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ARTICLE INFO ABSTRACT

Keywords:
Water radiolysis

Water radiolysis can serve as a useful tool to study the degradation of organic pollutants in water. Manipulation
of the radiolytic system enables the selective production of reactive species (RS) with known yields. Our aim was
to explore the effects of the radiolytically produced RS on commonly occuring water taste and odor compounds
(T&O), 2-methylisoborneol (MIB) and geosmin (GSM). Observed degradation rate constants differ among
experimental conditions/dominant RS and follow the order: HO*>H">>e,q >(03 */HO,"), ranging from 0.002
Gy '(0, */HO," to 0.083 Gy ! (HO®) for MIB and from 0.006 Gy * (O, */HO,") t0 0.068 Gy ! (HO®) for GSM.
Degradation by HO® was very efficient, requiring 1.14 and 1.49 pnioles of HO® for each degraded pmole of MIB
and GSM, respectively. The oxidative degradation of MIB by HO" proceeds with the production of carbonyl- and
hydroxyl-containing transformation products (TPs), leading to linear structures, while for GSM degradation
proceeds with ring opening, followed by formation of carboxyl-groups. Fewer TPs are produced by HO5", while
degradation with H® led to numerous TPs, via dehydroxylation, dehydration and ring opening. Degradation with
€aq , yielded demethylated and rearranged TPs with formation of double bonds.

Gamma irradiation
Taste and odor
Transformation products
Reactive species
Degradation rate

Introduction

Taste and odor (T&O) are important esthetic parameters of water
quality that largely determine its acceptability by consumers [1]. A
plethora of compounds of natural or anthropogenic origin can be
responsibe for water T&O, while some compounds are sensed by the
human nose at low ng L~ ! concentrations [2]. In surface waters, a major
source of T&O are cyanobacteria (prokaryotic organisms) as well as
eukaryotic microorganisms, commonly known as “algae” that produce a
range of volatile metabolites with diverse chemical structures and odor
characteristics [3]. Their occurrence in water often causes consumer
complaints, making water unacceptable for esthetic reasons, with
serious negative socioeconomic impacts for water supplies, aquaculture
and tourism [3,4].

The most widely known and frequently occurring T&O compounds are
the terpenoids 2-methylisoborneol (MIB) and geosmin (GSM) (Fig. 1). MIB
(1,6,7,7-tetramethylbicyclo[2.2.1]heptan-6-0l, C1;Hy0O) has a strong
“musty” odor, with an odor threshold at 6 ng L~ in water [2]. GSM (4S,4a8,
8a-4,8a-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-4a-ol,  Cy5H3,0)
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has a strong “muddy/earthy” smell with an odor threshold at 4 ng L ! in
water [2]. MIB and GSM are mostly associated with cyanobacteria in water
but they are also produced by actinomycetes in soil and water [5].

Conventional treatment processes such as coagulation, sedimenta-
tion, filtration [6], granulated activated carbon (GAC) [7,8] and pow-
ered activated carbon (PAC) [9,10] have presented limitations in the
removal of MIB and GSM from water, since the removal efficiency is
affected by several parameters, e.g. the type of adsorbent, the contact
time of application, etc. [11,12]. Air-stripping has been proven inef-
fective and not economical as well, due to the moderately volatile nature
and low Henry's constants of MIB and GSM [13,14]. Biodegradation has
been shown to be effective, but it requires the constant operation of
biologically active sand filters [15] or dual medium biological filters
[16], while occurrence of MIB and GSM can be seasonal or episodic [11].
Application of conventional disinfectants/oxidants (chlorine, chlorine
dioxide, potassium permanganate) is generally not effective in removing
MIB and GSM, due to the resistance of tertiary alcohols to degradation
[17].

The above limitations and the ever-increasing demand for high-
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Fig. 1. Suuctures and chemical formulae of MIB and GSM.

quality drinking water, has led to the search for viable alternatives such
as advanced oxidation processes (AOPs) [18]. AOPs are mainly driven
by reactive oxygen species (ROS), i.e. hydroxyl radicals (HO®), super-
oxide anions (O, *), hydroperoxyl radicals (HO,*), and hydrogen
peroxide (H»05) [19].

The removal of MIB and GSM from water with AOPs has been tested
in the past with use of O3 [20,21], O3/H304 [22], O3/UV [23,24],
UV/H,05 [25], UV/VUV photolysis [26], UV/persulfate [27,28],
UV/chlorine or ClO; [29,30], photocatalysis with UV/Vis/TiOy or
UV/polyoxometallates [31-34], sonolysis [14] and coupled photo-
catalysis/biodegradation [35], however the role of individual ROS
generated by various AOPs has not been thoroughly investigated. For
example, MIB and GSM are effectively degraded using TiO, or poly-
oxometallates/UV photocatalysis, which produce mainly HO®* [32],
while their degradation is not efficient with doped TiO»/visible light
[36], possibly due to predominance of other ROS [31]. Shedding light
onto ROS-driven degradation mechanisms is essential to select the most
efficient AOPs for specific applications and to fine-tune the processes.

Water radiolysis, i.e. irradiation of water with high-energy gamma
rays or electron beams, produces instantaneous transformation of water
molecules, through energy transfer to the orbital electrons, resulting in
the breakage of interatomic bonds and the formation of highly reactive
products [37]. The products of the process include various ROS (HO®,
0,"), and other reactive species (RS), such as hydrogen atoms, H®, and
hydrated electrons, eaq  [38,39]. Among them, HO® is the predominant
oxidative species, by virtue of its high yield as well as of its high
oxidation potential [40]. Radical reactions are presented in Supple-
mentary Material, page 2.

Water treatment by radiolysis has been studied in the past [41] with
various target pollutants, including pharmaceuticals [42-45], pesticides
[46-48], phenolic compounds [49-51] and cyanobacterial toxins
[52-54]. Apart from its potential to degrade a wide range of pollutants,
water radiolysis can also be applied to study the effects of individual RS
on pollutants, since the system can be manipulated to generate single RS
[55], which are common to those produced during AOPs. Furthermore,
the same RS could also be found in natural aquatic systems and play an
important role in environmental processes [56]. Therefore, under-
standing the role of individual RS on degradation processes of target
compounds could also provide information on their fate in natural water
systems.

