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Abstract: Effective acquisition, analysis and reconstruction of multi-modal data such as colour and multi-/hyper- spectral 

imagery is crucial in smart camera applications, where wavelet-based coding and compression of images are highly 

demanded. Many existing discrete wavelet filtering banks have fixed coefficients hence their performance is highly 

dependent on the signal/image being processed. To tackle this problem, a unified framework is proposed in this paper, 

which can produce a series of discrete wavelet filtering banks, where many existing discrete wavelet filtering banks become 

special cases of the framework. For each generated filtering bank, it consists of two decomposition filters and two 

reconstruction filters through an optimization process. The efficacy of the filtering banks produced by the framework has 

been validated in two case studies, including color image decomposition and reconstruction, and hyperspectral image 

classification. Comprehensive experiments have demonstrated the superior performance of the proposed framework, 

which will benefit the efficacy of smart camera and camera network applications.  

 

1. Introduction 

Signal and image decomposition is very useful for data 

compression, feature extraction in signal and image 

processing, machine learning, big data analytics and artificial 

intelligence, [1-3]. Actually, more effective information can 

be extracted from decomposed signals, and typical 

application tasks can be found in the rapid approximation of 

a signal by trigonometric polynomials (as a function of their 

degree), and the decomposition of a signal into a series of 

polynomials for compression and feature extraction [4]. 

Some classical approaches are discussed in detail as follows.  

For a given data matrix, principal component analysis 

(PCA) seeks the best (in an L2-sense) low-rank 

representation of it, which holds a few optimality properties 

when the data are only mildly corrupted by small noise [5]. 

Singular spectrum analysis (SSA) decomposes an original 

data into several independent components which can be 

interpreted as trend, periodic components and noise [6].  

Independent component analysis (ICA) is a framework for 

separating a mixture of different components into its 

constituents and has been successfully applied in many 

applications [7, 8]. More recently, sparse decomposition of 

the signals and images has attracted increasing attention [9, 

10]. Among these aforementioned approaches, most of them 

use Singular Value Decomposition (SVD) for matrix 

decomposition, where, spectral analysis via spectral 

decomposition of a positive-definite kernel underlies a 

variety of classical approaches [11], such as PCA and SSA. 

Essentially, the classical SVD has associated with the 

decomposition of one featured space into the direct sum of 

invariant subspaces [12].  

Unfortunately, SVD can only provide linear combinations 

of the data samples, which are notoriously difficult to 

interpret in terms of the data and the process in which the data 

is generated. As a result,  CUR matrix decompositions were 

developed for improved data analysis [13], where a low-rank 

approximation of matrices with missing entries are proposed  

[14-16]. In [17], Stephane G. Mallat defines an orthogonal 

multiresolution representation called a wavelet representation, 

which is computed with a pyramidal algorithm based on 

convolutions with quadrature mirror filters (denoted as qmf()). 

That is 𝑞𝑚𝑓(𝑙1, 𝑙2, … , 𝑙𝑛−1, 𝑙𝑛) = (𝑙𝑛 , −𝑙𝑛−1, … , 𝑙2, −𝑙1).  
In fact, the wavelet representation of signals has been 

widely used to address different practical problems in many 

research fields. In [18], Daubechies wavelet family is used in 

discrete wavelet transform for emotion recognition in speech. 

In [19], an underwater image enhancement technique is 

developed based on a fusion-based strategy and Daubechies 

wavelets. In [20], Biorthogonal wavelet filters are used to 

compress and reconstruct the ECG signals. In [21], 

ultrasound images are denoised by discrete wavelet transform 

with Symlet filter banking. In [22], Reverse Biorthogonal 

wavelet transform is applied for iris recognition, where other 

wavelet families such as Biorthogonal, Coiflets, Symlets and 

Daubechies were also investigated. In [23, 24], wavelet 

transform is used to extract features from hyperspectral 

images before image classification. In [25], Coeflet wavelet 

is used for continues Hindi speech coding. In [26], Fejer 

Korovkin wavelet is integraed with a Multiples Input-

Multiples Ouput Autoregressive model to forecast the 

monthly fish catches.     

In recent year, deep learning techniques have been 

attracted many attentions, where wavelet transform may be 

integrated with deep learning models in certain applications. 

In [27], Daubechies is used to reconstructed the wind 

sequence signal, followed by the deep brief network and 

random forest model to predict the wind speed. In [28], 
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wavelets and deep neural network are integrated to detect the 

anomalies in the Seismic Electrical Signal for predicting 

earthquake activity. In [29], an image compression model is 

proposed where a deep neural network is used to encode the 

spatial pixel information in the wavelet transform domain. 

However, the performance of deep learning models 

heavily relies on the number of training annotated data. There 

are diverse types of data captured by different sensors and 

cameras, such as single-channel signals and images, RGB 

color images, and multispectral and hyperspectral images. As 

a result, large volume multi-modal data makes the manual 

annotation becoming a labor intersive work, which bring a 

big challenge to deep learning. On the other hand, the 

selection of the most appropriate wavelet bank also becomes 

one critical problem. Existing wavelet representations, such 

as Daubechies, Coiflets and Symlets, are composed of 

various filters with fixed coefficients. To select the best filters 

for some specific applications and data, comprehensive 

experimental trials are needed, which is often very time- 

consuming. As a result, a generic framework is essential for 

generating suitable filters to satisfy the needs of different 

applications. To the best of our knowledge, there is no 

framework that can straightforwardly produce general 

decomposition and reconstruction (D&R) filters for signals. 

To this end, in this paper, we propose a generic framework 

with only one parameter for generating D&R filters. This 

parameter mainly decide the length of the filter, then all 

coefficients in the fitler will be obtained by proposed 

model.In the experiment, the proposed method is validated in 

two case studies, i.e. D&R of color images, and hyperspectral 

imaging classification. 

In this paper, a generic framework is proposed to unify the 

D&R filters, and the major contributions are highlighted as 

follows: 

• We propose an equation set model as a generic 

framework for generating D&R filters; 

• We demonstrate that existing discrete wavelet filters 

such as Daubechies, Coiflets and Symlets are special cases 

of the proposed generic framework, and we also show 

simultaneously many other generated D&R filters; 

• The efficacy of the proposed model is validated in 

two case studies, i.e. D&R of color images, and 

classification of hyperspectral imagery (HSI). Inspired by 

the works [30, 31], the wavelet filters are used to extract 

low-dimensional and discrimination features for image 

classification. The superior performance of the proposed 

model over several existing approaches has fully been 

demonstrated in comprehensive experiments.  

