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Abstract

To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and
biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European
continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phos-
phorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg LY, and its subsets (2 depth types and 3 climatic zones),
show that light climate and stratification strength were the most significant explanatory variables for chloro-
phyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental
lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially
controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the
warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature
anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a signifi-
cant, exponential relationship with stratification strength. This European survey represents a summer snapshot
of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both
affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient

concentrations and surface temperature.

Globally, temperature, light, and nutrients are key drivers
of phytoplankton blooms, but their relative importance in
determining algal biomass strongly depends on the role of
thermal stratification, that is, water column stability
(Sverdrup 1953; Cloern 1996; Ptacnik et al. 2003; Carvalho
et al. 2016). As a matter of fact, the relative importance of
these drivers and interactive mechanisms between them can-
not be fully resolved without including thermal stability
(Winslow et al. 2017). This is particularly relevant under
global processes of eutrophication and climate warming
(Sinha et al. 2017) as some research foresees an allied impact
of eutrophication and climate change effects in promoting
harmful cyanobacterial blooms (Moss et al. 2011).

Stratification suppresses the exchange of heat and dissolved
substances between the epi- and hypolimnion by reducing tur-
bulent motions that otherwise would facilitate transport
(Wiiest and Lorke 2003). While the vertical structure of the
water column constitutes the first response to temperature fluc-
tuations (Sahoo et al. 2016), it also regulates the development
of phytoplankton biomass by affecting light and nutrient avail-
ability (Yang et al. 2016), as well as phytoplankton settling, and
therefore exerts a strong control on lake ecosystem functioning
(Scheffer et al. 2001; Bartosiewicz et al. 2015).

Especially when nutrients are not limiting (e.g., in eutro-
phic lakes), light climate and stratification strength likely play
dominant roles in regulating phytoplankton biomass (Fig. 1),
and this role of light as a limiting resource has been suggested

since the early days of eutrophication research (Mur
et al. 1977). In general, by controlling light and nutrient avail-
ability, the underwater light climate and stratification strength
determine phytoplankton growth conditions. When stratifica-
tion is strong, thus suppressing fluxes from the deeper layers,
mixing is restricted to the surface layer. Under such condi-
tions, phytoplankton is constantly maintained within the
euphotic zone, promoting algal growth until nutrients are
depleted or other factors as grazing and sedimentation take
over in controlling phytoplankton biomass (Fig. 1la; Cam-
acho 2006; Reynolds 2006; Yankova et al. 2017). When strati-
fication is weak, water column mixing can reach deep and
nutrient rich waters, however potentially taking the algal com-
munities beyond the euphotic zone that would limit their
growth (Ibelings et al. 1994; Fig. 1b). One other ecological
consequence of a strongly stratified lake is that phytoplankton
may have reduced access to nutrients that remain locked in
the hypolimnion (Niirnberg 1984; Posch et al. 2012; Sal-
maso et al. 2020). Yet, while the strength of stratification is
determined primarily by light climate and heat exchange,
other factors too can affect the extent and duration of the
stratification, such as lake morphology (i.e., basin geome-
try, maximum depth and surface area) (Thompson and
Schmidt 200S5; Kirillin and Shatwell 2016; Magee and
Wu 2017) as well as the dissolved organic and inorganic
carbon content of the water, wind orientation and shelter-
ing. Dissolved organic matter in general can have a huge
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Fig 1. Schematic overview of how lake N? and light climate (Ze/Zmix)
may define phytoplankton biomass in nutrient-rich lakes. (a) A strong
stratification (> N?) allows phytoplankton to circulate well within the
euphotic zone (Zey/Zmix = 1)—promoting growth. (b) A weaker stratifica-
tion (< N?) allows deeper mixing, hence phytoplankton communities are
highly diluted—eventually below the euphotic zone (Zey/Zmix < 1).

impact on stratification by influencing light penetration, and
consequently surface heating, as seen in humic boreal lakes
(Heiskanen et al. 2014). Wind and convection, acting on the sur-
face mixed layer (SML), control a lake’s interior diffusive fluxes
regulating the physical environment experienced by phyto-
plankton. Important properties of the SML, such as its depth,
vary widely among lakes as the result of a specific balance
between factors that strengthen stratification (surface warming),
and factors that disrupt or deepen the layer, such as wind shear
and surface cooling (Imberger 1985; Imboden and Wiiest 1995;
Boehrer and Schultze 2008).

Stratification of lakes is changing under the impact of
eutrophication, re-oligotrophication and climate warming
(Flaim et al. 2016). For instance, in recent decades, the
strength of stratification of lakes in northeastern North Amer-
ica has clearly increased (Richardson et al. 2017); a phenome-
non that might be further enhanced by a trend of
atmospheric stilling (Woolway and Merchant 2019). Analyses
of the 2007 National Lake Assessment, NLA dataset (Pollard
et al. 2018) showed that synergistic interactions between
nutrients and temperature promoting algal or cyanobacterial
developments are probable, especially in the eutrophic and
hypereutrophic subsets of NLA lakes (Rigosi et al. 2014).
Kosten et al. (2012) provided more support for synergistic
interactions between nutrients and temperature in determin-
ing chlorophyll a (Chl a) and cyanobacterial dominance in a
multilake survey along a latitudinal gradient stretching from
the tip of South America to the equator. However, no lake
physical variables other than surface temperature, such as den-
sity gradient or stratification strength, were included in these
large-scale studies on drivers of algal biomass.

To further our understanding of the main drivers and their
interactions on phytoplankton biomass across continental

European lake survey: summer Chl-a drivers

climatic gradients, the “grassroots” European Multi Lake Sur-
vey (EMLS) was organized during summer 2015, which coin-
cided with the period of maximum stratification in most of
the examined lakes. Data from the EMLS are publicly available
(Mantzouki et al. 2018). Here, we report on the difference in
Chl a as a proxy for phytoplankton biomass between 230 of
the EMLS lakes to: (1) determine the dependency of phyto-
plankton biomass at the continental scale on a set of ecosys-
tem drivers, including growth conditions (total phosphorous
[TP], total nitrogen [TN], lake temperature, and light) and
morphophysical properties (lake depth, surface area, light cli-
mate, and stratification strength); and (2) investigate potential
interactions between these predictors that influence phyto-
plankton biomass.

Methods

EMLS organization

During the EMLS in summer 2015, 230 lakes were sam-
pled across major geographical and climatic regions in
Europe for various chemical, physical, and biological
parameters using highly standardized sampling protocols
(Mantzouki et al. 2018; Mantzouki and Ibelings 2018). All
key variables were analyzed centrally (by one person on one
machine) in dedicated laboratories to ensure data compara-
bility and a fully integrated dataset.

The lake sampling site was selected as either the historical
sampling point, for which long-term records exist, or the geo-
graphic center of the lake. The sampling period was defined as
the warmest 2-week period of the summer, based on long-term
(minimum 10 yr) air temperature data of each region. An in
situ temperature profile carried out on the sampling day was
used to identify and characterize the thermocline as the point
where there was 2 1°C change of temperature per meter lake
depth. An integrated water sample was obtained from 0.5 m
depth to the bottom of the thermocline using a water sampler
that could effectively sample the whole volume without creat-
ing intervals. In nonstratified shallow lakes, an integrated
sample was drawn from 0.5 m below the lake surface to 0.5 m
above the lake bottom.

Nutrient analyses

Total phosphorus and nitrogen concentrations were
assessed in unfiltered samples. Sample bottles were acid
washed overnight in 1 M HCI and rinsed with demineralized
water before usage. Nutrients were measured using a Skalar
SAN+ segmented flow analyzer (Skalar Analytical BV, Breda,
the Netherlands) with UV/persulfate digestion integrated in
the system. The limit of detection was 0.02 mg L~! for TP and
0.2 mg L' for TN. TP was analyzed following NEN (1986) and
TN according to NEN (1990). All nutrient analyses were per-
formed at the University of Wageningen, the Netherlands.
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Pigment analyses

Pigment analysis, modified from the method described by
Van der Staay et al. (1992), was carried out to determine con-
centrations of Chl a and Zeaxanthin (Zea). Measurement of
Zea concentrations in the EMLS lakes were carried out with
the aim of investigating cyanobacterial biomass, alongside to
the general phytoplankton biomass estimate obtained with
Chl a. Filters (45 mm diameter GF/C or /F) were freeze-dried
for 6 h and then cut in half, placed in separate Eppendorf
tubes, and kept on ice. A number of 0.5 mm beads and 600 uL
of 90% acetone were added to each tube. To release the pig-
ments from the phytoplankton cells and increase the extrac-
tion yield, tubes were placed on a bead-beater for 1 min and
then in an ultrasonic bath for 10 min. To ensure complete
extraction of the total pigment content of the filters, the bead-
beater and ultrasonic bath steps were performed twice. To
achieve binding of the pigments during the high-performance
liquid chromatography (HPLC) analysis, 300 uL of a tributyl
ammonium acetate (1.5%) and ammonium acetate (7.7%)
mix were added to each tube. Lastly, samples were centrifuged
at 15,000 rpm and 4°C for 10 min. Next, 35 uL of the superna-
tant from Eppendorf tubes were transferred into glass HPLC
sampling vials. Pigments were separated on a Thermo Scien-
tific ODS Hypersil column (250 mm x 3 mm, particle size
5 pm) in a Shimadzu HPLC, using a KONTRON SPD-M20A
diode array detector. The different pigments were identified
based on their retention time and absorption spectrum and
quantified by means of pigment standards. Pigment analysis

European lake survey: summer Chl-a drivers

Lake groups

Lake classification was based on climatic zone and depth
type. Predicted climatic zones based on different IPCC scenar-
ios (2000-2025; Rubel and Kottek 2010) were used to avoid
the inconsistency in available digital maps, especially for areas
such as the Alpine region (Rubel et al. 2017). The climatic
zones were defined using the Kdppen-Geiger’s classification
(Koppen 1900). This classification regards the main climate of
the region (C = warm temperate, D = alpine), precipitation
levels (f = fully humid, s = summer dry), and mean tempera-
ture (a = hot summers, b = warm summers). For easier inter-
pretation and more statistical power, climatic regions that
were of the same main climate and precipitation level were
combined in three main ones: Mediterranean (Csa and Csb,
n = 54 lakes), Continental (Cfa and Cfb, n = 128 lakes), and
Boreal (Dfb and Dfc, n = 48 lakes) (Fig. 2). This way, only the
mean temperature varied within each of the combined groups,
which allowed for testing of a temperature gradient. The selec-
tion of climatic zones has a clear advantage over a latitudinal
analysis, as several lakes within the Continental region are
classified as Boreal lakes based on their climatic characteristics
rather than their position on a latitudinal gradient (see
Table S1 for list of EMLS lakes and corresponding cli-
matic zone).