To the best of the authors’ knowledge, this is the first study regarding
the degradation of MIB and GSM using water radiolysis. Although in the
past, the degradation of these compounds has been studied using various
AOPs which produce several RS, nevertheless, the role of individual RS
in the degradation process has not been elucidated. This knowledge
could cover important gaps in the fundamental understanding of RS-
driven redox processes that are common in AOPs for water treatment
and enable the optimization and fine-tuning of AOPs targeted at the
removal of MIB and GSM from water. Water radiolysis is an experi-
mental tool able to obtain this knowledge, since is can be used to pro-
duce individual RS at a known and reproducible yield, which is helpful
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to understand the role of each RS in the degradation mechanism of MIB
and GSM, as well as several organic pollutants with similar structure.

Based on the above, the main aims of this study were to evaluate the
degradation of MIB and GSM using water radiolysis and to elucidate the
roles of individual RS on the degradation pathways of MIB and GSM. The
objectives were (a) to evaluate and compare the degradation kinetics of
MIB and GSM by various RS (HO®, Oz °, HO,", H', eyq ) and (b) to
identify the transformation products (TPs) and clarify the degradation
pathways.

Materials and methods
Chemicals and reagents

Standards of GSM (98% purity) and MIB (99.8% purity) were pur-
chased from Wako Pure Chemical Industries Ltd, tertiary butyl alcohol
(TBA) (>>99.0%) and dichloromethane (DCM) of analytical grade from
Sigma Aldrich, formic acid (HCOOH) (>98%) and perchloric acid
(>>98%) from Riedel-de Haén. High purity water (18.2 MQ) was pro-
duced on-site, using a Temak TSDW10 system. High-purity oxygen,
nitrous oxide and nitrogen were obtained from Linde Corporate Hellas.

Radiolysis experiments

Water radiolysis was carried out in a °°Co 6500 Ci Gamma Chamber
(model 4000A, Isotope Group, Bhaba Atomic Research centre, Trombay,
India). The dose rate was 0.064 Gy s, (1 Gy equals 1 Jkg tor1JL™)
and was determined by the Fricke dosimeter, which is based on the
oxidation of ferrous (Fe?") to ferric (Fe3¥) ions and the subsequent
measurement of Fe3* absorbance at 304 nm [57] in a PE Lambda 19
spectrophotometer (Perkin Elmer).

In a typical degradation experiment, aqueous solutions (10 mL) of
MIB or GSM at initial concentration of 1 mg L™ (6 uM and 5.5 pM,
respectively) were placed in borosilicate 12 mL glass vials and closed
with serum caps. The vials were placed in specified positions in the
irradiation chamber and each one was irradiated for a specified period of
time (0-60 min) in order to achieve the desired absorbed dose, up to
230.4 Gy. Experiments for identification of TPs were carried out at
initial concentrations of MIB and GSM, at 10 mg L™ (60 and 55 pM,
respectively) after 30 min of irradiation (115.2 Gy). Degradation ex-
periments were performed in triplicate and the error bars on figures
represent the mean + SD of the replicates.

The following RS are produced during aerated water radiolysis,
originating from water molecules: e’3q (0.28), H* (0.06), HO® (0.28),
05" /HO," (0.0027). H;0, (0.07), Hy (0.05) and HT (0.27) are also
produced via secondary reactions, as shown in Supplementary Material,
page 2. The values in brackets are the well known radiation-chemical
yields of the produced species, which are expressed as G-values, i.e.
number of pmol of RS produced per Joule of absorbed energy (G-values,
pmol J_l), as shown in Table 1 (column “aerated™) [55].

In order to study the effects of single RS, controlled experimental

Table 1

Selected experimental conditions for the production of specific RS along with the
radiation-chemical yield (G value) of their production [55,58] given in pmol of
RS formed per J of absorbed energy. Predominant RS are given in bold italics.

G (RS) value
(pmol of RS J1)
Experimental Conditions

Prominent aerated N,O Deaerated/ Deaerated/ 0, 0,/

RS TBA TBApH 1 HCOOH

€aq 0.28 0 0.28 0 0 0

H* 0.06 0.06 0.06 0.34 0 0

HO* 0.28 0.56 0 0 028 0

05*/ 0.0027 0 0 0 0.34 0.62
HO,"
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conditions with use of selective scavengers were applied, as shown in
Table 1 [55,58]. For this purpose, the system can be manipulated to
produce solely HO® by the use of nitrous oxide (N0), which quantita-
tively converts the eyq to HO® [58], as shown in detail in Supplemen-
tary Material, page 2. The predominant formation of e,q~ is achieved by
irradiation of deaerated aqueous solutions, in the presence of TBA
(initial concentration 2 x 10 2 M), which acts as a HO® scavenger. H is
produced by irradiation of dearerated water solution, in the presence of
TBA (initial concentration 2 x 10™2 M) with adjustment to acidic pH to
1, using prechloric acid. Radicals Oy * / HO,® are predominantly
generated by irradiation in saturated water solutions with oxygen, in the
presence of HCOOH (initial concentration 2 x 1072 ™).

Calculation of rate constants and yields

Observed degradation rate constants were calculated by fitting the
plots (concentrations vs absorbed dose) to a first-order kinetic model, as
described by Eqgs. (1) and (2) [44]:

d|C]

Rate = — 5" kons[C] (€D)]

7 24
I (a) kD @

where:

e C (umol L 1) is the concentration of MIB or GSM

e D (Gy) is the absorbed radiation dose

® Kobs (Gy_l) is the observed reaction rate constant based on absorbed
dose

The radiation-chemical yield (G value, pmole J™1) of MIB or GSM
degradation, defined as the amount of MIB or GSM transformed (AC,
pmol L) per unit of absorbed dose (D, Gy), was calculated using Eq. (3)
[43,59].

AC
G (MIB or GSM) = ac) (3)
(D)

An indicator of the efficiency of each RS to degrade MIB or GSM is

ratio Y, which is given in Eq. (4).

G (RS)

Y(MIB or GSM) = GHIE or GSIT)

(4)
Y indicates the pmoles of RS which are necessary to degrade one
pmole of MIB or GSM under the selected experimental conditions.