The rest of this paper is organized as follows. Section 2 

introduces the theory of the proposed D&R model with the 

whole deduction process and mathematical proofs, and 

evaluates how the key parameter affects the convergence 

speed and decomposition effects of the proposed model. 

Section 3 describes how the proposed model is implemented 

to nature image reconstruction and hyperspectral image 

classification, where comprehensive experiments and useful 

analysis are given. Finally, some concluding remarks are 

drawn in Section 4 along with discussions of future directions. 

2. The Proposed Method  

The proposed framework is derived from two key theorems 

and the process of comprehensive mathematical proof is 

given in this section. The implementation of the proposed 

framework is detailed in three subsections, i.e. the concept, 

the proof of concept, and algorithm implementation. 

2.1. The concept 

A real data sequence 𝐿𝑑 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛] can act as the 

scaling function or decomposed low-pass filter if it satisfies 

the following n conditions and 1 constraint in Eq. (1)[32]. 

𝐿𝑑  can act as the decomposed low-pass filter, and the 

associated high-pass filter is 𝐻𝑑 = −𝑞𝑚𝑓(𝐿𝑑) =
[−𝑙2𝑛 , 𝑙2𝑛−1, … , −𝑙2, 𝑙1]. The reconstructed low-pass filter 𝐿𝑟 

is 𝑟𝑒𝑣(𝐿𝑑)  where 𝑟𝑒𝑣[𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛 ] =
[𝑙2𝑛 , 𝑙2𝑛−1, … , 𝑙2, 𝑙1] , and its associated high-pass filter is 

𝐻𝑟 = 𝑞𝑚𝑓(𝐿𝑟) = [𝑙1, −𝑙2, … , 𝑙2𝑛−1, −𝑙2𝑛 ]. 
For instance, let 𝑛 = 3, hence we have 3 conditions in Eq. (1). 

We can derive 𝑙2 =
−𝑙1𝑙5

𝑙6
,  𝑙3 =

(−
𝑙1𝑙5
𝑙6
+𝑙6−𝑙1−𝑙5)(−

𝑙1𝑙5
𝑙6
+𝑙6)

(−
𝑙1𝑙5
𝑙6
+𝑙6+𝑙1+𝑙5)

 and 

 𝑙4 =
−(−

𝑙1𝑙5
𝑙6
+𝑙6−𝑙1−𝑙5)(𝑙1+𝑙5)

(−
𝑙1𝑙5
𝑙6
+𝑙6+𝑙1+𝑙5)

, where 𝑙1, 𝑙5 and 𝑙6 are randomly 

defined parameters.  

When n takes 4, if 𝑙1, 𝑙6, 𝑙7  and 𝑙8  are predefined, the 

remaining parameters can be derived by solving a quadratic 

problem. Note that some sets of  𝑙1, 𝑙6, 𝑙7 and 𝑙8 combinations 

may lead to an unresolvable quadratic problem, i.e. no 

solutions can be found for 𝐿𝑑, 𝐻𝑑, 𝐿𝑟 and 𝐻𝑟 .  

Table 1 Existing wavelet filters in different wavelet families. 

Wavelet family 
Fejer-

Korovkin 
Coiflets Daubechies Symlets Biorthogonal 

Filter length (2n) 4 6 8 10 12 

C
o

ef
fi

ci
en

ts
 

𝑙1 -0.0462 -0.0157 -0.0106 0.0273 -0.0138 

𝑙2 0.0532 -0.0727 0.0329 0.0295 0.0414 

𝑙3 0.7533 0.3849 0.0308 -0.0391 0.0525 

𝑙4 0.6539 0.8526 -0.1870 0.1994 -0.2679 

𝑙5 - 0.3379 -0.0280 0.7234 -0.0718 

𝑙6 - -0.0727 0.6309 0.6340 0.9667 

𝑙7 - - 0.7148 0.0166 0.9667 

𝑙8 - - 0.2304 -0.1753 -0.0718 

𝑙9 - - - -0.0211 -0.2679 

𝑙10 - - - 0.0195 0.0525 

𝑙11 - - - - 0.0414 

𝑙12 - - - - -0.0138 
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There are formulas for solving the cubic and quartic 

equations. For even higher orders of equations, the Abel–

Ruffini theorem asserts that there is no general formula in 

radicals. When n is large (e.g. 𝑛 ≥ 6), there is no explicit 

formula for solving 𝐿𝑑 parameters in Eq. (1) when half of the 

parameters are given. However, root-finding algorithms i.e. 

bracketing methods and iterative methods  [33] may be used 

to find numerical approximations of the roots for Eq. (1).  An 

efficient iterative algorithm to solve Eq. (1) will be given later.  

It is worth noting that many existing wavelet filtering 

banks are special solutions of Eq. (1), and actually Eq. (1) 

constructs a framework consisting of many wavelet 

transforming sets. For instance, the coefficients of 𝐿𝑑  in 

Daubechies wavelets “DB3” is known as [0.0352, 

−0.0854,−0.1350, 0.4599, 0.8069, 0.3327]. With given 

𝑙1, 𝑙5 and 𝑙6 , 𝑙2, 𝑙3 and 𝑙4 can be derived from Eq. (1) and the 

results are the same as those given in “DB3”. In analogy, 

Coiflets coefficients are all in accordance with Eq. (1). As 

summarized in Table 1, that fact that many existing wavelet 

banks can be depicted by Eq. (1) has shown that there are 

many options to implement the decomposition of signals. In 

addition, we can also impose additional constraints to rule 

partial coefficients of 𝐿𝑑 . For example, when n = 3, three 

coefficient 𝑙1, 𝑙5 and 𝑙6 can be preconditioned so as to make 

the energies distributed in components to have larger 

differences. Therefore, the sparsity is outwardly stuck out and 

the trivial parts are removed to reduce the storage requirement.  

2.2. Proof of the concept 

When 𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛  satisfy Eq. (1), the filters 𝐿𝑑 =
[𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛]  and 𝐻𝑑 = −𝑞𝑚𝑓(𝐿𝑑) , decompose a 

signal into two parts. On the other hand,  the two filters 𝐿𝑟 =
𝑟𝑒𝑣(𝐿𝑑)  and 𝐻𝑟 = 𝑞𝑚𝑓(𝐿𝑟)  can reconstruct the primary 

signal from these two components.  