The EMLS lakes were categorized into shallow (< 6 m maxi-
mum depth, n = 93 lakes) and deep (> 6 m maximum depth,
n = 137 lakes). This classification was used in previous snap-
shot surveys as an approximation for weakly or strongly ther-

was performed at the University of Amsterdam, the mally stratified systems (Kosten et al. 2012; Beaulieu
Netherlands. et al. 2013).
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Fig 2. Location of the 230 EMLS lakes distributed over the main climatic zones of the European continent (Rubel and Kottek 2010). The Mediterranean
region (n = 54) consists of Csa and Csb classes (C, warm temperate; s, summer dry; a, hot summer; b, warm summer), the Continental region (n = 128)
of Cfa and Cfb (f, fully humid; rest as above), and the Boreal region (n = 48) of Dfb and Dfc (D, snow; ¢, cool summer; rest as above).
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Table 1. List of lake variables with their units, range of values, means, medians, and standard deviations for the 230 EMLS lakes. Vari-

ables with * are included in the linear models.

Variable Units Range Mean + SD Median
Maximum depth maxD m 1-310 23441 10.00
Surface area* SurfA km? 0.001-580 19+69 5
Total nitrogen* TN mg L™ 0.1-5 1.0+£0.8 0.70
Total phosphorus* TP mg L™ 0.02-1 0.1+0.1 0.06
Surface temperature* SurfT °C 14.6-33 23+3.4 22.4
Average temperature AvT °C 13.4-33 21+3.5 20.6
Secchi depth sD m 0.16-10 1.8+£1.7 1.19
Light climate* Zoul Zmix - 0.02-11 1.0£1.0 0.63
Stratification strength * N? 52 3.107°-3.1072 5.1073+4.1073 41073
Chlorophyll a* Chla ug L7 0.03-933 44+110 9.98
Zeaxanthin Zea ug L7 0.00-90 3+9.7 0.68

Statistical analysis

To disentangle the importance of various drivers of phyto-
plankton biomass, we applied linear regression models to six
lake groups: all, deep, shallow, Mediterranean, Continental,
Boreal. We (1) assessed the quality of the statistical models
after excluding collinear and nonsignificant variables,
(2) included groups of interactions and nominal variables as
environmental predictors, and (3) discussed the three most
important predictors for each model.

Response variable and environmental predictors

The response variable of all regression models was the con-
centration of Chl a obtained from the HPLC analysis, which
was used as a proxy for total phytoplankton biomass
(Pinckney et al. 2001; Tamm et al. 2015) and tested with the
following single predictors: maximum depth (maxD), surface
area (SurfA), TN, TP, surface temperature (SurfT), average tem-
perature (AvT), Secchi disk depth (SD), light climate (Z../
Zmix), and maximum buoyancy frequency (stratification
strength, N?) (Table 1).

Surface and average temperatures were determined via a
water column profile with a temperature probe, taking respec-
tively the temperature of the top 0.5 m of the water column
and the average of the full profile.

Light climate was defined as the ratio of euphotic depth over
mixing depth (Zeu/Zmix), which describes the light that phyto-
plankton experience while circulating through the water col-
umn (Scheffer et al. 1997). The equation Z,, = 2 x SD (Secchi
depth) was used to calculate Z., (equation selected as an aver-
age estimate from the range of constants reported in literature,
e.g., Koenings and Edmundson 1991; Salmaso 2002; Brentrup
et al. 2018). In stratified lakes, Z.; was determined as the
depth of the steepest density gradient (Winslow et al. 2017). In
nonstratified shallow lakes, Z,,,;x matched the maximum depth
and sampling depth. Water density was calculated according to

the combined effects of salinity (set to 0) and water temperature
based on the method of Millero and Poisson (1981).

Lake stratification is the density-induced layering of the
water column (Boehrer and Schultze 2008). Strength of water
column stratification was determined by the N? given by the
Brunt Viisild equation or buoyancy frequency, N (s™%).

_ [ 8(P\.N2_ 8 (%
N= /)(QZ)'N N /)(32) (1)

Buoyancy frequency is greater than zero, when a water vol-
ume (of density p) that is displaced vertically (z) from its initial
position without heat transfer, experiences a restoring force. If
N? <0 instead, the water parcel tends to be displaced away
from its initial position and the vertical water column is
locally unstable. Here, we use the symbol N? to indicate the
maximum value over the entire water column. By suppressing
vertical turbulent eddies, density stratification determines the
water column stability so that, in general, the greater the den-
sity gradient, the slower the diffusive exchange of water con-
stituents between the hypolimnion and the epilimnion
(Boehrer and Schultze 2008).

Three groups of interactions between some of the afore-
mentioned variables, selected based on ecological theory and
previous literature, were included as additional predictors in
the models. Namely the interaction between (1) nutrients and
surface temperature (Rigosi et al. 2014), (2) stratification
strength and light climate (Graff and Behrenfeld 2018), and
(3) surface area and light climate.

Analysis of variance

Differences in mean values of the selected variables within cli-
matic zones and depth types were tested using one-way ANOVA.
Homogeneity of variance was tested using the Levene’s test from
the car R package (Fox and Weisberg 2011). In case of heteroge-
neity, a Kruskal-Wallis test was used instead of ANOVA. Post hoc
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pairwise comparisons for unequal sample sizes were performed
using Tukey HSD (Honest Significant Difference) or Games—
Howell test (userfriendlyscience R package; Peters et al. 2018) for
homogeneous or heterogeneous variance, respectively.

Multiple linear regression model

All variables were log-transformed (natural logarithm) to
obtain a normal and homogeneous distribution. Stepwise
selection (backwards and forward) was used for model selec-
tion where the AIC scores were compared based on a modified
equation that corrects for unequal sample size among catego-
ries (R code provided by Statoo Consulting, Switzerland). If
the interaction term was significant (p < 0.05), the lower order
terms were included in the equation. The most parsimonious
model, in which elimination or addition of any other predic-
tors would not improve the model by AAIC > 2, was used for
the ANOVA. The metric “Img” of the relaimpo R package
(Grémping 2006) was used to decompose the overall R* of
each final model into the absolute contributions of each pre-
dictor term and their interaction terms (similarly done in
Rigosi et al. 2014). The relative contribution of each predictor
was normalized, by forcing the sum to 100%. A bootstrapping
approach was used to replicate the observed data 9999 times
and determine if there were any clear differences between the
predictors of the interaction terms with regards their relative
contribution to the interaction term (Grémping 2006). If

European lake survey: summer Chl-a drivers

those differences included zero, it indicated that the predictors
were not significantly different from each other, meaning that
they contributed similarly to the interaction term. When the
interaction term had a significant value of p <0.05 and was
positive, it was interpreted as a synergistic interaction.

To avoid multicollinearity between the interactions and
their main effects, we checked the variance inflation factor
(VIF). If VIFs were exhibiting high numbers (VIF > 3, threshold
according to (Zuur et al. 2010), we centered the interaction
term with the mean of the raw variables which alleviated the
collinearity problem.

We applied multiple linear regression models to test the rel-
ative importance of the selected response variables in
explaining Chl a variance. The model applied was:

Chla=Ag+ A1 Xsurta +A2 Xn2 + Az Xsurtr +Ag XN+ As Xzeu/zmix
+ A6 XN2+zeu/zmix +€

2)

where A, represents the intercept term, A4,—A44 are model parame-
ters for each respective predictor in the models, “*” denotes the
interaction between two terms, and e is an error term. Two multi-
ple linear regression models were applied to the entire EMLS
group of lakes. Apart from the full set of environmental predictors,
each of these two models included the nominal variable “depth
type” or “climatic zone” (see Supplementary Material for more

Table 2. List of applied models and relative metrics. AIC does not apply correctly if number of observations is not the same, for which

we rely on R?.

Lake group Multilinear model N lakes R? AIC

M) All-a Chla = —9.06 — 0.23 (SurfA) — 0.31 (N?) + 3.36 (SurfT) 230 35% 842.43%*x
+ 0.46 (TN) + 0.47 (Zew/Zmix) + 0.18 (N*Zeu/ Zerix) —
0.90 (Cont) — 2.06 (Med)

(2) All-b Chla= —2.44 — 0.15 (SurfA) — 0.11 (N?) + 1.12 (SurfT) 230 30% 856.65**
+0.31 (TN) + 0.45 (Zew/ Zemix) + 0.19 (N*Zeu/ Zerin)
+ 1.17 (Shallow)

(3) Shallow Chl a = 0.33-0.05 (SurfA) — 0.17 (N?) + 0.48 (SurfT) 93 31% Na
4 0.78 (TN) — 0.09 (Zew/Zmix) + 0.12 (N*Zew/ Zrmix)

(4) Deep Chl a = —0.65 — 0.14 (SurfA) + 0.07 (N?) + 0.84 (SurfT) 137 12% Na
4 0.01 (TN) + 1.13 (Zew/Zmix) + 0.29 (N*Zeu/ Zrmix)

(5) Med. Chla=—17.035 — 0.23 (SurfA) — 0.029 (N°) + 5.26 54 45% Na
(SurfT) + 0.40 (TN) + 0.83 (Zew/Zmix) + 0.22 (N**Zey/
Zmin)

(6) Cont. Chl a = —5.40 — 0.26 (SurfA) — 0.33 (N?) + 1.88 (SurfT) 128 25% Na
4 0.47 (TN) + 0.23 (Zew/Zmix) + 0.12 (N*Zeu/ Zrnix)

(7) Bor. Chla = —15.65 — 0.15 (SurfA) — 0.005 (N?) + 6.05 48 43% Na
(SurfT) + 0.41 (TN) + 2.77 (Zew/ Zmix) + 0.62 (N**Zeu/
Zmix)

* P <0.05.

** P <0.01.

*** P < 0.001.
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Fig 3. EMLS log-transformed response variable, (a) Chl g, and significant
predictors: (b) surface temperature, (c) total nitrogen, (d) maximum
buoyancy frequency (stratification strength), (e) light climate (Zeu/Zmix),
and (f) surface area, averaged over climatic zones. Significant differences
at the 0.05 level are marked with *. Different italic letters indicate signifi-
cant differences among categories (Tukey test; p < 0.05).

detail). These nominal variables comprehend the lake subsets to
which the same multilinear regression model that was further
applied, that is, deep, shallow, Mediterranean, Continental, Boreal
(Table 2).