Chemical analysis

Monitoring of MIB and GSM was carried out by headspace solid-
phase microextraction (HS-SPME) followed by gas chromatography —
mass spectrometry (GC-MS) [32,60]. More specifically, samples of 2 mL
were placed in 4 mlL screw-capped headspace vials with PTFE-lined
silicone septa. A magnetic stir bar and sodium chloride (750 mg) were
added to the vials. A fiber coated with polydimethylsiloxane (PDMS),
100 pm coating thickness (Supelco) was inserted in the headspace of the
sample and the vial was extracted at 70 °C for 30 min while stirring.
Samples were analyzed in an Agilent 6890 Series GC-MS system,
equipped with an Agilent HP-5 ms capillary column (30 m x 0.25 mm x
0.25 pm) coupled to an Agilent 5973 mass selective detector. The GC
oven temperature gradient program started from 50 °C (held for 1 min)
and ended at 230 °C (held for 6 min), with a ramp (12 °C min 1) under
constant helium flow (0.8 mL min™1). Desorption was carried out in
splitless mode at 250 °C. Detection was performed in selected ion
monitoring (SIM) mode at m/z: 95 (MIB) and 112 (GSM). Data acqui-
sition and instrument control were performed using the Agilent MSD
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Chem-Station software.

Detection and identification of TPs was carried out using a Bruker
456-TQ GC-MS/MS (triple quadrupole mass spectrometer), equipped
with a Rxi-5 MS column, 30 m x 0.25 mm x 0.25 pym (Restek). Samples
(10 ml) were extracted with DCM and then injected (2 pl) into the GC
system in splitless mode. A GC oven temperature gradient program from
35°C to 250 °C at 10 °C min ! and at constant helium flow (1 mL min 1)
was used. MS was performed in full-scan mode, with a m/z range from
50 to 500 amu. Identification of new TPs was based on the NIST MS
library. In addition, the chromatographic system was calibrated for
determination of Linear Retention Indices (LRI) of eluting compounds,
using the standardized n-alkane method [61]. LRIs of suspect com-
pounds were compared to LRIs reported for the same column in NIST
webbook or publications. The Bruker MSWS software was used for data
acquisition and instrument control.

Results and discussion

Water radiolysis experiments were conducted under various experi-
mental conditions to study the effect of single RS on the degradation of
MIB and GSM in aqueous solutions. Plots of MIB and GSM ratios of re-
sidual concentration (C) to initial concentration (Cg) versus absorbed
dose (derived from irradiation time and dosimetry) are presented in
Fig. 2a,b, respectively. Degradation data show a good fit (coefficient of
determination values R% > 0.95) to a first-order reaction model, as
presented in Figs. S1 and S2. Tables 2 and 3 present the kinetic pa-
rameters calculated from these data, i.e. kops, R?, initial degradation
rates, as well as the efficiency of each RS to degrade target compounds
(Y), G-values of RS and doses required for 50% (Dg5) and 90% (Dq.g)
degradation, respectively).

Radiolytic degradation of MIB and GSM

As shown in Fig. 2a, MIB is generally degraded by water radiolysis
under various experimental conditions, where different RS dominate the
radiolytic-chemical system. Observed degradation rate constants (Kops)
differ among experimental conditions / dominant RS and follow the
order: HO® > H®* > HO® / O57* / HO,® > e5q” > Oy~ ° / HO,®, ranging
from maximum 0.083 Gy’1 (HO®) to minimum 0.002 G)fI (02" /
HO,") as shown in Table 2. The dose required to remove 50% (D 4 5) of
the initial MIB followed the same trend ranging from 8.35 Gy (HO®) to
289 Gy (05~ / HO,").

The degradation rates of GSM (Fig. 2b) were also dependent on
experimental conditions and dominant RS. The observed degradation
rate constants, kops (Table 3) followed the same order as in MIB, ranging
from maximum 0.068 Gy_1 (HO®) to minimum 0.006 Gy_1 (057 /
HO5®). Fig. 2b depicts the degradation profile of GSM, under different
experimental conditions. The dose required to remove 50% of the initial
GSM (D g.5) followed the same trend and ranged from 10.1 Gy (HO®) to
124 Gy (02 * / HOR").

Efficiency of RS in degrading MIB and GSM

Among the various experimental conditions applied, the highest
degradation rates of MIB and GSM were observed with the addition of
N30, where HO® was the dominant RS. In this case, the total amount of
radiolytically produced e,q~ is quantitatively converted to HO® (Guge =
0.56 pmol J%, Table 1, supplementary material, page 2), which ac-
counts for the increase in degradation rate.

The ratio Y (Tables 2 and 3) was 1.14 for MIB and 1.49 for GSM,
indicating that for each degraded pmole of MIB and GSM, 1.14 and 1.49
pmoles of HO® were consumed, respectively. Since the experimental
conditions were identical, this difference implies the varying reactivity
of hydroxyl radicals towards MIB or GSM, which could be attributed to
differences in their chemical structures. This indicator is critical in AOPs
for water treatment that proceed via HO®, since it is directly related to
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Fig. 2. Degradation of a) MIB and b) GSM, under regulated experimental conditions, producing specific reactive species (RS).
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Table 2
Parameters extracted from the assessment of the first order kinetic reaction model for the degradation of MIB.
Experimental Conditions Prominent RS Kobs (Gy 1) RrR? Initial rate (pmol J°1) Y (MIB) G (RS) (pmol J° 1) D o5 (Gy) D 0.0 (Gy)
N-O HO*® 0.083 0.996 0.49 1.14 HO*® (0.56) 8.35 27.7
Deaerated / TBA €aq 0.012 0.995 0.07 4.03 €aq (0.28) 59.2 197
Deaerated / TBA /pH 1 H* 0.042 0.974 0.25 1.36 H* (0.34) 16.5 54.7
05 HO® / 05" / HO5" 0.017 0.997 0.10 5.92 HO" (0.28) 05 "/HO-" (0.33) 39.8 132
02/HCOOH 0, */HOL," 0.002 0.960 0.01 43.48 05 */HO," (0.62) 289 959
Table 3
Parameters extracted from the assessment of the first order kinetic model for the degradation of GSM.
Experimental Conditions Prominent RS Kkobs (Gyil) R? Initial rate (pmol 7Y Y (GSM) G (RS) (pmol Y D o5 (Gy) D o5 (Gy)
N0 HO*® 0.068 0.988 0.38 1.49 HO"® (0.56) 10.1 33.7
Deaerated / TBA €aq 0.013 0.997 0.07 4.02 €aq (0.28) 54.6 181
Deaerated / TBA / pH 1 H* 0.018 0.922 0.10 3.42 H* (0.34) 38.3 127
O, HO* /O, */ HO," 0.014 0.956 0.08 7.94 HO* (0.28) O, */HO," (0.33) 49.6 164
02/HCOOH 0, * /HOL" 0.006 0.880 0.03 20.0 05 "/HO," (0.62) 124 411

the efficiency of the processes.