Let 𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑚−1, 𝑠𝑚] denote a real data sequence. 

Before 𝑆  is convoluted with 𝐿𝑑 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛] 
(assuming 2𝑛 <  𝑚  without loss of generality) and 𝐻𝑑 =
−𝑞𝑚𝑓(𝐿𝑑) , 𝑆  is circularly extended as Eq.(2). The low-

frequency component 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑛−1, 𝑝𝑛] is derived by 

downsampling the convolution result, 𝑆𝑒 ∗ 𝐿𝑑 , at all even 

positions. The associated high-frequency component 𝑄 =
[𝑞1, 𝑞2, … , 𝑞𝑛−1, 𝑞𝑛]  can be analogously derived from 𝑆𝑒 ∗
𝐻𝑑. Each parameter in 𝑃 and 𝑄 can be represented by Eq.(3), 

where 2(𝑘 + 𝑛) ≤ 𝑚,   𝑛 + 𝑘 ≥ 1. 

The length of 𝑃 and 𝑄 is only half of 𝑆. To reconstruct 𝑆 

from 𝑃  and 𝑄  using  𝐿𝑟  and 𝐻𝑟 , Eq. (4) needs to hold. By 

substituting Eq. (3) into Eq. (4), the first component 𝑠1 in 𝑆 

can be rewritten in Eq. (5). By further substituting Eq. (4) into 

Eq. (5), we can have Eq.(6) and Eq.(7). To make Eq. (7) hold, 

the Eq. (8) must hold. In fact, 2n conditions can be obtained 

in Eq. (8) and each of them is produced by multiplying 
[𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛] with each column of M (see Eq.(9)).  

In Eq. (9), the 1st expression acts for normalization of 𝐿𝑑, 

which is usually required as a constraint to avoid additional 

energy in the signal S. The 2nd and 3rd conditions are the 

same, i.e. 𝑙1𝑙3 + 𝑙2𝑙4 + 𝑙3𝑙5 +⋯+ 𝑙2𝑛−2𝑙2𝑛 = 0 . We can 

derive that the 2𝑖𝑡ℎ  and 2(𝑖 + 1)𝑡ℎ  (𝑖 = 2,… , 𝑛 − 1) 
conditions are the same, i.e. 𝑙1𝑙2𝑖+1 + 𝑙2𝑙2𝑖+2 +⋯+
𝑙2𝑛−2𝑖𝑙2𝑛 = 0 and the final condition is an identity as shown 

above. On the other hand, 𝑆 ∗ 𝐻𝑑 is used to extract the high-

frequency components of 𝑆 , which actually performs a 

weighted gradient operation. Therefore, the summation of 𝐻𝑑 

equals to 0. As a result, the condition, 𝑙1 + 𝑙3 +⋯+ 𝑙2𝑛−1 =
𝑙2 + 𝑙4 +⋯+ 𝑙2𝑛, is imposed. In summarization, we have n 

conditions and 1 constraint, which makes the Eq. (1) hold. 

Similar like the operations on 𝑠1, we can also derive the 

expression of 𝑠2𝑘−1, 𝑠2𝑘  in Eq.(10). By substituting Eq. (3) 

and Eq. (4) into Eq. (10), we still can obtain the n conditions 

and 1 constraint from the above formulas. So far, the concept 

of our generic model has been proved.  

2.3. The algorithm 

As mentioned before, it is hard to determine the parameters 

in 𝐿𝑑 when n is large. Therefore, we rewrite Eq. (1) as a cost 

function and optimize it until the loss is sufficiently small. 

There are three steps to implement this process as follows. 

Step 1: Randomly initialize 𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛, and set an 

error or loss threshold value 𝜖 and an iteration number I; 

Step 2: Tune 𝑙𝑗 for (𝑗 = 1,2, … ,2𝑛) in turn with the other 

2𝑛 − 1 coefficient 𝑙𝑖  (𝑖 ≠ 𝑘)  known/given; 

Step 3: Calculate the loss 𝜖 by summing the absolute 

residuals of all conditions in Eq. (1). If the total residual is 

less than 𝜖 or the iteration number reaches I, exit the iterative 

process. Otherwise, go back to Step 2. 

After the iterations in Steps 1-3, the numerical solution of 

𝑙𝑗 in Eq. (1) can be estimated. To complete Step 2, we build a 

Lyapunov function (Eq.(11)) based on n conditions in Eq. (1). 

Each 𝑙𝑗  in ℒ(∙)  is kept tuning until ℒ(∙)  is minimized. 

When 𝑙𝑗 is a variable, the other coefficients are regarded as 

constants. Therefore, Eq. (11) is equivalent to a strictly 

convex quadratic function and can be rewritten as Eq.(12). To 

solve Eq. (12), we need to address Eq. (13) to minimize ℒ(∙).  
 

 
Fig. 1. The convergence curves with changing parameter n. 

 

Let the ith condition in Eq. (1) be 𝐶𝑖 , Eq. (13) can be 

rewritten as Eq.(14). So far, Eq. (12) can be regarded as n 

ordinary least square problems. The deduction process is 

given by Eq. (15-18).  

By solving the Eq. (14) and Eq. (15), we can get Eq.(16). 

Where 𝑙𝑗−2(𝑛−𝑘) or 𝑙𝑗−2(𝑛+𝑘) becomes zero if 𝑗 − 2(𝑛 − 𝑘) <

0 or −2(𝑛 + 𝑘) > 2𝑛 (𝑘 = 1,2, … , 𝑛 − 1).  
Let [𝛼1, 𝛼2, … , 𝛼𝑛] and [𝑏1, 𝑏2, … , 𝑏𝑛] are defined in Eq. 

(17), the expression of 𝑙𝑗 can be rewritten as a standard least 

square representation by Eq.(18). To this end, each tuning of 

𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛 will decrease ℒ(∙), and Eq. (18) can derive 

numerical solutions of Eq. (1).  

2.4. Convergence analysis 
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To show the convergence performance of the method, we 

vary the filter length 2n from 4 to 28 with an interval of 4 and 

plot the curve in terms of absolute residuals vs. iteration 

number in Fig. 1and also compare the convergence time in 

Table 2. As can be seen in Fig. 1, no matter how n changes, 

our proposed model will converge to zero in 150 iterations, 

and the convergence time is less than 1 second in most cases. 