Results

Response variable and environmental predictors

The EMLS lake data cover a wide range of morphological,
physical, chemical, and biological values (Table 1). The
median measured TP was 60 ug L™}, and according to Carlson
trophic state index (TSI) 85% of the lakes were classified as
eutrophic (TSI > 50). EMLS lakes were largely represented by
eutrophic conditions (70%) also when calculating the TSI on
basis of Secchi disk depth (median SD = 1.2 m), while TSI
based on Chl a concentration (median Chl a = 10 ug L")
leads to 54% of lakes being classified as eutrophic.
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8 3.6
6] * 1 —— %
o ° 1 el T
- 4 - O E
[@)] 4 °\/3.2_
S 2 & )
2 o INEE
< 7] w
(@] 1 c
c 27 . — 284 L
— E - *
—4 - . i
T T 2.6 T T
Deep Shallow Deep Shallow
2
1 . T % 4 *
~ 17 T 1
| —~~
- &~
o 04 w 7
l N
Z -1 = 4
= L ER l
- 1
= -2 .
* —-10 4 *
*
_3 T T T T
Deep Shallow Deep Shallow
24e * sif T P
T ] =
AN £ = [
N ] < °1 =
3z | : g |
c =14 n _g | .
= L 1 £ :
-2
T T _10 T T

Deep Shallow Deep Shallow

Fig 4. EMLS log-transformed response variable (a) Chl g, and significant
predictors: (b) surface temperature, (c) total nitrogen, (d) maximum
buoyancy frequency (stratification strength), (e) light climate (Zeu/Zmix),
and (f) surface area, averaged over depth type. Significant differences at
the 0.05 level are marked with *.

Significant collinearity was observed between maximum
depth and surface area, and between surface temperature and
average temperature (Fig. S1). VIFs of maximum depth and
average temperature were higher than 3, thus they were
removed from subsequent analyses. Secchi depth was also
removed in favor of using the light climate variable, Ze,,/Zmix-

All the variables were found to be significant, except for TP,
and the interactions TN*SurfT and SurfA*Z../Z..ix, which
therefore never appeared as Chl a variance predictors.

Lake groups: Climatic zone and depth type
Climatic zone

ANOVA was performed on the three climatic zone groups,
composed by 54 Mediterranean, 128 Continental, and
48 Boreal lakes (Fig. 3; Table S2).

Mean Chl a concentrations were significantly higher in the
Boreal lakes (mean In=+1SD, 3+ 1 ugL™') compared to
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Continental 22+1 ug L7 and Mediterranean
(1.7 +£2 ug LY, while no significant difference was found
between Continental and Mediterranean lakes (Fig. 3a;
Table S2).

Depth type

The EMLS dataset is composed of 93 shallow and 137 deep
lakes (> 6 m). Response variable, Chl g, and all of the predic-
tors used in the statistical models of the EMLS significantly
differed between deep and shallow lakes (Fig. 4; Table S2). Chl
a, SurfT, TN, and Z.,/Znix were all higher for shallow lakes,
whereas deep lakes showed a stronger stratification strength
(N?) and greater surface area than shallow ones.

Drivers explaining Chl a at the continental scale

The applied models significantly explain a proportion of the
variability in Chl a (p < 0.001; Table 2), with the model applied
to Mediterranean lakes explaining the highest variability
(R* = 45%), closely followed by the model applied to Boreal
lakes (R> = 43%) with Continental lakes further behind
(R? = 25%), while the model applied to deep lakes explained

European lake survey: summer Chl-a drivers

the lowest variability (R* = 12%), compared to R*> = 31% for
shallow lakes. Based on AIC comparison, the nominal variable
“climatic zone” is more significant than “depth type” in
explaining the variance of algal biomass (Table 2). Nevertheless,
the lake group “depth type” explained more of the overall R*
compared to “climatic zone” (37% vs. 26%; Table S3).

When the model included the nominal variable “climatic
zone” among the predictors, it resulted as the strongest predic-
tor for algal biomass with 26% of the model R* explained,
closely followed by stratification strength (24%), and with a
significant but smaller contribution of TN (13%; Table S3).
Similarly, when “depth type” was included, it resulted as the
most significant predictor (37%); however, it was much more
important than the second most significant predictor (stratifi-
cation strength, 18%), that was closely followed by light cli-
mate (15%; Table S3).

The 230 lakes dataset allows us to carry out the same analy-
sis separately on each group of lakes corresponding to the
explanatory categories, climatic zone, and depth type, to gain
more insights on the summer drivers of phytoplankton bio-
mass for this set of lakes.
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Fig 5. First two significant predictors for Chl a in lake group model 3 (shallow) and model 4 (deep). (a, b) Light climate, Zo,/Zmix, and TN explain
respectively 46% and 33% of Chl a variance in EMLS shallow lakes (model R? = 31%). (¢, d) Light climate, Zeu/Zmix, and its interaction with stratification
strength, N**Zow Zenixs explain respectively 32% and 29% of Chl a variance in EMLS deep lakes (model R? = 12%). All variables are plotted as to the statis-
tical models, that is, natural logarithm (In). See Table S4 for relative contribution and significance of all predictors.
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Fig 6. First two significant predictors for Chl g in lake group model 5 (Mediterranean), model 6 (Continental), and model 7 (Boreal). (a, b) Stratification
strength, N?, and surface temperature, SurfT, explain respectively 46% and 24% of Chl a variance in EMLS Med lakes (model R = 45%). (¢, d) TN and
N? explain respectively 35% and 29% of Chl a variance in EMLS Cont lakes (model R? = 25%). (e, f) Light climate, interaction with stratification strength,
N?*Zo/ Zenix, and SurfT explain respectively 34% and 21% of Chl a variance in EMLS Boreal lakes (model R? = 43%). All variables are plotted as to the sta-
tistical models, that is, natural logarithm (In). See Table S5 for relative contribution and significance of all predictors.

Shallow vs. deep lakes

Light climate was the most important variable explaining
Chl a variance in both shallow and deep lake subsets (46%
and 32%, respectively; Fig. 5a,c). Stratification strength was
also a significant contributor for both lake types, either indi-
vidually (14%, shallow lakes; Table S4), or in synergistic inter-
action with light climate (29%, deep lakes; Fig. 5d). However,

for shallow lakes, TN played a more significant role than strati-
fication (33%; Fig. Sb) while not appearing as a significant pre-
dictor of algal biomass in the deep lakes subset.

Mediterranean vs. Continental vs. Boreal lakes
When applying the model to the different climatic zones,
the strength of the stratification appeared as a strong
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predictor, either individually (Med. 46% and Cont. lakes 29%;
Fig. 6a,d) or in interaction with light climate (Boreal lakes
349%; Fig. 6e). In Mediterranean and Boreal lakes, surface tem-
perature was also a strong predictor of algal biomass (24% and
21%, respectively; Fig. 6b,f) but not for Continental lakes
(Table S5). Instead, nutrients were the most significant predic-
tors of Chl a (34%) for Continental (Fig. 6¢), while being less
important for Boreal lakes (14%) and not important for Medi-
terranean lakes (Table S5).

Relationship between stratification metrics

Within the EMLS lakes, we analyzed the relationship
between stratification strength and some of the drivers, that is,
temperature, light penetration, and lake morphology. As
already shown, Mediterranean lakes, while being on average
the warmest, did not have the highest average stratification
strength (Fig. 3d). When looking at the entire dataset (Fig. 7),
the polynomial fit between the maximum N? and surface tem-
perature was significant (p<0.001) but weak (R* = 0.14;
Fig. 7a), indicating that only for a relatively small number of
the EMLS lakes, higher surface water temperatures at the sam-
pling time corresponded to a stronger stratification. An even
weaker relationship (R? = 0.06) was observed between stratifica-
tion strength and light penetration depth (Z.,; Fig. 7b). As for
the morphological features, the relationship observed between
maximum N? and surface area (Fig. 7c), was much weaker

(R? = 0.08) than between maximum N? and maximum lake
depth (R* = 0.2). Here, the 4™-order polynomial fit followed
the effect of temperature on N? for increasing lake depths,
reaching a plateau for lakes deeper than ~ 20 m (Fig. 7d).
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Fig 8. Eight-day average temperature anomaly at the sampling site and
sampling period in relation to the lake stratification strength for the EMLS
climatic zone subsets, Continental (gray), Mediterranean (light pink), and
Boreal (blue). All best fits are given by exponential curves, with the one
for Boreal lakes being the most significant (R> = 0.4).
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Air temperature anomaly

The summer of 2015 was the third warmest summer (after
2003 and 2010) since 1880 in Europe (GISTEMP, NOAA
online data). During the sampling period in 2015, 70% of
EMLS lakes experienced a positive temperature anomaly of
1.9°C =+ 3.4°C (average + 1 SD, based on each lake 8-d temper-
ature average compared to 10-yr average for the same 8 d).
However, when looking at each climatic zone separately, 96%
of Continental lakes and 87% of the Boreal lakes experienced
a positive temperature anomaly of 3.8°C +£2.6°C and
3.7°C £+ 2.9°C, respectively. In contrast, only 53% of the Med-
iterranean lakes experienced a positive temperature anomaly,
of 1.4°C £ 1°C. The remaining 30% of the total, 4% of Conti-
nental, 13% of Boreal and 47% of Mediterranean are lakes that
showed a negative deviation from the long term average.

Hence, at the time of sampling, the great majority of Conti-
nental and Boreal lakes experienced a strong temperature
increase compared to the long-term average levels, which was
not the case for Mediterranean lakes. Compared to the other
regions, Boreal lakes as well showed the strongest exponential
relationship between the experienced temperature anomaly
and stratification strength (Fig. 8).

Pigments analysis

Measurement of Zea concentrations in the EMLS lakes were
carried out with the aim of investigating cyanobacterial bio-
mass. A strong linear relationship was found between Zea and
Chl a (R* = 0.6; Fig. S3) indicating that higher Chl
a concentrations systematically corresponded with higher
concentrations of Zea.

Discussion

Drivers explaining phytoplankton biomass at the
continental scale

Several studies have focused on the effects of nutrients and
warming on phytoplankton in more than one lake (table S1 in
Salmaso and Tolotti 2021). This is of particular concern for
resolving the climate warming effect on lakes and the positive
feedbacks on eutrophication of lakes (Sinha et al. 2017; Deng
et al. 2018). However, thermal stratification, which will likely
increase with climate warming (Woolway and Merchant 2019),
is an important feature governing lake ecosystems as it affects
both nutrient availability and light climate (Schwefel
et al. 2016), generating complex feedbacks for the biota
(Mesman et al. 2021). The importance of these factors may
dominate when lakes are not nutrient limited.