Similarly, in the presence of H* (deaerated solutions, TBA, pH 1), the
ratio Y was 1.36 for MIB and 3.42 for GSM, while for other RS the values
were higher (Tables 2 and 3). These results prove the increased reac-
tivity and efficiency of HO® in degrading MIB and GSM. However, they
also point out the importance of H®, rendering AOPs that produce H®,
such as ultrasonication [62], capable for efficient degradation of target
compounds. H® can act as reducing or oxidizing agents and in the case of
saturated compounds such as MIB and GSM can induce degradation
mostly via hydrogen abstraction [63]. Results also indicate the possible
role of reductive degradation pathways (e™,q), while the efficiency of
0, ° / HO5® in degrading compounds such as MIB and GSM is consid-
erably lower.

Summarizing the results shown in Tables 2 and 3, it was found that
degradation of MIB was generally faster than GSM while the yields of
degradation with single RS followed the order: (HO® saturated with
N30) > (H* deaerated / TBA /pH 1) > (eaq~ deaerated /TBA) > > (O3 *
/ HO,* oxygenated with formic acid).

Transformation products of MIB
Fig. S3 depicts the Total Ion Count (TIC) chromatograms of TPs from
MIB in the presence of different RS at the experimental conditions

described in Section 2.2 and Table 1. The tentative structures of the TPs
generated from MIB radiolysis, are given in Table S1, along with their

100

50

403

molecular ions (M), their characteristic fragment ions, the match of
their mass spectrum against the NIST mass spectral database (indicated
as relative score), as well as their theoretical (based on LRIs) and
experimental retention times. The experimental mass spectrum of each
proposed TP is presented in Table 3, in comparison to the one proposed
by the NIST mass spectral.

In general, degradation of MIB by HO® and H® resulted in the highest
number of detected TPs (Table S1) and in the highest degradation rates
(Table 2). The radiolysis of MIB in the selective presence of O * / HO2®
resulted in the lowest number of TPs (Table S1), which is in accordance
with the low rate of MIB degradation (Table 2). Reductive degradation
by eaq  produced several TPs that were structurally different than those
produced by oxidative pathways (Table S1).

Fig. 3 presents a TIC chromatogram of MIB at initial concentration of 10
mg L™t (60 uM), overlayed by a chromatogram of the TPs produced by MIB
after 30 min of water radiolysis (irradiation dose 115.2 Gy), in the presence of
HO® upon saturation with N»O. The radiolytically produced TPs are pre-
sented in Fig. 4 in groups, with reference to the specific transformations
occurred during the degradation process. Under these conditions, the TPs are
generated, mainly via hydroxylation, oxidation, cleavage of cyclic structure
and rearrangement (Fig. 4). Initially, oxidation leads to ketone-derivatives
via B-scission reaction (Al:Camphor and A5:Exo-ketoborneol) as well as
dihydroxylated products A2 and A9, following hydroxylation, demethyla-
tion, oxidation of hydroxyl group and rearrangement reactions. This is in
agreement with previous studies, where hydroxylation, demethylation and

minutes

Fig. 3. Representative GC-MS chromatogram of TPs, radiolytically produced from MIB, in the selective presence of HO®, overlayed on a chromatogram of a non-

irradiated MIB aquatic solution (10 mg L.
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Proposed structures of radiolytically produced TPs of MIB
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rearrangement reactions have been proposed for the degradation of organic
pollutants with cyclic structures during water radiolysis [43,52,53,64]. The
degradation of MIB also produces A10, which is a product of demethylation,
hydroxylation and subsequent dehydration, producing a C = Cbond [65]. Al
and A10 have also been detected during the degradation of MIB using AOPs
such as ultrasonication, UV/TiOy photocatalysis and polyoxometalate
photocatalysis, which mainly produce HO® [14,32]. Further degradation
leads to the formation of ketone-products and rearrangement towards
bicyclic product A6 (4,4,7a-trimethylhexahydrobenzofuran-2(3H)-one).

Fig. 4. The influence of various RS to the transformation products of MIB.

Consequent cleavage of cyclohexane group and demethylation, produces
oxidated cyclopente products, such as aldehyde A4 (2-methyl-5-(3-0x-
oprop-1-en-2-yl)eyclopentanecarbaldehyde) and ketone A7 (1-(1,2,2,3-tet-
ramethylcyclopentyl)ethanone). Next steps include the consecutive
dehydration and cleavage of cyclopentane group, with production of
open-chain aliphatic products, i.e. trihydroxylated alcohol A3 (hexane-1,2,
6-triol) and carboxylic acid A8 (hydroxy-2-methylocta-3,5-dienoic acid)
similarly to the ones reported during photocatalysis with UV/TiO; and
polyoxometalate photocatalysis, which mainly produce HO®* [32].
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Only two TPs of MIB in the presence of Oy * / HO5® (under Oy/ dehydroxylated and dehydrated TPs with the simultaneous loss of one
HCOOH) were identified, a dihydroxylated product (B2) and a product methyl group, were produced (C1- C5). In addition, a derivative based

of ring cleavage (B1) (Table S1 and Fig. 4). These TPs gave small on cyclopentane moiety was also detected, including a methylallyl
chromatographic peaks, indicating lower concentrations, in accordance (probably from the tert-butyl radical produced under these conditions,
to the low degradation rates of MIB by 05,~° / HO,". the addition and subsequent dehydration of the moiety) and a ketone

Degradation of MIB by H* was efficient, showing increased reaction moiety (C8). Other products detected included a non-linear aldehyde
rates and generation of numerous TPs (Fig. 4). Nevertheless, under these (C7) and a non-linear diene (C6). This may be attributed to the tert-butyl
conditions (deaeration/TBA/pH 1), degradation seems to follow radical and its self-recombination products, which are present in the
different reaction pathways than the ones with ROS [66]. Initially, solution under these conditions, its addition (isopropanol moiety) and

Proposed structures of radiolytically produced TPs of GSM
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Fig. 5. The influence of various RS to the transformation products of GSM.
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subsequent dehydration of the group, leading to the formation of
methylallyl- moiety [67]. Past studies have shown that charge transfer
and structural rearrangement play important roles in the degradation
processes under similar conditions [68].