However, when n becomes large (e.g. n=28), the convergence 

time may reach or exceed 1 second because of more pending 

parameters that need to be tuned. Overall, our proposed 

model runs fast and easy to convergence.  

2.5. Decomposition effect 

Table 2 Convergence time with various filter lengths of n. 

Filter length 4 8 12 16 20 24 28 

Time (s) 0.0039 0.0323 0.1052 0.2538 0.4044 0.5980 1.1511 

 
Filter 

length 

Approximation 

coefficients 

PSNR/ 

SSIM 
Diagonal coefficients Horizontal coefficients 

Vertical 

coefficients 

4 

 

25.212/ 

0.902 

   

8 

 

22.478/ 

0.784 

   

12 

 

20.877/ 

0.675 

   

16 

 

19.629/ 

0.609 

   

20 

 

18.744/ 

0.554 

   

24 

 

17.899/ 

0.508 

   
Fig. 2. Decomposition results under different filter lengths. 
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To 

show 

the 

overall decomposition effect of our proposed model, we 

randomly generate 100 sets of coefficients for different filters 

and compare the average decomposition results from these 

100 runs in Fig. 2. As seen in  Fig. 2, we can derive several 

key observations: 1) the approximation coefficient matrix 

contains the most cues of the image, and the other three 

coefficient matrices contain the details in different 

orientations; 2) Larger filter length tends to generate more 

blurred image from the approximation matrix where the 

corresponding PSNR and SSIM value are getting lower, 

though more detail will be preserved in other three 

coefficients; 3) The decomposition results have many 

potential applications, such as image compression, edge 

detection and feature extraction. For example, when the filter 

length is low, the main part contains most image information, 

thus the corresponding filter banks are suitable for image 

decomposition and compression. When the filter length is 

getting larger, the main part becomes over smoothed, thus 

these filters may be applicable to deal with the data with 

severe noise. In addition, the three detail coefficient matrices 

contain much orientation information that can be used to 

detect the edges and extract the shape features of the images 

for pattern recognition purpose [34, 35].  

3. Results and discussion 

In this section, we will discuss how the proposed generic 

D&R filtering banks work on two practical applications, i.e. 

colored image reconstruction and hyperspectral image 

classification. Six conventional and widely used wavelet 

families [36] are used for comparison, which include the 

Daubenchies (db) [18], Coiflets (coif) [25], Symlets (sym) 

[21], Fejer-Korovkin filters (FKfilt) [26], Biorthogonal (Bior) 

[20] and Reverse Biorthogonal (Rbior) [22]. Relevant 

experimental settings and results are presented as follows.  

3.1. Color image reconstruction 

 
1 http://r0k.us/graphics/kodak/ 

Given a color image 𝑋, we apply discrete 2-D wavelet 

transform to each channel of 𝑋 using the decomposition with 

a lowpass filter and a highpass filter to derive the 

approximation coefficients (cA), horizontal (cH), vertical (cV) 

and diagonal (cD) detail coefficients. We can then compute 

the reconstructed image 𝑋𝑟 based on cA, cH, cV, cD and the 

reconstruction lowpass and highpass filters. 

3.1.1. Experimental setup 

For quantitative performance assessment, the maximum 

absolute error (MAE) and the root mean square error (RMSE) 

are employed as defined below. 

𝑀𝐴𝐸 = max
1≤𝑖≤𝑁

(|𝐴𝑖 − 𝑅𝑖|) (19) 

𝑅𝑀𝑆𝐸 = √
1
𝑁
∗∑(𝐴𝑖 − 𝑅𝑖)

2

𝑁

𝑖=1

 (20) 

where 𝐴𝑖  and 𝑅𝑖  denote the ith pixel in reconstructed image 

and the original image, respectively. N represents the total 

number of pixels.  

Kodak lossless true color image suite 1  is a publicly 

available database, which is also widely used to evaluate the 

performance of image processing algorithms. It contains 24 

standard color images released by Kodak, and each image has 

768*512 pixels. These images are used to test the efficacy of 

the proposed filtering bank in image reconstruction.  

3.1.2. Experimental results 

In this section, we applied the proposed method for image 

decomposition and reconstruction (D&R). Fig. 3 gives the 

test images from the Kodak lossless true color image suite. 

We use two criteria (i.e. MAE and RMSE) to evaluate the 

performance. Although the parameters in benchmarking 

wavelet families are predefined and fixed, our proposed 

filtering bank model can produce too many solutions which 

may affect the assessment. For a fair comparison, we generate 

      

      

      

      

Fig. 3. The samples in Kodak lossless true color image suite 

 

http://r0k.us/graphics/kodak/
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100 

solutions under different filter lengths randomly and select 

the best one from each filter length for comparison.  

The averaged MAE and RMSE are copared in Fig. 4. As 

seen, the change of filter length n may affect significantly the 

performance of image D&R filters. However, our proposed 

filter bank can always yield consistently the best performance 

no matter how n changes. For Bior and Rbior filtering bank 

families, they have almost the same characteristic where each 

of them has some filters with similar filter length but different 

values. They may produce more comparable D&R results in 

comparison to ours when the length of their filters is no more 

than 10. When the predefined value of some filters is not 

appropriate, especially when n=10, 12, or 18, the D&R 

performance becomes much worse. For FKflit, its 

performance is slightly better than the proposed model when 

the filter length is 4, but it is not robust as its MAE and RMSE 

measures are much higher when the filter length increases. 

For the rest of filter banks including Daubenchies, Coiflets 

and Symlets, it seems that the filter length has a significant 

effect on their performance, where the overall performance of 

them is not as good as the proposed model. In addition, as the 

MAE and RMSE are quite close to zero, the results of visual 

reconstruction from different filtering banks are very similar. 

Therefore, the visual comparison is not used in the section.    

Fig. 4 summarizes the detailed performance of different 

filter lengths in each wavelet family, and Fig. 5 uses two 

boxplots to show how our proposed model is better than other 

wavelet families. In Fig. 5, red cross and green rhombus 

indicate the outliers and the mean value, respectively.  The 

top border and bottom border of the blue box represents the 

25 and 75 percentile respectively, the red line in the blue box 

represents the median value, and the two black lines outside 

the blue box represent the maximum and minimum value. It 

can be seen that our proposed model is the best in terms of 

the least RMSE and MAE measurements. In RMSE boxplot, 

1) the gap between 25 and 75 percentiles is the smallest, 2) 

the gap between maximum and minimum value the smallest, 

3) there is no outliers, 4) the median value (50 percentile) and 

the mean value are very close to each other. In MAE boxplot, 

although the gap between 25 and 75 percentiles of the 

proposed model is slightly larger than that of Bior, the rest 

three observations as shown in the RMSE boxplot still hold 

true. In general, our proposed model can generate 

consistently satisfied filters with different lengths for D&R 

problems. Instead of trying different filters from other 

wavelet families, our model constantly gives the most reliable 

and robust results.  