We have applied a set of multiple regression models to
230 European lakes (54-85% of which were eutrophic
depending on the criterion applied) to test the dependency of
Chl a on phytoplankton growth resources (nutrients, tempera-
ture, and light climate) and morphophysical lake properties
(surface area, stratification strength), including interactions
between specific predictors. Our results indicate that physical

European lake survey: summer Chl-a drivers

properties of a lake, such as stratification strength and light
climate (expressed as the ratio of euphotic to mixing depth),
are the strongest ecosystem drivers for phytoplankton biomass
for this set of mostly nutrient-rich lakes, at the sampling time.
It is possible, however, that a different result would be
obtained from the same dataset in a different time of the year.
In a similar fashion to the present work, an earlier study on
1076 US lakes (Rigosi et al. 2014), showed that surface temper-
ature, nutrients, and their interaction were the main phyto-
plankton biomass predictors. Interestingly, their results
showed that the largest part of the variance in Chl a for the
subset of eutrophic and hypereutrophic lakes was explained
by a synergistic interaction between nutrients and tempera-
ture. Our study moves a step forward and highlights the fact
that additional variables need to be considered when collect-
ing lake “snapshots” at a continental scale. The analysis pres-
ented here indicates that nutrients, temperature, and light
should not be the only algal growth conditions to be consid-
ered. We show that when lake stratification metrics are
included, we can gain insights into the lake physics mecha-
nisms that promote phytoplankton biomass growth and
potentially improve the development of predictive tools.
Moreover, our statistical analysis indicates that surface tem-
perature alone should not be used as a proxy for stratification
strength. Indeed for a multilake survey, it is necessary to esti-
mate lake stability (N%) as a variable that comprises the lake
thermal “history,” and therefore gives insight into the environ-
mental conditions that the phytoplankton have experienced
during the recent past. Such information is easily attained with
a temperature profile and is extremely relevant when looking at
ecosystem functioning, as thermal structure and light penetra-
tion determine the physical constraints of the photosynthetic
biomass distribution in the water column. These constraints
also determine to what extent specific phytoplankton features
adapted to life in a stable water column, such as the pigment
composition (e.g., presence of phycoerythrin in deep chloro-
phyll maxima), and buoyancy regulation (e.g., gas vesicles,
motility, shape adaptations) may favor specific algal groups.

Shallow vs. deep lakes

In the EMLS, most of the lakes were eutrophic which may
explain the predominant importance of light climate (Z../
Zmix) for algal biomass variance in both shallow and deep
lakes. We therefore assume that, for nutrient-rich lakes, phyto-
plankton rather than inorganic suspended solids determine
underwater light extinction (Scheffer et al. 1997), which sub-
sequently determines phytoplankton biomass.

Although light climate was the most important factor for
both EMLS depth types, we observed a relatively greater
importance of light climate in shallow rather than deep lakes
(explaining 46% and 32% of the variation, respectively),
which may be explained by the fact that shallow lakes exist in
two clearly distinct states, clear vs. turbid. Mechanisms
directly linked to the underwater light climate, for example,
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high cyanobacterial biomass and benthivorous fish stirring up
the sediment, provide varying degrees of resilience to the tur-
bid state (Scheffer et al. 1997). In contrast, macrophytes stabi-
lize the clear water state, and light penetration that reaches
the sediment is vital for their development (Ibelings
et al. 2007). With 72% of the shallow EMLS lakes having a
Secchi depth of less than 0.8 m, we could argue that the
majority are in a turbid state, be it stable or not. This may go
some way to explain the critical role of light in determining
biomass of algae in EMLS shallow lakes.

TN is the second-most important predictor for Chl a in
shallow lakes (33%) which, together with the general absence
of TP as significant predictor for Chl a variance, suggests that
for the 230 EMLS lakes, the commonly found linear relation-
ship between TP and Chl a does not hold true
(Vollenweider 1968). This is in line with previous studies on
nutrient-rich lakes suggesting that (1) a positive linear TP-Chl
a relationship exists only at intermediate concentrations of TP
(0.004-0.23 mg L™ !; Quinlan et al. 2020) and (2) nitrogen
becomes limiting for phytoplankton under high TP, especially
over shorter temporal scales (Filstrup et al. 2014).

A eutrophic status of a lake, however, does not mean that
nutrients cannot be limiting for dense phytoplankton, with a
large demand to sustain a high biomass. Yet, the condition of
nutrient limitation (in our case nitrogen) could be seen as an
effect driven by Z../Zmix (first predictor). Especially for shal-
low lakes, when this ratio becomes smaller, the mixed layer
exceeds the euphotic zone and nutrients from the sediment
are likely to be resuspended. We may easily see a more direct
relationship between Chl a and light climate than with the
nutrient abundance, because light climate, by revealing the
recent mixing history, is a more integrative indicator of nutri-
ent availability than the nutrient content of a single water
sample, especially for productive shallow lakes.

For deep lakes, light climate and its synergistic interaction
with water column stability had a similarly important contri-
bution to the overall R? explaining Chl a variance (32% and
29% for Zey/Zmix and N?, respectively). High algal biomass
increases turbidity, which can increase water temperature in
the surface layer through increased heat absorption (Ibelings
et al. 2003), and thus reinforce stratification (Paerl and
Huisman 2008). Reinforced stratification through increased
turbidity implies that phytoplankton is maintained within the
euphotic zone offering a potential explanation of how light
climate can interact synergistically with water column stability
(Zeu!/Zmix > 1; Fig. 1a). However, in a strongly stratified lake,
nutrients may remain available in the hypolimnion even
when they are depleted in the epilimnion, so that deeper
mixing, also of short duration, enhances the likelihood that
phytoplankton gains access to this pool of nutrients. In deep,
well-stratified lakes, it is also relatively common to find algal
biomass maxima (a.k.a. deep chlorophyll maximum [DCM])
at the crossroads of light from above and nutrients from below
(Leach et al. 2018). On the other hand, if stratification is weak
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and mixing can reach deeper layers, it will take the algal com-
munities beyond the euphotic zone reducing algal growth
(Zeu/Zmix < 1; Fig. 1b). A deeper mixed layer will allow light to
reach greater depths by diluting epilimnetic phytoplankton
over a larger volume of lake water, thus increasing light pene-
tration. This extended euphotic depth will likely, however,
not make up for light limitation due to a deeper mixing depth,
so the ratio Z.,/Zmix would still decrease when water column
stability decreases (Fig. 1b), exacerbating the light limitation
of phytoplankton growth.

In contrast to the shallow lakes, in EMLS deep lakes neither
TP nor TN appeared as a significant predictor of algal biomass,
possibly because of the higher likelihood of light limitation
mentioned above. Interestingly, another difference between
EMLS shallow and deep lakes was that the surface area
explained a significant 22% of the overall Chl a variance of
deep lakes, while did not explain the Chl a variance for the
shallow lakes (Table S4). This might be due to the fact that the
surface area becomes important considering its direct relation-
ship with lake wind exposure, which can influence the water
column mixing depth in deep lakes, hence the availability of
light and nutrients for phytoplankton (Fig. 1). Although wind
exposure was not included in this study, EMLS lake area corre-
lated with depth (Fig. S1a), and was therefore indirectly related
to the water column thermal structure. Indeed, EMLS lakes
with larger surface areas tended to be deeper (Fig. 4f) and more
stable (Fig. 4d), and this may have favored phytoplankton’s
access to light, in particular when nutrients are not—or less
of—a limiting factor, for example, when DCMs are formed
where phytoplankton has access to nutrients in the hypolim-
nion (Leach et al. 2018).

Mediterranean vs. Continental vs. Boreal lakes

When EMLS lakes were clustered by climatic zone, stratifi-
cation strength appeared as a strong predictor for Chl g, either
individually (Mediterranean 46% and Continental lakes 29%
variation explained) or in synergistic interaction with light cli-
mate (Boreal lakes 34%). Stratification strength was thus a
dominant factor promoting phytoplankton optimal growth
conditions, interacting with the availability of nutrients and
light, as discussed. Light climate interaction with water col-
umn stratification was a strong factor for Boreal lakes phyto-
plankton growth (Fig. 6e) possibly due to their tendency to be
richer in humic substances and consequently darker (Kutser
et al. 2005; Kelly et al. 2018).

Phytoplankton biomass in Continental lakes seemed to
exhibit a higher degree of nitrogen dependency (Fig. 6¢); how-
ever, we cannot exclude that those lakes in other regions were
in a similar state, since as discussed above, predictors like light
climate can possibly encompass nutrient limitation. On the
other hand, the comparatively lower Chl a content of Medi-
terranean lakes (Fig. 3a) seems to indicate that, at the time of
sampling, these lakes were experiencing a better nutrient-
phytoplankton balance than Continental lakes.
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The best predictor for algal biomass: Stratification strength
or lake depth?

Stratification strength decreased in importance when split-
ting the dataset into depth types, which may indicate that
depth-type itself explained algal biomass variance. This is
also suggested by the fact that all predictors were signifi-
cantly different between deep and shallow lakes (Fig. 4), and
some important environmental factors have a different effect
on these two clusters. Wind has generally a larger effect on
temperature structure and stability of shallow lakes, because
the wind-induced mixing allows heat to be transferred
throughout the entire water column (Noges et al. 2011). Fur-
thermore, shallow lakes respond more directly to short-term
weather variations (Arvola et al. 2009; Deng et al. 2018). For
deep lakes that have a higher heat retention and potential
energy, greater wind speeds are required to drive mixing dur-
ing the summer months, resulting in greater stability
(Boehrer and Schultze 2008). Fetch and dominant wind
direction and intensity are also important in determining
stratification strength in deep lakes (Wetzel 2001), although
these data were not collected for this study. However, given
the consistently higher N observed for EMLS deep lakes
(Fig. 4d), we can assume that sufficiently strong and long-
lasting winds were not present at each sampling site during—
or shortly prior to—the sampling period to modify the afore-
mentioned scenario of deep lakes that are more strongly
stratified than shallow lakes.

Depth and N? may therefore be confounding variables
because, at least for this dataset, lake depth can explain most
of the variation in stratification trends. Nevertheless, whether
lake maximum depth or stratification strength is actually the
most significant predictor of Chl a in the overall EMLS dataset,
the message remains unchanged: lake morphophysical proper-
ties are essential when investigating phytoplankton biomass
responses to environmental changes.