TPs identified from MIB degradation by e,q~ (under deaeration/
TBA), included the initial formation of a demethylated derivative (D1)
and further formation of TPs. These included the oxabicyclostructure D5
(C15H240). The formation of these TPs follow the cleavage of the
cyclopentane structure of MIB, the consequent addition of non-linear
carbon chains and rearrangement to produce final TPs [65]. Further-
more, some of the proposed TPs could be attributed to the tert-butyl
radical which is present in the solution under these experimental con-
ditions and its consequent recombination products, as described in the
previous paragraph [67]. Therefore, derivatives including a structure
(D4) possibly produced due to the addition of tert-butyl radical and
subsequently its dehydration, with a further oxidation form of acertal-
dehyde moiety (D2). Also product D6, was possibly generated with
initial addition of isopropanol-moiety (D6) and further dehydration.
Formation of the above TPs is probably due to the fact that the hydrated
electron, being a good nucleophile, can reduce a solute to produce the
solute radical anion [69]. Further cleavage leads to the formation of an
isopropyl-dienol (D3) created by cleavage of the cyclic structure,
abstraction of hydrogen and formation of a diene structure.

Summarizing, the reaction of HO® with MIB, seems to lead to for-
mation of hydroxylated TPs, oxidized ketone and aldehyde products and
further production of smaller cyclopentane derivatives and linear
oxidized carbon chains. 0,7* / HO,® generate far less TPs, mainly via
hydroxylation. MIB is effectively degraded by H®, with numerous TPs,
including dehydroxylated and demethylated products, as well as prod-
ucts of carbon chain addition and hydrogen abstraction to form alkene
or aldehyde structures.

Transformation products of GSM

Table S2 presents the tentative structure of the TPs that were
detected during radiolytic degradation of aqueous GSM solutions under
various conditions, along with their molecular ion M, their character-
istic fragment ions, the match of their mass spectrum against the NIST
mass spectral database (indicated as relative score), and their theoretical
(based on LRIs) and experimental retention times. The experimental
mass spectrum of each proposed TP is presented in Table S4, in com-
parison to the one proposed by the NIST mass spectral.

The proposed TPs are also graphically presented in Fig. 5, in groups
with reference to the specific transformations occurred during the
degradation process. Fig. $4 depicts the obtained TIC chromatograms of
TPs from GSM in the presence of different RS.

The mass spectrum of each proposed TP and the match against the
NIST mass spectral database is presented in Table S4. In accordance with
MIB, degradation of GSM by HO® produced a large number of TPs and
also presented the highest degradation rates (Fig. 2b). Similarly to MIB,
05" / HO3" produced the lowest number of TPs (Fig. 2b and Table 3).
Degradation by H® was carried out through oxidation hydrogen
abstraction, rearrangenent reactions and the breakage of bicyclic for-
mation (Fig. $4). Degradation in the presence of e,q~ resulted in a large
number of detected TPs, mainly via dehydration, rearrangement and the
scission of the bicyclic group (Fig. S4).

In the presence of HO®, the initial formation of oxidated ketone and
hydroxyketone structures was observed (A’5, A’6 and A’8), similar to
compounds detected in previous studies [32]. Further degradation leads
to breakage of the bicyclic structure and the formation of an oxidated
hydroxyl-ketone structure (A’4) also observed in a previous study [32]
and a cyclohexanone structure with a linear alkane derivative via
opening of the second cyclohexane moiety (A’'7). Similar dehydration
and rearrangement reactions have also observed in the past during the
ultrasonic degradation of GSM, which also produces HO® [70].

Degradation of GSM by O3 ~* / HO3* (Table S2 and Fig. 5) exhibited
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low reaction rates and very few detected TPs, mainly produced via
dehydration and rearrangement.

A number of TPs were identified from degradation of GSM by H®
(Fig. 5 and Table S2). Initially, dehydroxylation, methyl-group rear-
rangement (C'4) and oxidation (C’6 and C’7) lead to formation of
bicyclic products with the same number of carbon atoms. Additionally, a
product with an additional methylallyl- chain (C’8) was detected, due to
the addition and subsequent dehydration of the isopropyly radical
(propably derived from the self-recombination reactions of tert-butyl
radical present under these conditions, similarly to the TP produced
from MIB/H®*) [67]. Further rearrangement leads to production of an
indene bicyclic structure (C’5). Finally, smaller hexene (C’1) pentanol
(C’2) and hexanodiol (C’3) structures were detected.

Degradation by e,q~ also produced several TPs. Initially, dehydra-
tion, hydrogen abstraction and methyl-group rearragnement was
observed. In some cases the addition of isopropyl moiety lead to for-
mation of D’7, D’8 and D’9. These TPs are possibly produced due to the
presence of TBA and the subsequent formation of TBA radicals, as
already described above.

Next steps included the production of TPs with an opened bicycle
ring structure and several additions leading to the formation of higher
molecular weight compounds. The formation of smaller linear fragments
was not observed under these conditions.

Summarizing, degradation of GSM by HO®, gave rise to hydroxylated
TPs, oxidated ketone products and further ring opening of the bicyclic
structure, with final formation of smaller linear aldehyde chain prod-
ucts. 02~° / HO,® generated far less TPs, mainly via hydroxylation. H*
led to numerous TPs via dehydroxylation and hydrogen abstraction,
producing ketones with double bonds, leading to alkenes or smaller
oxidized carbon chains. Reductive degradation by e,q~, yielded dehy-
drated and rearranged TPs with more carbon atoms via addition of
isopropyl or other carbon chains as well as products via ring opening and
subsequent formation of double bonds. In view of these findings, results
emphasize the need to further study reductive pathways in water
treatment processes (Advanced Reduction Processes-ARPs) [71], related
to species such as H* and eyq”™.