3.2. Hyperspectral image classification 

Given a hyperspectral image (HSI) 𝑋 ∈ ℝ𝑚∗𝑛∗𝑏, where m and 

n are spatial dimensions of 𝑋 , and b is the number of spectral 

bands. Each pixel in 𝑋  is a b-dimensional vector, and we 

apply discrete 1-D wavelet transform to each pixel to extract 

the approximation coefficients (cA) and detail coefficients 

(cD). We then employ cA as the spectral feature, i.e. the main 

 

  
 

Fig. 4. MAE and RMSE of proposed filter bank and other conventional filter banks 

 

  

Fig. 5. The boxplot of filtering bank families and proposed model 
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components, since cD is mostly considered as noise. For data 

classification, the support vector machines (SVM) have been 

widely used in HSI [3, 37]. In addition, there are many 

publicly available software tools supporting multiple 

functions of the SVM, which make it easy to implement. As 

a result, SVM is selected as a classifier, and LIBSVM [38] is 

used in our experiments for implementation. 

3.2.1. Experimental setup 

To assess the performance of HSI classification, three criteria 

including the overall accuracy (OA), the average accuracy 

(AA), and Kappa coefficient (KP) are employed. The OA is 

the percentage of correctly classified pixels, and AA is the 

mean value of the classification accuracies for all the classes. 

They are defined as follows:  

𝑂𝐴 =
1

𝑛
∗∑𝐶𝑖

𝑇

𝑖

∗ 100 (21) 

𝐴𝐴 =
1

𝑇
∗∑

𝐶𝑖
𝑁𝑖

𝑇

𝑖

∗ 100 (22) 

where 𝑁𝑖 is the all the pixels in class i, C is the classification 

confusion matrix, 𝐶𝑖𝑖 is the diagonal element in the confusion 

matrix which is also the correctly classified pixel in class i, 

𝐶𝑖𝑗 is the row element and 𝐶𝑗𝑖 is the column element in the 

confusion matrix. T is the total number of classes and n is the 

total number of pixels for classification.  

KP, defined below, is to measure inter-rater reliability: 

𝐾𝑃 =
𝑃0 − 𝑃𝑒
1 − 𝑃𝑒

 

(23) 

𝑃0 = 𝑂𝐴, 𝑃𝑒 =
1

𝑛2
∑(∑ 𝐶𝑖𝑗

𝑇

𝑗
∗∑ 𝐶𝑗𝑖

𝑇

𝑗
)

𝑇

𝑖

  

A popularly used HSI data sets, Indian Pines, is employed 

in our experiments to quantitatively evaluate the performance 

of the proposed model. Indian Pines, also namely 92AV3C, 

contains 145*145 pixels in 220 spectral bands for land 

mapping. It was collected by using the Airborne 

visible/infrared imaging spectrometer (AVIRIS) [39] in 1992 

in the USA, and the whole dataset was labelled in 16 land-

cover classes. After removal of bands that are severely 

affected by water absorption and noise [6], only 200 bands 

remain for classification [40-42].   

3.2.2. Experimental results 

In this section, the classification results on the 92AV3C 

dataset with different filter banks are compared in Tables 3-

9, and the training rate is 10%. All the experiments are 

repeated 10 times, and the average results are reported for 

comparison. Tables 3-7 show how the change of filter lengths 

in different filter banks affect the classification accuracy, 

where the best and the second-best filters are marked in bold 

and italic, respectively. For most filter banks, different filter 

lengths seem to have wispy gaps on the classification results. 

In Table 8, we compare the selected filters with the best 

performance in each filter bank and also summarize the 

average performance of each filter bank in Table 9. As seen 

in Table 8, our proposed method with a filter length 46 gives 

the best result over all others. Meanwhile, larger filter length 

seems to perform better than shorter ones in HSI 

classification until the results saturate with one possible best 

filter length before the performance degrades. There are 

possibly two main reasons for it: 1) HSI data usually contains 

much noise, 2) our proposed model can more effectively 

smooth the noisy data, especially with a relatively large filter 

length. As seen in Table 9, our proposed filter bank almost 

outperforms all others, though it is quite close to those of the 

Rbior filter bank. Although the average OA and Kappa of our 

filter bank are slightly lower than that of Rbior, the average 

AA of ours is 2% higher than Rbior, which means our model 

can produce high classification accuracy to both large and 

small classes. This is because the proposed method is a 

Table 3 Classification results for the 92AV3C dataset using DWT with the aubechies filter bank. 

Daubechies 'db2' 'db3' 'db4' 'db5' 'db6' 'db7' 'db8' 'db9' 'db10' Average 

filter length 4 6 8 10 12 14 16 18 20  

AA 76.52 76.40 75.77 75.14 75.26 75.45 75.87 75.97 74.49 75.82 

OA 80.98 81.18 80.93 81.01 80.98 81.47 81.23 80.73 81.01 81.13 

Kappa 78.30 78.49 78.24 78.29 78.26 78.81 78.55 77.96 78.30 78.43 

 

Table 4 Classification results for the 92AV3C dataset using DWT with the Symlets filter bank. 

Symlets 'sym2' 'sym3' 'sym4' 'sym5' 'sym6' 'sym7' 'sym8' Average 

filter length 4 6 8 10 12 14 16  

AA 75.37 75.01 75.74 75.20 75.56 74.85 76.32 75.44 

OA 81.06 81.23 81.01 81.18 81.41 80.83 80.72 81.06 

Kappa 78.37 78.57 78.29 78.50 78.76 78.10 77.99 78.37 

 

Table 5 Classification results for the 92AV3C dataset using DWT with the FKfilt filter bank and Coiflets filter bank. 