Relationship between stratification metrics

Given the importance of stratification strength as a predic-
tor of Chl a variance at the European continental scale, we
analyzed the relationship between this variable, represented
by maximum N?, and the environmental and morphological
characteristics that act on the density gradient of a lake (sur-
face temperature, light penetration depth, maximum depth,
and surface area).

Surface temperature

Stratification strength responds directly to changes in water
temperature, yet each lake will need a certain number of warm
days with relatively low wind speed to develop stratification,
which also depends on lake morphological factors. The reason
for the weak correlation observed between maximum N? and
surface temperature (Fig. 7a) may be that deep and shallow
lakes are equally represented, and while deep lakes are more
strongly stratified, the shallow lakes had the highest surface
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temperature (Fig. 4b,d). The absence of a strong correlation
between stratification strength and surface temperature is fur-
ther confirmed by the absence of any trend between stratifica-
tion strength and climatic zone (Fig. 4d).

Moreover, the fact that shallow and Mediterranean lakes
had the highest surface temperature, but the weakest stratifica-
tion confirms that surface temperature can be a misleading
indicator for stratification strength, especially for snapshot
surveys as shown in previous studies on large datasets (Read
et al. 2014; Winslow et al. 2017).

Light penetration depth

Changes in light absorption by the dissolved and
suspended content of a lake affect the vertical distribution of
heat and resulting stratification (Andrew et al. 2008; Rinke
et al. 2010). We did not observe, however, a distinct rela-
tionship between stratification strength and light penetra-
tion (Fig. 7b). The reason why this relationship is not
stronger may be that the effect of light on stratification is
more evident in time series than in spatial gradients. This is
because light-induced heat diffusion in the water column
and its temporal variability has a stronger effect on the dura-
tion of the stratification than on its absolute value. Indeed,
more transparent lakes (Secchi transparency > 5 m) tend to
maintain a seasonal thermal stratification for a longer dura-
tion than more turbid ones (Richardson et al. 2017), there-
fore remaining stable longer. Assessing whether this is the
case is not possible with a summer snapshot sampling
design, although it was observed that light penetration can
drive the depth of the mixed layer. This is suggested for the
EMLS dataset by a moderate linear relationship (R* = 0.35)
between the depth of the epilimnion, or mixed layer, and
the euphotic depth (Fig. S2).

Maximum depth and surface area

We observed a relationship between N? and both the lake
maximum depth and lake surface area (Fig. 7c,d). The shape of
the polynomial fit shows that the linearity of stratification
strength with lake maximum depth holds until lake depths
of ~ 20 m, because of the physical limit dictated by the ther-
mal diffusivity of water. This relationship may confirm that
N? and depth are interdependent in determining resource
availability for the algal communities.

EMLS lakes with a greater area were on average deeper and
had a more stable water column (Fig. 4d,f). Therefore, surface
area of the EMLS dataset was directly correlated with maxi-
mum depth and was used as the only morphological variable
in the statistical models. However, the relationship between
surface area and N? was not strong (Fig. 7¢), possibly because a
larger surface area does not necessarily mean a greater wind
exposure, which is largely determined by the lake’s orienta-
tion toward the dominant wind direction and lake topogra-
phy. Clearly, as for the underwater light regime, analyzing the
effect of wind exposure on the thermal structure is not
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possible with a single observation, but would require a water
column temperature time series.

Temperature anomaly: 2015, an unusually hot summer

As expected, Mediterranean lakes had higher surface tem-
peratures than Boreal ones (Fig. 3a,b). However, Boreal lakes
exhibited a significantly higher Chl a concentration than
Mediterranean lakes, while lakes in both climatic zones had
comparable nutrient concentrations (Table S2). This seems to
confirm the importance of factors other than temperature
(lower in Boreal lakes) or nutrients (similar) driving phyto-
plankton biomass, especially water column stability in relation
to the light climate. Indeed, while Boreal lakes are known to
stratify intermittently during summer (Kirillin and Shat-
well 2016; Woolway and Merchant 2019), the heat wave likely
intensified the stratification strength in the Boreal lakes more
strongly than in other regions, given that the region experi-
enced the largest temperature anomaly (Fig. 8). This may have
favored the conditions shown in Fig. 1a and supported by our
model results, that is, the interaction between light climate
and stratification strength is the main Chl a driver for Boreal
lakes (Fig. 6e).

As several studies addressed the relationship between light,
nutrients, and temperature effects on primary producers in
Boreal regions (Zwart et al. 2016; Bergstrom and Karlsson 2019),
alternative explanations may apply too. Although it is not pos-
sible to generalize, such observations are crucial to generate
ideas and stimulate future research. It is possible that a higher
abundance of mixotrophs in Boreal lakes may help to explain
the higher Chl a in that region, since Hansson et al. (2019)
demonstrated that the success of mixotrophs is correlated with
the elevated colored dissolved organic matter content of Boreal
lakes. It is also interesting to note that Mantzouki et al. (2018)
found that for the same EMLS dataset, the variety of toxins pro-
duced by cyanobacteria increased with latitude, which possibly
may have reduced the grazing pressure in Boreal lakes, contrib-
uting to higher Chl a.

Cyanobacteria like it warmer?

Zea is frequently used as a pigment to indicate cyanobacterial
biomass (Bianchi et al. 2000; Glibert et al. 2004; Przytulska
et al. 2017; Ewing et al. 2020), although it is found both in cya-
nobacteria and in chlorophytes (Deshpande et al. 2014; Ibelings
et al. 2016). In this study, we do not provide microscopy results
to confirm the correspondence between cyanobacteria and Zea;
therefore, the following discussion is presented with a degree of
caution, and mainly serves to stimulate further ideas, eventually
contributing to a deeper understanding of the worldwide
increase in cyanobacterial blooms.

The strong correlation between Zea and Chl a EMLS
(Fig. S3) indicated that higher Chl a concentrations systemati-
cally corresponded with higher concentrations of Zea, which
may suggest that water column stratification and light climate
are the main drivers for cyanobacterial growth in eutrophic
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lakes, as they are for overall phytoplankton. Moreover, cyano-
bacteria have evolved specific traits like buoyancy and acces-
sory pigments that renders them specifically well adapted to
stably stratified conditions (Huisman et al. 2018). Conse-
quently, the fact that light climate was the main driver for
both lake depth types (Fig. 4) may confirm that at high nutri-
ent levels, light becomes limiting for cyanobacterial develop-
ment (Ganf and Oliver 1982; Bouterfas et al. 2002; Huisman
et al. 2004).

Considering the high temperature anomaly experienced in
Boreal regions at the sampling time, the significance of a posi-
tive interaction between water column stability and light cli-
mate in promoting cyanobacteria in the Boreal lakes during a
record hot summer supports the general observation that
“blooms like it hot” (Paerl and Huisman 2008). In the context
of climate change—and rapid warming at high latitudes—
perhaps a more appropriate rephrasing is “blooms like it
warmer than usual,” since the Boreal lakes were still cooler
than the Mediterranean lakes, yet the temperature anomaly
was higher as were Zea levels. Among the EMLS subset of lakes
with detectable Zea (which are 172 over the total 230 of this
study), almost all (95%) of the Boreal lakes experienced a
higher positive T-anomaly (~ 4°C + 2.5°C). Evidently, more
detailed integrated lab-field studies, including both ecological
and evolutionary aspects, are needed to resolve this issue.

Future scenario and management strategies

Among the Chl a predictors of this study, lake surface tem-
perature and water column stratification are expected to have
the strongest impact on lake ecosystems in a warming future
(O'Reilly et al. 2015; Kraemer et al. 2017). Both variables were
significant drivers for trends in phytoplankton biomass across
climatic gradients in Europe. Thus, since lake water column
stability will likely increase with a warming climate (Oleksy
and Richardson 2021), bloom-forming cyanobacteria in partic-
ular will be further promoted given their typical dependence
on buoyancy that makes them particularly well adapted to a
stable water column (Steinberg and Hartmann 1988; Paerl and
Paul 2012).

Although we concur with Ibelings et al. (2016) that any
sustainable approach controlling cyanobacterial blooms has to
be rooted in nutrient reduction, our present analysis under-
lines the potential effectiveness of additional measures that
weaken the future strengthening of lake stratification, which
is demonstrated here to play such a critical role in determin-
ing differences in lake phytoplankton and cyanobacterial bio-
mass. It may be essential, for instance, to include measures
like artificial lake mixing (Visser et al., 2016) to mitigate algal
(and cyanobacterial) blooms.

Conclusions

Nutrients and light are the fundamental resources for phy-
toplanktonic biomass, even in nutrient rich lakes, such as the
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ones represented in this study; however, results from the
EMLS analysis show that Chl a variance is better predicted by
light climate and stability metrics. These predictors are also
strong indicators of the epilimnetic nutrient load and of the
light experienced by the algal biomass prior to sampling. This
explains why in this nutrient-rich lake dataset, light climate
was the most important variable explaining Chl a variance in
both shallow and deep lakes, with the difference that, only for
deep lakes the optimum condition for photosynthetic biomass
was obtained when stratification operated in a synergistic
interaction with light climate. The dominance of light climate
and the absence of TP as significant predictor for Chl
a variance confirms that: (1) when TP levels are high as in the
average EMLS, light and nitrogen become limiting resources
for phytoplankton and (2) light climate, as metric for the
recent history of water column mixing, is a powerful indicator
for nutrient availability, and needs to be included in similar
studies.

Furthermore, our analysis of this pan-European dataset
shows that shallow and Mediterranean lakes exhibit the
highest surface temperature, although the weakest stratifica-
tion, confirming that lake surface temperature does not neces-
sarily correlate with lake stratification strength. Consequently,
especially for snapshot surveys, a lake temperature profile
should be preferred over surface temperature data as it is a
more sensible indicator for stratification strength and ecologi-
cal response to warming.

Finally, among the 230 European lakes, we observed a signif-
icant exponential correlation between temperature anomaly
and the stratification strength only for Boreal lakes that, inci-
dentally, had the highest Chl a concentrations; a notion deserv-
ing further attention in light of most rapid increases in
warming taking place at high latitude regions. This, coupled
with the fact that, for mildly to hyper-eutrophic lakes, light cli-
mate and water column stratification are the most important
drivers determining phytoplankton biomass, may serve to bet-
ter plan and implement lake management and mitigation
strategies.
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Figure S1. (a) Maximum depth and surface area of EMLS lakes showed high
collinearity (linear fit, Pearsons’ r =0.46, R?=0.21), such as (b) average and
surface temperature (linear fit, Pearsons’ r =0.84, R?= 0.72)
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Figure S2. Significant linear relationship between EMLS lake’s euphotic depth
(Zew) and mixed layer depth (SML), R? =0.3.
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Figure S3. Scatter plot of Chl-a and Zeaxanthin, showing a strong linear

relationship (R?=0.6).