Conclusions

Overall results prove that water radiolysis, apart from its potential
application in water treatment, can also be a useful tool to study the
roles of various RS -common to AOPs/ARPs for water treatment - on the
degradation of emerging pollutants offering knowledge for the optimi-
zation and fine-tuning of the processes. The study showed that water
radiolysis is effective in degrading MIB and GSM in water. However,
degradation rates and pathways strongly depend on the operating
experimental conditions and the selective presence of RS.

Degradation kinetic parameters and yields were calculated for each
set of experimental conditions/single RS. It was found that MIB and GSM
degradation under different experimental conditions/dominant RS
generally fitted to first-order kinetics with observed rate constants
following the order: HO® > H® > > ey > (O */ HO3") being generally
faster in MIB than in GSM.

Degradation by HO®, which is a common ROS in AOPs, was very
efficient, requiring 1.14 and 1.49 pmoles of HO® for each degraded
pmole of MIB and GSM, respectively. Besides HO®, results prove that
there are other important degradation pathways via H® and e, while
05 * / HO,®, although common in many AOPs for water treatment, are
not effective in degrading saturated organic compounds such as MIB and
GSM. On the contrary, ARP pathaways, related on species such as H* and
€aq , should be further studied in water treatment, due to their high
efficiency.

Analysis of TPs showed that different degradation pathways are
followed depending on the dominant RS. Degradation of MIB and GSM
by HO® lead to formation of hydroxylated TPs, such as oxidized ketones
and aldehydes, ending up to smaller open-ring products. Degradation by
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05 * / HO5® was much slower and a few TPs were only detected, pro-
duced mainly through hydroxylation. On the other hand, H*, a species
that can have an oxidative or reductive role, lead to numerous TPs, via
dehydroxylation, dehydration and ring opening. Degradation in the
presence of e,q”, produced dehydrated, demethylated and rearranged
TPs via ring opening as well as TPs with double bonds.
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Radical reactions in water radiolysis

Radiolysis of aerated water mainly generates hydrated electrons (eaq ) and HO". Secondary RS are
superoxide anion (O;") and hydrogen radicals (H"). Water radiolysis also produces H,O,, H> and H".
Overall, the products of aerated water radiation are given below with their G values in brackets [1, 2].

eaq (0.28), H'(0.06), HO= (0.28), O, /HO," (0.0027), H, (0.05) and H' (0.27)

The effect of HO on the target compounds was studied in aquatic solutions of MIB and GSM pre-
saturated with nitrous oxide (N>O), which quantitatively converts the e, to HO® [2], as shown in Eq. (1).

H,0
Caq” - N0 —  N,O = N,+HO +HO (1)
Under these conditions, the overall G value of HO" is expected to be 0.56 pmol J!, since all the eaq
are converted to OH" (Table 1).

Moreover, e,q” is predominantly formed by irradiation of degassed aqueous solutions, in the presence
of TBA, which acts as a HO" scavenger, as shown in Eq. (2).

HO"  +(CH;:C-OH —  H,0 + (CHy')(CH;).C-OH )

In this system the overall G value of e,q is equal to 0.28 (Table 1) since all the HO" have been
scavenged.

He, is produced by irradiation of degassed solution, in the presence of TBA with adjustment to acidic
pH, as shown in Eq. (3).

Caq + H., — 3)

In this case, all e,q~ is converted to H' with an overall G value of H" equal to G value of eaq converted
to H" + initial G value of H=0.28+0.06=0.34 (Table 1).

The O," / HO; radicals will be generated by irradiation in saturated with oxygen solution in the
presence of formic acid, as shown in Eq. (4-8) [1, 3].

Caq +0, > (O “4)
H + 0O — HOy' ®))
HOy 2 O, +H" (6)
HO'  +HCOO°  —  H0+COO" %)
COO~ + 0, — CO; + 0Oy~ (®)

Therefore in this manipulated system, the overall G value of O," / HO," is expected to be equal to
(G value of e,q converted to O,™) + (initial G value of H' converted to HO,") + (G value of HO" converted
to 0,7) =0.28+0.06+0.34=0.62 (Table 1) since all the e.q , H and HO" have been converted to O,™.

Further reactions include Eq (9-11)



HOy + O, — H,O, + O, (at pH<7) (9)
HO, + HO, HO, + 0, (10)
H + OH™ €aq + H,O (11)

!

!

Finally, at increased adsorbed radiation doses, further reactions (radical-radical or recombination) take
place as shown in Eq. (12-15 )

Caq + HO* — OH (12)
HO’ + HO — H,0, (13)
HO' + H — H,O (14)
H,O + H +eq — H, + OH" (15)
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Figure S2. Fit of first order kinetic model to the degradation of GSM, under regulated experimental
conditions, which produce specific RS
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Table S1. Tentative structures of the TPs generated from MIB radiolysis

HO* (solution saturated with N,O)

TP Name Formula | M* | charact | Relati Structure tr (min) | tg (min)
m/z | eristic ve theoret | experi
fragme | Score ical mental
nt ions expect
ed
2-methyl- | C11H200 | 168 893 12.7
isoborneol
(MIB)
OH
Al Camphor | CioH1s0 | 152 | 108, 900 11.7 11.9
95, 81,
69, 55, 0
11
A2 (1S,4S,5S)- | CioH1802 | 170 | 108, 705 145 14.3
1,7,7- 95,43
trimethylb of
icyclo[2.2. HO
1]heptane
-2,5-diol
A3 hexane- CeH1403 | 134 | 85,57, | 700 on | 14.1 14.6
1,2,6-triol 43 A g
OH
Ad 2-methyl- | Ci0H1402 | 166 | 123, 723 0 14.5 14.7
5-(3- 95, 43 |
oxoprop-
1l-en-2-
yl)cyclope
ntanecarb o/
aldehyde
A5 Exo- Ci0H1602 | 168 | 109, 679 14.3 14.8
ketoborne 70, 43
ol OH
O—0_
A6 4,4,7a- C11H180; | 182 | 167, 644 15.2 14.9
trimethylh 109, ©
exahydrob 81, 69 o
enzofuran
-2(3H)-one