Fkfilt 'fk4' 'fk6' 'fk8' 'fk14' 'fk22' Average Coiflets 'coif1' 'coif2' 'coif3' 'coif4' 'coif5' Average 

length 4 6 8 14 22  length 6 12 18 24 30  

AA 76.14 77.01 75.58 75.80 76.34 76.17 AA 76.50 75.78 74.48 75.66 76.58 75.80 

OA 81.72 81.49 81.25 81.11 81.07 81.33 OA 81.37 81.01 80.98 81.04 81.02 81.08 

Kappa 79.10 78.86 78.57 78.42 78.38 78.67 Kappa 78.70 78.29 78.26 78.35 78.32 78.38 
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generic model in which the parameters are randomly 

initialized and optimized. As a result, it is more universal than 

those wavelet filtering banks with fixed parameters.  

Visual comparison of these classification results from 

selected filters within the compared filter banks is shown in 

Fig. 6, where the the average accuracy (AA) achieved is also 

given. As seen, the proposed wavelet filtering bank has the 

highest AA, which indicates that the proposed method can 

preserve more details in classification of small classes. This 

has demonstrated the superior performance of the generic 

model than conventional ones with fixed parameters. In 

addition, the region of each class is found smoother and more 

consistent with the ground-truth, also the outliers of each 

class are much less than others (e.g. Soybeans-clean till, 

Alfalfa). In summary, our proposed model outperforms other 

wavelet families in HSI classification.   

4. Conclusions 

Wavelet transform is a classic and popular method for data 

coding, compression and feature extraction. Conventional 

wavelet filter banks have fixed parameters, and the 

performance depends on the data being processed. As a result, 

searching for a suitable wavelet filter for a specific task is 

quite time-consuming. With the extended types of data being 

captured from smart camera systems, it becomes essential to 

find more suitable wavelet filter banks for such applications.  

In this paper, a generic framework is proposed to build a 

series of decomposition and reconstruction filter banks for 

discrete data sequence. Only one parameter n needs to 

determine, which is the half length of the filter. Then 2n 

coefficients of certain filter can be calculated by n+1 

Table 6 Classification results for the 92AV3C dataset using wavelet transform with the Bior filter bank. 

Bior 'bior1.3' 'bior1.5' 'bior2.2' 'bior2.4' 'bior2.6' 'bior2.8' 'bior3.1'  

filter length 6 10 6 10 14 18 4  

AA 75.80 74.68 73.82 73.57 73.96 72.26 72.25  

OA 81.42 80.58 79.97 80.30 80.48 79.87 79.17  

Kappa 78.76 77.83 77.10 77.45 77.70 76.95 76.18  

 'bior3.3' 'bior3.5' 'bior3.7' 'bior3.9' 'bior4.4' 'bior5.5' 'bior6.8' Average 

filter length 8 12 16 20 10 12 18  

AA 70.72 72.16 72.65 71.50 75.57 76.16 76.27 73.91 

OA 79.68 79.37 79.67 79.55 80.84 81.45 81.17 80.34 

Kappa 76.74 76.41 76.79 76.65 78.13 78.80 78.47 77.53 

 

Table 7 Classification results for the 92AV3C dataset using wavelet transform with the Rbior filter bank. 

Rbior 'rbio1.3' 'rbio1.5' 'rbio2.2' 'rbio2.4' 'rbio2.6' 'rbio2.8' 'rbio3.1'  

filter length 6 10 6 10 14 18 4  

AA 77.62 76.10 75.39 77.18 77.46 76.48 76.48  

OA 81.64 81.17 81.26 81.76 81.34 81.80 82.01  

Kappa 79.05 78.51 78.56 79.16 78.68 79.20 79.45  

 'rbio3.3' 'rbio3.5' 'rbio3.7' 'rbio3.9' 'rbio4.4' 'rbio5.5' 'rbio6.8' Average 

filter length 8 12 16 20 10 12 18  

AA 77.17 77.01 76.07 77.27 74.01 74.27 75.86 76.40 

OA 81.85 81.77 82.13 81.77 81.06 80.31 80.86 81.48 

Kappa 79.27 79.18 79.56 79.17 78.37 77.51 78.14 78.84 

 

Table 8 The classification results of the best filters selected from different filter banks. 

Methods ‘db7’ ‘coif1’ ‘sym6’ ‘fk4’ ‘bior5.5’ ‘rbio3.7’ Proposed 46 

AA 75.45 76.5 75.56 76.14 76.16 76.07 81.78 

OA 81.47 81.37 81.41 81.72 81.45 82.13 83.25 

Kappa 78.81 78.7 78.76 79.1 78.8 79.56 80.84 

 

Table 9 The average classification results from different filter banks. 

Methods Daubechies Coiflets Symlets FKfilt Bior Rbior Proposed 46 

AA 75.82 75.80 75.44 76.17 73.91 76.40 78.31 

OA 81.13 81.08 81.06 81.33 80.34 81.48 81.47 

Kappa 78.43 78.38 78.37 78.67 77.53 78.84 78.69 
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equations in the proposed model. All essential mathematical 

formulae are carried out to prove their validity. To evaluate 

the efficacy of the proposed model, we first measure its 

convergence performance and then validate its practical 

values by applying it in two applications including image 

D&R and classification of hyperspectral images. The 

proposed generic D&R framework actually provides a unified 

fundamental for signal processing. The most important 

finding in this paper is that most conventional filter banks can 

be the special solutions of our proposed generic model, where 

only one parameter, the filter length, needs to be determined 

in our model. The proposed model has many potentials of 

extendable capabilities. Comprehensive experiments have 

demonstrated the fast convergence speed of the proposed 

model. Also its superior performance on color image D&R 

and hyperspectral image classification over conventional 

wavelets have shown its promising potentials in real image 

processing applications.  

For future work, we will focus on applying this 

framework for many other applications such as image 

restoration, denoising and data compression, et al. For those 

specific applications, some special constraints can be 

imposed on the model to make the decomposition more 

effective and purpose targeted. Some other optimization 

methods such as gravitational search algorithm [43] and 

stochastic gradient descent can also be considered to further 

improve the convergence speed.   

