8.78 38.05 11.11 68.37 3.31 3.06 7.28 

Corrected 

AA 60.40±2.6 53.77±2.4 65.08±2.3 65.99±2.1 73.43±2.2 70.37±1.6 83.66±1.5 77.21±1.7 83.28±1.9 77.38±2.1 85.12±1.5 

OA 46.48±4.1 41.41±3.0 51.50±3.5 53.03±4.2 59.64±4.5 56.65±4.4 71.77±2.9 64.01±3.0 72.46±3.7 62.99±3.6 75.13±2.8 

KP% 40.36±4.2 34.83±3.0 45.84±3.7 47.47±4.5 54.96±4.7 51.50±4.4 68.29±3.0 59.70±3.2 69.10±4.0 58.80±3.9 72.06±3.0 

Uncorrected 

AA 56.62±1.4 53.77±2.4 64.58±1.7 62.71±2.7 75.31±1.9 70.62±1.2 83.99±1.8 77.18±1.8 84.01±1.8 77.40±2.0 85.15±1.5 

OA 43.14±3.4 41.41±3.0 51.47±4.0 48.61±4.2 61.53±3.1 56.82±4.4 73.00±2.5 62.96±3.1 72.56±3.1 63.41±4.1 75.14±2.7 

KP% 36.63±3.3 34.83±3.0 45.74±4.1 42.67±4.5 56.97±3.3 51.69±4.3 69.63±2.7 58.66±3.2 69.28±3.3 59.24±4.5 72.07±2.9 

TABLE II  

CLASSIFICATION PERFORMANCE FOR SALINAS DATASET WITH 5 PIXELS PER CLASS FOR TRAINING. 

RAW PCA FPCA 1DSSA 2DSSA CCJSR SuperPCA JSRC 
PCA+ 

2DSSA 

FPCA+ 

2DSSA 

Fusion+ 

2DSSA 

ND 200 10 30 200 200 200 30 200 20 50 30 

Time(s) 0.75 1,89 2.55 84.84 47.06 140.78 27.64 945.52 5.25 2.63 10.17 

Corrected 

AA 89.23±0.9 90.77±1.2 89.82±1.1 88.77±0.8 91.44±1.3 86.74±2.9 94.68±2.1 90.20±1,6 96.13±0.7 94.21±1.0 96.46±0.5 

OA 82.18±2.3 83.75±3.6 82.45±2.9 81.69±1.9 86.52±2.9 80.61±2.4 92.60±3.5 84.34±1.9 93.34±0.9 91.53±2.2 93.86±0.7 

KP% 80.26±2.5 81.98±4.0 80.53±3.2 79.72±2.1 85.08±3.2 78.52±2.7 91.80±3.8 82.65±2.1 92.61±1.0 90.59±2.4 93.19±0.8 

Uncorrected 

AA 89.23±0.9 90.71±1.2 89.43±1.0 88.79±0.8 91.46±1.3 86.97±2.8 94.51±1.9 90.16±1.6 96.13±0.7 93.07±1.0 96.46±0.5 

OA 82.19±2.3 83.71±3.6 82.66±3.6 81.70±1.9 86.52±2.9 80.84±2.3 91.61±2.2 84.32±1.9 93.44±1.0 89.72±1.8 94.01±0.7 

KP% 80.26±2.5 81.94±4.0 80.74±4.0 79.73±2.1 85.08±3.2 78.77±2.5 90.71±2.5 82.62±2.0 92.73±1.1 88.59±2.0 93.35±0.8 
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fusion of the spectral and spatial processing. However, the 

overall memory requirement is modest, which is very close to 

the size of the hypercube. For Indian Pines and Salinas datasets, 

the memory requirements are only up to about 25M and 102M 

bytes respectively, a very small portion of the computer RAM 

at 32G or even more.  

This has validated the computational efficiency of the 

proposed method. Detailed comparison of MACs, running time 

and memory requirements on the two HSI datasets can be found 

in the supplementary material (Tables S1-S3).  

IV. CONCLUSION

In this letter, a novel PCA domain 2DSSA framework is 

proposed, where three schemes are introduced for noise robust 

spectral-spatial feature extraction. By applying PCA/FPCA in 

the PCA domain, the computational cost of band-wise 2DSSA 

can be significantly reduced whilst preserving the dominant 

spectral information for more effective data classification in 

HSI. Experiments on two publicly available datasets have fully 

validated both the efficiency and efficacy of the proposed 

framework. Among our proposed schemes, FPCA+2DSSA has 

the lowest computation cost, yet Fusion+2DSSA can produce 

consistently the best classification accuracy on the corrected 

and uncorrected datasets when benchmarked with several state-

of-the-art approaches. Besides, PCA+2DSSA has relatively a 

good balance between the computation cost and the 

classification accuracy.    