Supplementary Tables

Table S1. List of EMLS lakes and corresponding climatic zones

Lake Name Latitude Longitude ClimZone
Brenet 46.67375 6.322252778 Continental
Bret 46.51416111 6.773583333 Continental
Divonne 46.35461667 6.152488889 Continental
Geneva_GE3 46.29200278 6.213036111 Continental
Greifen 47.33993333 8.678416667 Continental
Hallwil 47.28744722 8.2115 Continental
Joux 46.63895278 6.286463889 Continental
Lucerne 47.02083333 8.355516667 Continental
Morat 46.92760833 7.074027778 Continental
Ober 47.20716389 8.821936111 Continental
Pfaffikon 47.35079167 8.782402778 Continental
Sempacher 47.14369444 8.150269444 Continental
Geneva_SHL2 46.44721944 6.583597222 Continental
Sopen 47.0899 8.080633333 Continental
Zurich 47.32166667 8.565 Continental
Akaki_Malounda 35.03 33.17 Mediterranean
Asprokremmos 34.73955556 32.55866667 Mediterranean
Kannaviou 34.92888889 32.58938889 Mediterranean
Kouris Reservoir 34.74636111 32.92194444 Mediterranean
Boskovice 49.496334 16.696983 Continental
Brnenska prehrada 49.237133 16.511232 Continental
Hamry 49.737267 15.914233 Continental
Luhacovice 49.121517 17.774866 Boreal
Matejovsky 49.535168 15.882933 Continental
Nesyt 48.77795 16.742849 Continental
Nove Mlyny I 48.893284 16.643499 Continental
Novovesky 48.934191 16.529216 Continental
Velke Dako 49.632233 15.90435 Continental
Bikowsee 53.14811 12.8870556 Continental
Carwitzersee 53.315693 13.452971 Continental
Grosser Dabelowsee 53.254358 13.204838 Continental
Dollgenesee 52.60658 14.1712222 Continental
Kleiner Wentowsee 53.07803 13.1714444 Continental
LangerSee 52.2445 13.78544444 Continental
Muggelsee 52.441171 13.657738 Continental
Oberuckersee 53.174916 13.856108 Continental




Peetschsee 53.237915 12.861389 Continental
Pfsarrsee 53.28372 13.1958611 Continental
Plauersee 53.487471 12.349336 Continental
Roofensee 53.11067 13.0350222 Continental
Scharmutzelsee 52.21683 14.0235 Continental
Schwedtsee 53.18828 13.1496111 Continental
Tiefwarensee 53.527362 12.691713 Continental
Wittwesee 53.12653 12.9364167 Continental
Wurlsee 53.22131 13.2936111 Continental
Bagsvaerd 55.77266667 12.45663889 Continental
Bastrup 55.81802778 12.2695 Continental
Farum 55.80522222 12.36719444 Continental
Fure 55.81305556 12.44313889 Continental
Haraldsted 55.48463889 11.76422222 Continental
Lyngby 55.77472222 12.47911111 Continental
Elistvere 58.57116667 26.71133333 Boreal
Lammijarv 58.12 27.575 Boreal
Raigastvere 58.588889 26.655 Boreal
Saadjarv 58.53608333 26.64883333 Boreal
Vortsjarv 58.21191667 26.10275 Boreal
Abegondo-Cecebre 43.28138889 -8.295 Mediterranean

Albufera de Valencia

39.34433333

-0.338916667

Mediterranean

Embalse de Arcos de la
Frontera

36.75222222

-5.793888889

Mediterranean

Azutan

39.77533611

-5.088780556

Mediterranean

Baxe reservoir

42.60694444

-8.616111111

Mediterranean

Boadella 42.348167 2.821567 Continental
Basturs petit 42.14402778 1.016833333 Continental
Basturs 42.14327778 1.020361111 Continental
Laguna Canas 36.67293333 -4.455225 Mediterranean
Cedillo 39.66731111 -7.532625 Mediterranean
Embalse del Cubillas 37.2787 -3.675683333 Mediterranean
Doninos 43.491886 -8.312181 Mediterranean
Laguna Eucaliptal 36.671994 -4.452602 Mediterranean
El Foix 41.255951 1.6490111 Continental
Laguna Grande 36.67131 -4.45601 Mediterranean
Laguna Grande de 39.44975 -3.338555556 Mediterranean
Villafranca

Laguna Honda 36.75555 -2.9464 Mediterranean
Meqguinenza Reservoir 41.37067 0.2675556 Mediterranean
Montcortes 42.331207 0.994539 Mediterranean
Ribarroja Reservoir 41.24938889 0.429194444 Mediterranean




Laguna Rio Viejo 36.67361944 -4.455016667 Mediterranean
Sobron Resrbvoir 42.76691944 -3.102138889 Continental
Embalse de Tous 39.13372222 -0.647388889 Mediterranean

Vallfornes

41.72095

2.341644444

Continental

Laguna de las Yeguas

37.05641667

-3.379533333

Mediterranean

Harkmerifjarden 62.18833333 21.43888889 Boreal
Jyvasjarvi 62.23918889 25.77259167 Boreal
Kakskerranjarvi 60.355 22.20833333 Boreal
Littoistenjarvi 60.45138889 22.39527778 Boreal
Muuratjarvi 62.12474444 25.56038889 Boreal
Stortrasket 62.31777778 21.38027778 Boreal
Marathonas 38.17156667 23.90511111 Mediterranean
Bajer 45.30633333 14.71333333 Continental
Njivice 45.16963889 14.56338889 Continental
Peto Jezero 45.83161111 16.02616667 Continental
Ponikve 45.07794444 14.55833333 Continental
Savica 45.769 16.03244444 Continental
Vransko 44.84002778 14.39241667 Continental
Patkai Reservoir 47.267605 18.48562 Continental
Zamolyi 47.30188889 18.46486111 Continental
Templehouse 54.09972222 -8.589444444 Continental
Iseo 45.68722222 10.06722222 Continental
Gaustvinis 55.65575 23.20038889 Boreal
Gineitiskes 54.73747222 25.18572222 Boreal
Gulbinas 54.79386111 25.30755556 Boreal
Jieznas 54.59152778 24.18508333 Boreal
Lukstas 55.71286111 22.335 Boreal
Mastis 55.97755556 22.24886111 Boreal
Niedulis 54.39172222 24.36605556 Boreal
Pabezninkai 54.34941667 24,571 Boreal
Rekyva 55.86075 23.31230556 Boreal
Simnas 54.39433333 23.643 Boreal
Sitvys 54.98566667 25.21661111 Boreal
Udrija 54.43508333 23.85044444 Boreal
Dojran 41.19861111 22.73333333 Continental
Prespa 40.9525 20.91888889 Mediterranean
Amstelveense 52.30002778 4.840333333 Continental
Empelse put 51.72298 5.337262 Continental
Ertveldplas 51.70669444 5.288194444 Continental
Henschotermeer 52.080702 5.373029 Continental
Kinselmeer 52.38566667 5.017111111 Continental




Meerwijkplas 52.34833333 4.664083333 Continental
Molenplas 52.344 4.655111111 Continental
Sloterplas 52.36366667 4.817222222 Continental
Westbroekplas 52.42558333 4.669416667 Continental
Akersvannet 59.24499167 10.32690083 Continental
Arungen 59.68997417 10.74331722 Boreal

Hillestadvannet 59.5143325 10.15597611 Continental
Mjaer 59.69832931 11.05206361 Boreal

Ostensjovannet 59.68844944 10.82986111 Boreal

Saebyvannet 59.42701722 10.98318778 Continental
Skulerudsjoen 59.66792389 11.54612917 Boreal

Vansjo-Storefjorden 59.39440806 10.83571972 Continental
Tunevannet 59.29807833 11.08458833 Boreal

Vansjo-Vanemfjorden 59.44232083 10.75360167 Continental
Bartezek 53.83109167 19.84415 Continental
Biale Sosnowickie 51.53272222 23.0425 Boreal

Bninskie 52.20016667 17.11708333 Continental
Bukowieckie Dute 52.400966 15.620132 Continental
Bukowieckie Mate 52.381964 15.603918 Continental
Czarne 53.78222222 20.45444444 Continental
Czerniakowskie 52.19305556 21.07138889 Continental
Debno 52.29361111 16.69880556 Continental
Dziekanowskie 52.36722222 20.84694444 Continental
Goreckie 52.26575 16.79672222 Continental
llinskie 53.79708611 19.84148611 Continental
Kielpinskie 52.36166667 20.87583333 Continental
Lednica 52.52302778 17.37905556 Continental
Leknenskie 52.842467 17.292447 Continental
Lodzko Dymaczewskie 52.24905556 16.75191667 Continental
Lubosinskie 52.52777778 16.3825 Continental
Lusowskie 52.42986667 16.65826667 Continental
Majcz 53.77388889 21.46 Boreal

Maltanski Reservoir 52.401944 16.970556 Continental
Mikolajskie 53.78194444 21.59222222 Boreal

Nidzkie 53.57555556 21.54888889 Boreal

Niepruszewskie 52.38363333 16.61503333 Continental
Pniewskie 52.51138889 16.24083333 Continental
Podkamycze 1 50.08638889 19.83377778 Continental
Podkamycze 2 50.08322222 19.83483333 Continental
Probarskie 53.82322222 21.37822222 Boreal

Rogozinskie 52.750756 17.007086 Continental




Ros 53.67 21.91861111 Continental
Rusalka 52.42469444 16.88380556 Continental
Rynskie 53.90972222 21.48916667 Boreal

Skanda 53.75666667 20.53055556 Continental
Swarzndzkie 52.413611 17.065 Continental
Syczynskie 51.28755556 23.23813889 Boreal
Tomaszne 51.46658333 23.00238889 Boreal

Track 53.78916667 20.54 Continental
Tyniec_1 50.02986111 19.82761111 Continental
Tyniec_2 50.02447222 19.81325 Continental
Ukiel_2 53.78638889 20.42916667 Continental
Uzarzewskie 52.448056 17.133333 Continental
Zemborzycki 51.18844444 22.52969444 Boreal