Appendix: Detailed deduction of Eq.(1)-(18) 

{
 
 

 
 

 
 
 
 
 
 

 

𝑙1𝑙2𝑛−1 + 𝑙2𝑙2𝑛 = 0 1st condition 

(1) 

𝑙1𝑙2𝑛−3 + 𝑙2𝑙2𝑛−2 + 𝑙3𝑙2𝑛−1 + 𝑙4𝑙2𝑛 = 0 2nd condition 

⋮ ⋮ 

𝑙1𝑙2𝑛−(2𝑛−5) + 𝑙2𝑙2𝑛−(2𝑛−6) +⋯+ 𝑙2𝑛−5𝑙2𝑛−1 + 𝑙2𝑛−4𝑙2𝑛 = 0 (𝑛 − 2)th condition 

𝑙1𝑙2𝑛−(2𝑛−3) + 𝑙2𝑙2𝑛−(2𝑛−4) +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛 = 0 (𝑛 − 1)th condition 

∑ 𝑙𝑖
𝑖=1,3,…,2𝑛−1

=∑ 𝑙𝑖
𝑖=2,3,…,2𝑛

 𝑛𝑡ℎ condition 

s.t. 𝑙1
2 + 𝑙2

2 +⋯+ 𝑙2𝑛−1
2 + 𝑙2𝑛

2 = 1 1st contraint 

𝑆𝑒 = [𝑠2𝑛−1, 𝑠2𝑛−2, … , 𝑠2, 𝑠1, 𝑠1, 𝑠2, … , 𝑠𝑚−1, 𝑠𝑚] (2) 

𝑝𝑛+𝑘 = 𝑠2𝑘+1𝑙2𝑛 + 𝑠2𝑘+2𝑙2𝑛−1 +⋯+ 𝑠2(𝑘+𝑛)−1𝑙2 + 𝑠2(𝑘+𝑛)𝑙1 
(3) 

𝑞𝑛+𝑘 = 𝑠2𝑘+1𝑙1 − 𝑠2𝑘+2𝑙2 +⋯+ 𝑠2(𝑘+𝑛)−1𝑙2𝑛−1 − 𝑠2(𝑘+𝑛)𝑙2𝑛 

‘db7’ ‘coif1’ ‘sym6’ ‘fk4’ 

 
AA=79.85% 

 
AA=80.63% 

 
AA=79.83% 

 
AA=80.72% 

‘bior5.5’ ‘rbio3.7’ Proposed Ground truth 

 
AA=80.79% 

 
AA=82.21% 

 
AA=82.32% 

 
 

 

Fig. 6. Visual comparison of selected filters from each filtering bank. 
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𝑆 = [0, 𝑝1, 0, 𝑝2, … ,0, 𝑝𝑛] ∗ 𝐿𝑟 + [0, 𝑞1, 0, 𝑞2, … ,0, 𝑞𝑛] ∗ 𝐻𝑟  (4) 

𝑠1 = [0, 𝑝1, 0, 𝑝2, … ,0, 𝑝𝑛][𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛]
𝑇 

(5) 
 +[0, 𝑞1, 0, 𝑞2, … ,0, 𝑞𝑛][−𝑙2𝑛, 𝑙2𝑛−1, … , −𝑙2, 𝑙1]

𝑇 

 = [𝑞𝑛, 𝑝1, 𝑞𝑛−1, 𝑝2, … , 𝑞2, 𝑝𝑛−1, 𝑞1, 𝑝𝑛][𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛]
𝑇 

 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][𝑞𝑛, 𝑝1, 𝑞𝑛−1, 𝑝2, … , 𝑞2, 𝑝𝑛−1, 𝑞1, 𝑝𝑛]
𝑇 

𝑠1 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛]𝑀[𝑠1, 𝑠2, … , 𝑠2𝑛−1, 𝑠2𝑛]
𝑇 (6) 

𝑀 ≜

[
 
 
 
 
 
 

𝑙1 −𝑙2 𝑙3 −𝑙4 ⋯ −𝑙2𝑛−2 𝑙2𝑛−1 −𝑙2𝑛
𝑙3 + 𝑙2 𝑙1 + 𝑙4 𝑙5 ⋯ 𝑙2𝑛−1 𝑙2𝑛 0 0
𝑙3 − 𝑙2 𝑙1 − 𝑙4 𝑙5 ⋯ 𝑙2𝑛−1 −𝑙2𝑛 0 0
𝑙4 + 𝑙5 𝑙3 + 𝑙6 ⋯ 𝑙2𝑛 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑙2𝑛−1 − 𝑙2𝑛−2 𝑙2𝑛−3 − 𝑙2𝑛 𝑙2𝑛−4 ⋯ −𝑙2 𝑙1 0 0
𝑙2𝑛 𝑙2𝑛−1 𝑙2𝑛−2 ⋯ 𝑙4 𝑙3 𝑙2 𝑙1 ]

 
 
 
 
 
 

 (7) 

[1,0, … ,0,0] = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛]𝑀 (8) 

1 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][𝑙1, 𝑙3 + 𝑙2, 𝑙3 − 𝑙2, … , 𝑙2𝑛−1 − 𝑙2𝑛−2, 𝑙2𝑛]
𝑇 

(9) 

 = 𝑙1
2 + 𝑙2

2 + 𝑙3
2 +⋯+ 𝑙2𝑛−1

2 + 𝑙2𝑛
2 =∑𝑙𝑗

2

2𝑛

𝑗=1

 

0 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][−𝑙2, 𝑙1 + 𝑙4, 𝑙1 − 𝑙4, … , 𝑙2𝑛−3 − 𝑙2𝑛, 𝑙2𝑛−1]
𝑇 

 = −𝑙1𝑙2 + 𝑙2(𝑙1 + 𝑙4) + 𝑙3(𝑙1 − 𝑙4) + ⋯+ 𝑙2𝑛−1(𝑙2𝑛−3 − 𝑙2𝑛) + 𝑙2𝑛𝑙2𝑛−1 

 = 𝑙1𝑙3 + 𝑙2𝑙4 + 𝑙3𝑙5 +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛 

 ⋯⋯ 

0 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][𝑙2𝑛−1, 0,0, … ,0, 𝑙2]
𝑇 = 𝑙1𝑙2𝑛−1 + 𝑙2𝑛𝑙2 

0 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][−𝑙2𝑛, 0,0, … ,0, 𝑙1]
𝑇 = −𝑙1𝑙2𝑛 + 𝑙2𝑛𝑙1 

𝑠2𝑘−1 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][𝑞𝑛+𝑘−1, 𝑝𝑘 , 𝑞𝑛+𝑘−2, 𝑝𝑘+1, … , 𝑞𝑘+1, 𝑝𝑛+𝑘 , 𝑞𝑘, 𝑝𝑛+𝑘−1]
𝑇 