With the advantages of low computational cost, high 

classification accuracy and robustness to noise, the proposed 

methods have many potential application scenarios in 

hyperspectral remote sensing. As the future work, superpixel 

segmentation and band selection will be focused for improved 

spatial feature extraction and dimension reduction.  
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TABLE V  

MEMORY REQUIREMENT OF DIFFERENT METHODS IN DIFFERENT STAGES 

USING PCA/FPCA AND 2D-SSA (L=10, M=1, 20 PCS). 

Stage PCA FPCA 2DSSA 
PCA+ 

2DSSA 
FPCA+ 
2DSSA 

Fusion+ 
2DSSA 

D.M 𝑁𝐷𝜆 𝐷𝜆 𝑁𝐷𝜆
𝑁𝐷𝜆

+ 𝑁𝑞𝑃𝐶𝐴

𝑁𝐷𝜆

+ 𝑁𝑞𝐹𝑃𝐶𝐴

𝑁𝐷𝜆 + 𝑁
(𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴)

C.M 𝐷𝜆
2 𝑊2 𝐿2 𝐷𝜆

2 + 𝐿2 𝑊2 + 𝐿2 𝐷𝜆
2 + 𝑊2 + 𝐿2

P.M 𝐷𝜆𝑞𝑃𝐶𝐴
𝑊𝑞𝐹𝑃𝐶𝐴

/𝐻 
N/A 𝐷𝜆𝑞𝑃𝐶𝐴 𝑊𝑞𝐹𝑃𝐶𝐴/𝐻

𝐷𝜆𝑞𝑃𝐶𝐴

+ 𝑊𝑞𝐹𝑃𝐶𝐴/𝐻

TABLE IV  

COMPUTATIONAL COMPLEXITY IN THE DIFFERENT STAGES AND SAVING FACTORS REFERRING TO 2DSSA 

Stage PCA FPCA 2DSSA  PCA+2DSSA FPCA+2DSSA Fusion+2DSSA 

Covariance matrix 𝑁𝐷𝜆
2 𝑁𝐷𝜆𝑊 𝑁𝐷𝜆

2 𝑁𝐷𝜆𝑊 𝑁𝐷𝜆(𝐷𝜆 + 𝑊)

Eigen problem 𝐷𝜆
3 𝑊3 𝐷𝜆

3 𝑊3 𝐷𝜆
3 + 𝑊3

Data projection 𝑁𝐷𝜆𝑞𝑃𝐶𝐴 𝑁𝑊𝑞𝐹𝑃𝐶𝐴 𝑁𝐷𝜆𝑞𝑃𝐶𝐴 𝑁𝑊𝑞𝐹𝑃𝐶𝐴 𝑁𝐷𝜆(𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴) 

Embed. N/A N/A N/A N/A N/A N/A 

SVD N/A N/A (𝐿2𝐾 + 𝐿3) × 𝐷𝜆 (𝐿2𝐾 + 𝐿3) × 𝑞𝑃𝐶𝐴 (𝐿2𝐾 + 𝐿3) × 𝑞𝐹𝑃𝐶𝐴 (𝐿2𝐾 + 𝐿3) × (𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴) 

Grouping N/A N/A 2𝐿𝐾𝑀 × 𝐷𝜆 2𝐿𝐾𝑀 × 𝑞𝑃𝐶𝐴 2𝐿𝐾𝑀 × 𝑞𝐹𝑃𝐶𝐴 2𝐿𝐾𝑀 × (𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴) 

D.Av. N/A N/A 𝐷𝑥𝐷𝑦 × 𝐷𝜆 𝐷𝑥𝐷𝑦 × 𝑞𝑃𝐶𝐴 𝐷𝑥𝐷𝑦 × 𝑞𝐹𝑃𝐶𝐴 𝐷𝑥𝐷𝑦 × (𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴) 

Saving factor ≈ 3𝐷𝜆/𝑞𝑃𝐶𝐴 ≈ 3𝐷𝜆/𝑞𝐹𝑃𝐶𝐴 ≈ 3𝐷𝜆/(𝑞𝑃𝐶𝐴 + 𝑞𝐹𝑃𝐶𝐴)
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