Azibo 41.57561111 -6.897638889 Mediterranean
Azul 37.87288333 -25.76991667 Mediterranean
Furnas 37.758206 -25.332376 Mediterranean
Gostei 41.78597222 -6.820972222 Mediterranean
Miranda 41.49486111 -6.26925 Mediterranean
Peneireiro 41.29397222 -7.175222222 Mediterranean
Peixao 40.33604 -7.5926361 Mediterranean
Serra Serrada 41.96166667 -6.772 Mediterranean
Lagoa Verde 37.8428 -25.78891667 Mediterranean
Malaren Ekoln 59.73298 17.547852 Boreal

Erken 59.84007 18.62512 Boreal
Limmaren 59.73056667 18.73476667 Boreal

Eastern Ringsjon 55.86308333 13.54197222 Continental
Sepond_1 55.77933333 13.3615 Continental
Sepond_2 55.73913889 13.20922222 Continental
Vallentunasjon 59.50832 18.0448 Boreal
Valloxen 59.73936111 17.84322222 Boreal
Vombsjon 55.68172222 13.59277778 Continental
Gajsevsko 46.53325278 16.12036667 Continental
Ledavsko 46.74987778 16.040175 Continental
Pernica 46.58318611 15.73239444 Continental
Kuchajda 48.17016667 17.14206667 Continental
Malinec 48.52186667 19.66493333 Continental
Vinne 48.81695 21.98628333 Boreal
Zemplinska 48.79675 22.02086667 Boreal

Acarlar 41.1199 30.490133 Continental
Akyatan 36.58658333 35.31869444 Mediterranean

Aladag

40.60611111

31.67638889

Continental




Catalan 37.21497222 35.31344444 Mediterranean
Cubuk 40.48027778 30.83444444 Mediterranean
Caygoren 39.252586 28.232628 Mediterranean
Eber 38.6283 31.11801667 Mediterranean
Eymir 39.82583333 32.8325 Mediterranean
Golcuk 40.65416667 31.62527778 Continental

Golhisar 37.12083333 29.59811667 Mediterranean
Gumerdigin 40.45808333 33.26580556 Mediterranean
Ikizcetepeler 39.473607 27.929277 Mediterranean
Kucuk Akgol 40.87833333 30.43194444 Continental

Karaoren 40.50208333 33.23177778 Mediterranean

Karacaoren_1

37.40211667

30.84833333

Mediterranean

Karacaoren_2

37.30864722

30.81348056

Mediterranean

Karadere 40.50197222 33.48494444 Mediterranean
Karatas 37.38566667 29.96963333 Mediterranean
Kuzgun 40.196153 41.050553 Boreal

Mogan 39.77888889 32.79611111 Mediterranean
Mollakoy 40.688141 30.389838 Continental
Palandoken 39.67133333 41.02433333 Boreal
Poyrazlar 40.83833333 30.46888889 Continental
Saraykoy 40.52980556 33.46688889 Mediterranean
Sabanozu 40.52286111 33.26955556 Mediterranean
Seydi 40.57358333 33.46125 Mediterranean
Sugla 37.32455556 31.99213889 Mediterranean
Taskisigi 40.87055556 30.40111111 Continental
Tortum 40.64923333 41.64139722 Boreal
Uluabat 40.19072222 28.54881667 Mediterranean
Yenicaga 40.77861111 32.02527778 Continental
Erne 54.48544444 -7.843722222 Continental
Grasmere 54.44869167 -3.019344444 Continental
Neagh 54.58241667 -6.396222222 Continental




Table S2. A) One-way-ANOVA or post-hoc pairwise comparisons for all lake log-transformed variables
among climatic zones (Mediterranean, Continental, Boreal) and depth types (Deep and Shallow). Non-
significant differences at 0.05 level are marked in red. Variables with * are included in the linear models.
b) Climatic zones Tukey multiple comparisons, where difference between variable’s mean refers to the

natural logarithm.

(a)

Variable ANOVA - climatic zones | ANOVA - depth types
Maximum depth maxD F2210= 0.74; p=0.474
Surface area* SurfA Chi?= 4.85 ; p=0.088 F1208= 17.725; p=3.68E-5
Total nitrogen* TN F227= 1.91; p=0.150 F1208=13.3; p=3.20E-4
Total phosphorus* TP F2207= 1.98; p=0.140 F1228=1.32; p=0.250
Surface Temperature * SurfT F226= 13.39; p=3.17E-6 | Chi’=3.88; p=0.048
Average Temperature AVT F2207= 14.73; p=9.6E-7 F1228= 31.09; p=6.92E-8
Secchi Depth SD F2227= 6.64;p=0.001 F1228= 89; p=4.74E-18
Light climate* Z,./Z.. F2207= 2.93; p=0.054 F128= 8.53; p=0.003
Maximum buoyancy frequency* N2 Chi?=5.18; p=0.075 Chi?= 16.5; p<0.0001
Chlorophyll a * Chl-a F2.227= 7.00 ; p=0.001 F1228= 43.65; p=2.73E-10
Zeaxanthin Zea F2160= 2.20; p=0.113 Chi’= 51.2; p<0.0001
(b)
Variable climatic zones
Cont-Bor Med-Bor Med-Cont
Diff (In) | p Diff (In) | p Diff (In) p
maxD | - - - - - -
SurfA | - - - - - -
TN - - - - - -
TP - - - - - -
SurfT | 0.064 0.023 | 0.146 <0.0001 0.081 0.002
AVT 0.011 0.906 | 0.138 <0.0001 0.127 <0.0001
SD 0.357 0.04 0.625 0.0009 0.267 0.139
Zeu/zmix - i i i - -
N2 - - - - - -
Chl-a | -0.797 | 0.02  -1302 | 0.0007 -0.505 0.185
Zea - - - - - -




Table S3 Model 1 and 2 predictors for Chl-a and their contribution (%) and significance (p) explaining the
overall R?. Non-significant predictors at the 0.05 level are marked red.

Model 1

Predictor % of model R- p
“Climatic Zone” 26 <0.0001
Stratification strength - N2 24 <0.0001
Total Nitrogen — TN 13 <0.0001
Surface area — SurfA 12 <0.001
Light climate - Zeu/Zmix 10 0.002
Surface temperature - SurfT 9 0.06
Interaction N**Zey/Zmix 4 0.02
Model 2

Predictor % of model R2 p
“Depth Type” 37 <0.0001
Stratification strength - N2 18 <0.0001
Light climate — Zeuw/Zmix 15 0.004
Total Nitrogen — TN 10 <0.0001
Surface area — SurfA 8 <0.001
Interaction N**Zey/Zmix 6 0.01
Surface temperature - SurfT 3 0.06

Table S4. Model 3 and 4 predictors for Chl-a and their contribution (%) and significance (p) explaining the
overall R?. Non-significant predictors at the 0.05 level are marked red.

Model 3 - Shallow lakes

Predictor % of model R° p
Light Climate - Zeu/Zmix 46 0.0002
Total Nitrogen — TN 33 0.0001
Stratification strength - N2 14 0.02
Interaction N** Zeu/Zwmix 3 0.29
Surface area — SurfA 2 0.83
Surface Temperature — SurfT 2 0.71




Model 4 - Deep lakes

Predictor % of model R p

Light Climate - Zeuw/Zmix 32 0.04
Interaction N** Zeu/Zmix 29 0.03
Surface area -SurfA 22 0.02
Stratification strength - N? 14 0.13
Surface Temperature — SurfT 3 0.43

Table S5. Model 5,6 and 7 predictors for Chl-a and their contribution (%) and significance (p) explaining

the overall R? . Non-significant predictors at the 0.05 level are marked red.

Model 5 - Medliterranean lakes

Predictor % of model R° P
Stratification strength - N? 46 <0.0001
Surface Temperature — SurfT 24 0.05
Surface area — SurfA 16 0.03
Light Climate - Zeu/Zmix 5 0.11
Interaction N** Zeu/Zmix 3 0.15
Model 6 - Continental lakes

Predictor % of model R° P
Total Nitrogen -TN 35 0.004
Stratification strength - N2 29 0.001
Surface area — SurfA 17 0.0002
Light Climate - Zeu/Zmix 10 0.28
Surface Temperature — SurfT 6 0.06
Interaction N** Zeu/Zmix 3 0.28
Model 7 - Boreal lakes

Predictor % of model R p
Interaction N** Zeu/Zmix 34 0.002
Surface Temperature — SurfT 21 0.004
Total Nitrogen — TN 14 0.01




Light Climate - Zeu/Zmix 18 0.12

Surface area — SurfA 9 0.18

Stratification strength - N? 4 0.94

Supplemental note

Multiple linear regression model

At first, we have looked at all continuous variables, without nominal ones (i.e. climatic zone and
depth type), and found that maximum N? was the most significant predictor (note that TP is

excluded because it is not significant).

Table S6. Model (without nominal variables) significant predictors for Chl-a and their
contribution (%) and significance (p) explaining the overall R.

Chl-a ~ N2 + TN + ZeuZmix + SurfT + SurfA + N?*ZeuZmix + TN*SurfT + SurfA *ZeuZmix

(R? 23%; p<0.001)
Predictor 9% of R° p
Stratification strength - N2 33 <0.0001
Total Nitrogen — TN 19 0.0004
Light Climate - Zeu/Zmix 17 0.0002
Surface area — SurfA 16 0.01
N** Zeu/Zuix 7 0.02

However, we had to exclude some variables due to collinearity (e.g. Air Temp collinear with
Surf Temp and Max Depth with Surf Area), thus we decided to use continuous variables
(environmental predictors) and nominal variables (categories). This allowed us to keep both
surface temperature and climatic zone — otherwise we had to exclude either SurfT or AirT.
Similarly, by using the nominal variable “depth type” we could keep Surface Area otherwise
collinear with Max Depth.

We decided to not include the first approach (as in Table S6) in the main text because the
resulting message does not change: stratification strength is the most important environmental
predictor for the overall group (all lakes).



COMMENTS (and answers) TO THE AUTHORS

It was not clear to me why categories were used rather than continuous data. Given that
there is actual climate data available for these locations, is the climatic grouping necessary or
would a continuous approach provide more information, using annual air temperature and
precipitation for example? This might be more meaningful in terms of thinking about lakes
across a gradient, especially given that climate change may have moved lakes out of their
historical classification of Mediterranean, Continental, Boreal?

We have added the Supplemental note to clarify on the variables choice (cathegories vs
continuous).