10




A7 1-(1,2,2,3- | C11H200 168 | 124, 688 13.1 15.1
tetrameth 109,
ylcyclopen 69, 55
tyl)ethano 0
ne
A8 (3E,5E)-7- | CoH103 | 170 | 124, 610 . . 14.8 15.2
hydroxy-2- 109, w
methyloct 55, 43 o
a-3,5-
dienoic
acid
A9 (1R,4S)-1- | Ci0H1802 | 170 | 152, 825 15.2 15.3
(hydroxym 108,
ethyl)-7,7- 95, 79,
dimethylbi 67
cyclo[2.2.1
]heptan-2-
ol HO
OH
A10 (1R,2R,4S) | CioH160O | 152 | 108, 721 12.4 16.5
-1,7,7- 93,
trimethylb 91,77,6 HO
icyclo[2.2. 7
1]hept-5-
en-2-ol
0, / HO,® (oxygenated with formic acid)
TP Name Formula | M* | charact | Relati Structure tr (min) | tr (Min)
m/z | eristic ve theoret | experi
fragme | Score ical mental
ntions expect
ed
B1 (E)-4,8- C11H200 | 168 | 135, 691 13.4 13.2
dimethyln 107, 69 g
ona-3,7- OH
dien-2-ol
B2 (1S5,4S,5S)- | CioH1802 | 170 | 124, 715 145 14.3
1,7,7- 108,
trimethylb 95, 67 o
icyclo[2.2. HO
1]heptane
-2,5-diol
H* (deaerated / TBA /pH 1)
TP Name Formula | M* | charact | Rela Structure tr (min) tr (min)
m/z | eristic | tive theoretical | experi
expected | mental

11




fragme | Scor
nt ions e
C1 (1R,4R)- CioH1s 138 | 123, 844 9.6 9.5
1,3,3- 109,
trimethylb 95, 81
icyclo[2.2.
1]heptane
Cc2 p-Menth- | Ci1H1g 150 | 135, 804 10.1 9.6
8-ene, 3- 121,
methylene 107,79
c3 2,2- Ci1H1s 150 | 135, 688 10.0 9.7
Dimethyl- 107,
3-vinyl- 79, 67
bicyclo[2.2 =
.1]heptan
e
ca (1S,3S,4R)- | CioH1s 138 | 123, 828 10.0 9.9
2,2,3- 109,
trimethylb 95, 82
icyclo[2.2.
1]heptane
Cc5 1,7,7- Ci0H160 | 152 | 108, 791 12.4 12.7
Trimethyl 93,77
bicyclo[2.2
.1]hept-5-
en-2-ol
OH
Ccé6 2- C11H200 | 168 | 107, 701 HO 12.5 12.8
isopropen 81, 69
yl-5-
methyl-6-
hepten-1- g
ol
Cc7 Octanal, Ci0H2002 | 172 | 113, 630 P 13.5 14.7
7-hydroxy- 97,71 WW
3,7-
dimethyl-

12




Cc8 Cyclopent | C11H180 | 166 | 151. 711 12.6 14.95
ane, 1- 123,81 0
methyl-2-
acetyl-3-
(1-
methyleth
enyl)-
Cc9 4-(2,2,6- CusH240 | 208 | 150, 813 0 16.4 17.0
Trimethyl- 135,
bicyclo[4.1 107
.0]hept-1-
yl)-butan-
2-one
e.q (deaerated / TBA)
TP Name Formula | M* | charact | Rela Structure tr (Min) | tr (Min)
m/z | eristic | tive theoretical | experi
fragme | Scor expected | mental
nt ions e
D1 (2S,4R)- Ci0H180 | 154 | 108, 797 11.3 11.6
1,7,7- 93,77
trimethylb
icyclo[2.2.
1]heptan-
2-ol o
D2 2-(2,2,3- C10H160 152 | 108, 746 11.35 11.65
trimethylc 93, 55 OW
yclopent-
3-en-1-
yl)acetald
ehyde
D3 (E)-5- C11H200 168 | 111, 704 12.6 13.0
isopropyl- 95, 69 /EI\A\/LOH
6_
methylhep
ta-3,5-
dien-2-ol
D4 1,1,3- Ci2H22 166 | 111, 736 12.7 13.1
trimethyl- 95, 69
3-(2-
methylally
l)cyclopen
tane

13




D5 Trans-Z-a- | CisH240 220 | 149, 730 18.6 18.5
bisabolen 121,
e epoxide 109, 93
D6 Cyclohexa | CisH260 | 222 | 189, 748 17.4 18.7
nemethan 161,
ol, 4- 133,
ethenyl- 121,
a,o,4- 108, 93
trimethyl- o
3-(1-
methyleth
enyl)-,

14




Table S2. Tentative structures of the TPs generated from GSM radiolysis

HO* (solution saturated with N,0)

TP

Name

Formula

M+
m/z

charact
eristic
fragme
nt ions

Relati
ve
Score

Structure

tr (min)
theoretical
expected

tr (min)
experi
mental

Geosmin

C12H2,0

182

835

839

A'l

1,5-
dimethyl-
7-
oxabicyclo
[4.1.0]hep
tane

CsH140

126

770

703

A2

(2)-2-
ethylhex-
2-enal

CgH140

126

744

769

A’3

1-(2,6-
dimethyl-
7-
oxabicyclo
[4.1.0]hep
tan-1-
yl)ethanon
e

C10H1602

168

707

632

A’4

1-(2-(1-
hydroxyet
hyl)cycloh
ex-1-en-1-
yl)ethanon
e

C10H1602

168

626

671

15.3

17.2

A’5

43,8-
dimethyl-
4,43,5,6,7,
8_
hexahydro
naphthale
n-2(3H)-
one

C12H180

178

732

809

Cl
@
Y
o3
@)YHH
58

17.2

17.6

15




A’6

8a-
hydroxy-
4a-
methyloct
ahydronap
hthalen-
2(1H)-one

C11H1802

182

672

680

o

H

16.9

17.7

A7

3-(4-
hydroxybu
tyl)-2-
methylcycl
ohexanon
e

C11H200>

184

709

737

OH

17.5

18.7

A’8

4a-
hydroxy-
8a-
methyloct
ahydronap
hthalen-
2(1H)-one

C11H1802

182

774

782

Q

i

16.9

18.9

0, / HO;® (oxygenated with formic acid)