(10) 
𝑠2𝑘 = [𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛][𝑝𝑘 , −𝑞𝑛+𝑘−1, 𝑝𝑘+1, −𝑞𝑛+𝑘−2, … , 𝑝𝑛+𝑘, −𝑞𝑘+1, 𝑝𝑛+𝑘−1, −𝑞𝑘]

𝑇  

ℒ(𝑙1, … , 𝑙2𝑛) = (𝑙1𝑙2𝑛−1 + 𝑙2𝑙2𝑛)
2 + (𝑙1𝑙2𝑛−3 + 𝑙2𝑙2𝑛−2 + 𝑙3𝑙2𝑛−1 + 𝑙4𝑙2𝑛)

2 +⋯ 

(11) 

 

 +(𝑙1𝑙2𝑛−(2𝑛−3) + 𝑙2𝑙2𝑛−(2𝑛−4) +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛)
2
 

 +(∑ 𝑙𝑖
𝑖=1,3,…,2𝑛−1

−∑ 𝑙𝑖
𝑖=2,3,…,2𝑛

)

2

 

𝑙𝑗 = argmin
𝑙𝑗

ℒ(𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛) , 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ [1,2𝑛], 𝑠. 𝑡.∑ 𝑙𝑗
2

2𝑛

𝑗=1

= 1 (12) 

𝜕ℒ(𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛)

𝜕𝑙𝑗
= 0 (13) 

∑
𝜕𝐶𝑖

2

𝜕𝑙𝑗

𝑛

𝑖=1

= 0 (14) 

𝜕(𝑙1𝑙2𝑛−1 + 𝑙2𝑙2𝑛)
2

𝜕𝑙𝑗
= 0, 

(15) 

𝜕(𝑙1𝑙2𝑛−3 + 𝑙2𝑙2𝑛−2 + 𝑙3𝑙2𝑛−1 + 𝑙4𝑙2𝑛)
2

𝜕𝑙𝑗
= 0, 

⋯⋯ 

𝜕(𝑙1𝑙2𝑛−(2𝑛−3) + 𝑙2𝑙2𝑛−(2𝑛−4) +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛)
2

𝜕𝑙𝑗
= 0, 

𝜕(∑ 𝑙𝑖𝑖=1,3,…,2𝑛−1 − ∑ 𝑙𝑖𝑖=2,3,…,2𝑛 )
2

𝜕𝑙𝑗
= 0, 

𝑙𝑗 ∗ ((𝑙𝑗−2(𝑛−1) + 𝑙𝑗+2(𝑛−1))
2
+ (𝑙𝑗−2(𝑛−2) + 𝑙𝑗+2(𝑛−2))

2
+⋯+ (𝑙𝑗−2(𝑛−𝑘) + 𝑙𝑗+2(𝑛−𝑘))

2
+ 12) ≡ (16) 
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−(𝑙1𝑙2𝑛−1 + 𝑙2𝑙2𝑛 − 𝑙𝑗−2(𝑛−1) − 𝑙𝑗+2(𝑛−1)) ∗ (𝑙𝑗−2(𝑛−1) + 𝑙𝑗+2(𝑛−1)) − (𝑙1𝑙2𝑛−3 + 𝑙2𝑙2𝑛−2 + 𝑙3𝑙2𝑛−1 + 𝑙4𝑙2𝑛 −

𝑙𝑗−2(𝑛−2) − 𝑙𝑗+2(𝑛−2)) ∗ (𝑙𝑗−2(𝑛−2) + 𝑙𝑗+2(𝑛−2)) −⋯− (𝑙1𝑙2𝑛−(2𝑛−3) + 𝑙2𝑙2𝑛−(2𝑛−4) +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛 −

𝑙𝑗−2(𝑛−𝑘) − 𝑙𝑗+2(𝑛−𝑘)) ∗ (𝑙𝑗−2(𝑛−𝑘) + 𝑙𝑗+2(𝑛−𝑘)) + (∑ 𝑙𝑖𝑖=1,3,…,2𝑛−1 − ∑ 𝑙𝑖𝑖=2,3,…,2𝑛 − 𝑙𝑗) ∗ 1, 

[𝛼1, 𝛼2, … , 𝛼𝑛] = [−(𝑙1𝑙2𝑛−1 + 𝑙2𝑙2𝑛 − 𝑙𝑗−2(𝑛−1) − 𝑙𝑗+2(𝑛−1)), 

(17) 

 −(𝑙1𝑙2𝑛−3 + 𝑙2𝑙2𝑛−2 + 𝑙3𝑙2𝑛−1 + 𝑙4𝑙2𝑛 − 𝑙𝑗−2(𝑛−2) − 𝑙𝑗+2(𝑛−2)), …, 

 −(𝑙1𝑙2𝑛−(2𝑛−3) + 𝑙2𝑙2𝑛−(2𝑛−4) +⋯+ 𝑙2𝑛−3𝑙2𝑛−1 + 𝑙2𝑛−2𝑙2𝑛 − 𝑙𝑗−2(𝑛−𝑘) − 𝑙𝑗+2(𝑛−𝑘)), 

 (∑ 𝑙𝑖
𝑖=1,3,…,2𝑛−1

−∑ 𝑙𝑖
𝑖=2,3,…,2𝑛

− 𝑙𝑗)] 

[𝛽1, 𝛽2, … , 𝛽𝑛] = [(𝑙𝑗−2(𝑛−1) + 𝑙𝑗+2(𝑛−1)), (𝑙𝑗−2(𝑛−2) + 𝑙𝑗+2(𝑛−2)), … , (𝑙𝑗−2(𝑛−𝑘) + 𝑙𝑗+2(𝑛−𝑘)), 1] 

[𝛽1, 𝛽2, … , 𝛽𝑛][𝛽1, 𝛽2, … , 𝛽𝑛]
𝑇𝑙𝑗 = [𝛼1, 𝛼2, … , 𝛼𝑛][𝛽1, 𝛽2, … , 𝛽𝑛]

𝑇 

(18) 
𝑙𝑗 = argmin

𝑙𝑗

ℒ(𝑙1, 𝑙2, … , 𝑙2𝑛−1, 𝑙2𝑛) = argmin
𝑙𝑗

‖𝛽𝑙𝑗 − 𝛼‖ , s. t.∑ 𝑙𝑗
2

2𝑛

𝑗=1

= 1  
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