TP

Name

Formula

M+
m/z

charact
eristic

fragme
ntions

Relati
ve
Score

Structure

tr (min)
theoretical
expected

tr (min)
experi
mental

B’'1

43,8-
dimethyl-
1,2,3,4,44,
5,6,8a-
octahydro
naphthale
ne

C12H20

164

149,
109, 57

821

B’2

8,8a-
dimethyld
ecahydron
apthalen-
1-ol

C12H220

182

149,
107, 93

854

B’'3

6,7-
dimethyl-
1,2,3,5,8,8
a-
hexahydro
naphthale
ne

CioHis

162

147,
119,
105

864

oo
T
X

H* (deaerated / TBA /pH 1)

16




TP Name Formula | M* | charact | Relati Structure tr (Min) | tr (Min)
m/z | eristic ve theoretical | experi
fragme | Score expected | mental
nt ions
(og } 2- CsH1a 112 | 98,83, | 736 7.4 8.3
Pentene, 55 N
2,4- ‘
dimethyl-
Cc’2 2,2,4- CgH1s0 130 | 99,83, | 745 9.1 8.9
trimethylp 57 HU\X\I/
entan-1-ol
c'3 2,5- CgH1802 | 146 | 113, 863 10.1 10.3
dimethylh 95, 70, MMW
exane-2,5- 59
diol
C'4 1,5- C12H22 166 | 151, 750 12.9 13.1
dimethyld 123,
ecahydron 109,
aphthalen 95, 81
e
C’s 1H- C12H20 164 | 149, 776 13.1 13.3
Indene, 1- 124, 4
ethylidene 108, 93
octahydro
_7a_
methyl
C’6 2Naphthal | C11H180, | 182 | 126, 744 16.5 18.7
enone, 112,
octahydro 97, 55 o
-8a-
hydroxy-
4a-methyl
Cc'7 2Naphthal | C12H200, | 180 | 95,81, | 694 15.5 18.8
enone, 69
octahydro o
-4a-5-
dimethyl
C'8 Crymbolo | CisH2402 | 236 | 218, 729 0 18.9 18.8
ne or 4a- 203,
hydroxy- 109,
4,8a- 95, 69
dimethyl- oH
6-(prop-1-
en-2-
yl)octahyd
ronaphtha

17




len-1(2H)-
one
eaq (deaerated / TBA)
TP Name Formula | M* | charact | Relati Structure tr (Min) | tr (Min)
m/z | eristic ve theoretical | experi
fragme | Score expected | mental
nt ions
D’1 3-(2,6,6- C12H200 | 180 | 147, 706 15.5 15.3
trimethylc 119, AN oH
yclohex-1- 105, 93
en-1-
yl)prop-2-
en-1-ol
D’2 3-(2,2- C12H200 180 | 147, 636 15.1 154
dimethyl- 119,
6- 106, 91 H
methylene
cyclohexyl ©
)propanal
D’3 3-(2,2- Ci2H220 | 182 | 167, 670 15.3 15.4
dimethyl- 149, g/\/m
6- 121
methylene
cyclohexyl
)propan-1-
ol
D’4 4a,5- C12H200 | 180 | 165, 633 15.6 15.6
dimethylo 109,
ctahydron 81, 55
aphthalen o
-2(1H)-one
D’5 2,3- C12H200, | 196 | 139, 591 17.1 18.0
dimethyl- 126, 55
2-(3-
oxobutyl)c I I
yclohexan
one
D’6 2,3,3- C1sH2,0 218 | 203, 687 17.5 19.6
trimethyl- 163, =
2-(3- 147,
methylbut 119 0
a-1,3-
dien-1-yl)-
6-
methylene
c

18




D’'7 2-(4a- CisH260 | 222 | 164, 639 ‘o 18.0 19.9
(artifact) | methyl-8- 149,

methylene 135,

decahydro 109

naphthale

n-2-

yl)propan-

2-ol
D’'8 2-(4a,8- C15H260 222 | 204, 671 18.2 20.6
(artifact) | dimethyl- 189,

1,2,3,4,44, 161,

5,6,7- 147,

octahydro 133

naphthale

n-2-

yl)propan-

2-ol
D’9 2-(4a,8- CisH260 | 222 | 204, 742 17.8 20.7
(artifact) | dimethyl- 189,

1,2,3,4,44, 161,

5,6,8a- 149, 81

octahydro

naphthale

n-2-

yl)propan-

2-ol

19




Table S3. MS spectrums of TPs produced from degradation of MIB under the influence of various RS and their match with NIST
library (top (red): spectrum from NIST library, bottom (blue): experimentally obtained spectrum)
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Table S4. MS spectrums of TPs produced from degradation of GSM under the influence of various RS and their match with
NIST library (top (red): spectrum from NIST library, bottom (blue): experimentally obtained spectrum)
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	.
	H•, is produced by irradiation of degassed solution, in the presence of TBA with adjustment to acidic pH, as shown in Eq. (3).
	eaq−  +  Η+aq  →  H•                                                               (3)
	In this case, all eaq−  is converted to H• with an overall G value of H•  equal to G value of eaq−  converted to H• + initial G value of H•=0.28+0.06=0.34 (Table 1).
	The O2-• / HO2• radicals will be generated by irradiation in saturated with oxygen solution in the presence of formic acid, as shown in Eq. (4-8) [1, 3].
	eaq−  + O2   →  O2-•      (4)
	H•  + O2   →  HO2•     (5)
	HO2•   ⇄ O2-• + H+    (6)
	HO•  + HCOO- → H2O + COO•-    (7)
	COO•-  +  O2 → CO2 + O2-•    (8)
	Further reactions include Eq (9-11)
	HO2• +  O2-•   → H2O2 + O2 (at pH<7) (9)
	HO2• +  HO2•  → H2O2 + O2  (10)
	H•   +  OH−  → eaq− + H2O  (11)
	Finally, at increased adsorbed radiation doses, further reactions (radical-radical or recombination) take place as shown in Eq. (12-15  )
	eaq− +  HO•  →  OH-    (12)
	HO• +  HO•  →  H2O2    (13)
	HO• +  H•  →  H2O    (14)
	H2O + H• + eaq− →  H2  +  OH-  (15)