We believe we acknowledge the second point (climate change vs classification) as an
important issue. To consider climate change the Koppen-Geiger classification used here was
based on 25-year averages of temperature and precipitation data from state-of the art
regional climate model predictions for the years 2011-2100. We have also looked at recent
literature on shifted climatic zones (Maberly, 2020) but given that we combined regions that
were of the same main climate and precipitation level (Mediterranean = Csa and Csb,
Continental= Cfa and Cfb and Boreal = Dfb and Dfc), the difference with new projections is
negligible.

- Global lake thermal regions shift under climate change Maberly, S. 2020 DOI:
http://dx.doi.org/10.1038/s41467-020-15108-z

- C=warm temperate, D = alpine, f = fully humid, s = summer dry, a = hot summers, b =
warm summers

It seems like the statistical analyses could perhaps be more sophisticated and synthetic if
continuous variables were used.

We are convinced that different statistical approaches can be applied here, which all have
their merits. We went through several statistical approaches before concluding that, for this
sampling design (snapshot), the simplest statistics are preferable (e.g. a multilinear model).
We could have probably used a more sophisticated approach, but when we tried we found
that the core message was the same without substantial gain (and then Occam’s razor should
apply). We thus firmly believe that the statistical approach we finally chose is not only easier
to digest but the results are robust, and the take home message more straight forward for the
reader.

| was also very surprised to see that TP did not appear to play a stronger role, especially given
recent synthesis papers on chlorophyll (Quinlan 2020, Shuvo 2021).

Is this just because the lakes are mostly eutrophic with high TP concentrations?

Yes, indeed. It has been shown in other publications that, although log-linear models nicely
predict Chl-a from TP in some lakes or regions, they tended to over-predict Chl-a at high TP
across large TP gradients, using global datasets. Chl-a—TP relationships are in fact better
described as sigmoidal functions (Filstrup et al., 2014).

For the present study both Chl-a and TP concentrations were about 50% greater than for the
two studies show in Table 2, which are studies carried out on global lake datasets.


http://dx.doi.org/10.1038/s41467-020-15108-z

Table 2. Chl- a and TP mean concentrations for the aforementioned studies and EMLS

Chl-a (ug/L) TP (ug/L)
Quinlan 2020 19 62
Shuvo 2021 16 55
This study- EMLS 44 110

When looking at nutrient rich lakes, Filstrup, et al., 2014 suggest that, “at increasing TP another
resource, such as nitrogen (N) or light, becomes limiting for phytoplankton under high TP,
especially over shorter temporal scales.” “Similar to our findings, Jones et al. (2008b) found that
significant TN terms resulted in a slight improvement in the amount of variance explained by Chl-
a predictive models compared to TP”.

n

We include this observation in the abstract, in the conclusions and in the discussion where we
emphasize that for the EMLS study there are no data on nutrient availability at other times of the
year, and we therefore limit the discussion on nutrients to the summer, the period with
maximum stratification. These summer snapshot data are however still very useful as further
investigation of Chl-a, TN, and TP relationships from hypereutrophic waters is required given a
risk of future increased eutrophication linked to climate change.

Filstrup, C. T., et al. (2014). "Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes."
Limnology and Oceanography 59(5): 1691-1703.

Shuvo, A., et al. (2021). "Total phosphorus and climate are equally important predictors of water quality in lakes."
Aquatic Sciences 83(1).

Quinlan, R., et al. (2020). "Relationships of total phosphorus and chlorophyll in lakes worldwide." Limnology and
Oceanography 66(2): 392-404.

At the very least this is worth substantial discussion, it may be that the study set here is really
only representative of lakes where nutrients are not limiting, and if so, the paper should be
written in that context.

We add to discussion in line 593-598:

“Total Nitrogen is the second most important predictor for Chl-a in shallow lakes (33%), even
though EMLS lakes are mostly eutrophic. This outcome, together with the general absence of TP
as significant predictor for Chl-a variance, is in line with previous studies on nutrient-rich lakes
suggesting that 1) a positive linear TP—Chl-a relationship exists only at intermediate
concentrations of TP (0.004-0.23 mg L-1,(Quinlan et al. 2020) and 2) nitrogen becomes limiting
for phytoplankton under high TP, especially over shorter temporal scales (Filstrup et al. 2014).”

It would be helpful to consistently be specific in the text (e.g. line 509 refers to ‘nutrients’ as



the most significant predictors of Chl a —is this TN, TP, or both?)

We checked carefully and specified Total Nitrogen when needed. We also highlighted that our
results pertain to a nutrient rich data set in the abstract.

As a side note, the reason for this is that individual countries contributed to the EMLS from lakes
that they routinely sample, which often tend to have a history of eutrophication. Nevertheless,
even the lakes that were sampled for the first time were also found to fall within the hyper-
eutrophic limits (TP > 30 ug/L). The bias towards productive lakes is a potential disadvantage of
the grassroots nature of the EMLS, compared to a centrally organized survey like the NLA, where
a Generalized Random Tessellation Stratified Survey Design was used. However, scarcity of non-
eutrophic lakes in a multi-lake survey also reflects the reality of the European continent, where
eutrophic lakes still are more common (EEA, 2018), despite decades of lake restoration efforts.

()

| was specifically asked by the editor to provide feedback on the stratification aspect of this
manuscript. Overall, | think this is of sufficient standard. Notably, the metric used to
characterise stratification strength is widely used in the limnological community. There are
also many other metrics that one could have used, such as the vertical density gradient and so
on... but N2 is equally suitable. One additional lake characteristic which would strengthen this
aspect of the work, would be the lake mixing regime. Specifically, as the data only provides a
snapshot of the seasonal cycle, it is unclear if the strength of stratification provides a similar
mechanistic description across the lakes. For example, what if some of the lakes are
discontinuous polymictic that only stratify intermittently during the warmest part of the year
(which is studied here)? Notably, if the lake was mixed up until that point, would stratification
strength still be expected to have a dominant influence, or is this simply considered as ‘noise’
in the study?

R1 rightfully points out the greatest tradeoff in this kind of approach, that is space for time.

Using a variable to include lake mixing regimes would have been very interesting indeed, but
quite hard to obtain for the EMLS. Many of these lakes were visited for the first time and most
of them have not been studied for lake physics, water column structure and mixing regime.
Even if data were partially available, for a subset of lakes, it may have been a variable that we
would have excluded from the statistical analysis because it would have considerably shrunken
the sample size.

We could however look at mixing regimes in a “gedankenexperiment” and try to seek an
explanation for a specific “outlier”. It is possible — especially for shallow lakes - that a mixing
event disrupts the stratification that only few days before sampling boosted phytoplankton’s
growth (by keeping algae in the optimum light regime). The biomass would still be there (and
would have been sampled on the “snapshot” day) but the N2 from a few days before, would no
longer be present. Thus, the relationship between biomass and N2 that would be recorded
would not be representative. So yes, R1 is correct when hypothesizing that this case would be



“considered as ‘noise’ in the study”. All in all this kind of events must have been sufficiently
rare to not nullify the value of our space for time approach (see References in Mantzouki et al,
2018, Snapshot surveys for lake monitoring, more than a shot in the dark, Front Ecol and Evol,
https://doi.org/10.3389/fevo.2018.00201).

We have also looked at the mixed layer (SML) - euphotic depth (Zeu) relationship (Fig. S2). A
significant positive linear relationship between these two variables tells us that the majority of
the lakes in our sample did not experience a strong mixing event (Zeu< SML) in the days before
the sampling was carried out, and there is no substantial difference between shallow and deep
lakes on this regard. (Figures below)
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Significant linear relationship between EMLS lake’s euphotic depth (Zeu) and mixed layer
depth (SML), R? =0.2 for deep (a) and R? =0.15 shallow lakes (b) .

As I’'m sure the authors have already considered, this study does not take into account the
interacting effects of lake physical processes. Notably, one could argue that the timing of
stratification onset in seasonally stratifying lakes is both an indirect and even direct driver of
phytoplankton biomass, but cannot be investigated here (this also feeds into my comment
below).

Absolutely. That is why the above-mentioned relationships are (significant but) not strong.
We think that reason is exactly what R1 highlights, i.e. the timing of stratification. We
investigate the relationship SML/Zeu, but the effect of light on stratification is revealed by
time series. We elucidate this in lines 702-708 of the revised manuscript: “Light induced
heat diffusion in the water column and its temporal variability has a stronger effect on the
duration of the stratification than on its absolute value. (...) more transparent lakes tend to
maintain a seasonal thermal stratification for a longer duration than more turbid ones,
therefore being stable for a longer period. Assessing whether this is the case is not possible
with a summer snapshot sampling design.”

(-

My major concern is that there is not enough attention given to the reasons that
stratification metrics (Zeu/Zmix, N2) are better predictors in than nutrient availability (as TN
or TP, for example) in these mostly eutrophic lakes.


javascript:void(0)
https://doi.org/10.3389/fevo.2018.00201

We have revised the introduction to better introduce these concepts and come back to the
relevance of Zeu/Zmix and N2 in the discussion.

It is almost intuitive that when nutrients are abundant, resulting in dense phytoplankton
biomass, light for photosynthesis becomes a critical resource, that can take over from
nutrients like N and P in setting a limit to phytoplankton development. References from the
literature that we refer to in our text underline this (Filstrup et al. 2014). Light availability for
phytoplankton in a lake is the outcome of the ratio between mixing depth Zmix and euphotic
depth Zeu, and it is this ratio Zeu/Zmix that we have used to define light availability in the
EMLS lakes. Clearly deep mixing will result in lower light availability for phytoplankton, and this
explains why water column stability in deep eutrophic lakes plays such a critical role. Stability
limits mixing, reduces Zmix and enhances light availability.

Lines 754-780 section “Cyanobacteria like it hotter”: This section has potential but at the end
of the discussion is seems to come out of the blue. What were the a prior expectations about
Zeaxanthin across these lakes? | would suggest adding more information to the Introduction
to introduce some research questions to the reader before digging into all of this literature.

We understand perfectly the suggestion as cyanobacteria are a very interesting and
important topic. However, although Zeaxanthin is a pigment found in cyanobacteria, as we
explain, it can be found in chlorophytes. Since we do not support our pigment analysis with
microscopy results, we cannot be sufficiently sure that Zea=cyano. That is why we do not use
Zea as a response variable as for Chl-a, and why we cannot formulate an hypothesis.

We thus add a results section, to inform earlier the reader about the Zeaxanthin — as
suggested - and discuss the caution needed to interpret the data.

What does stratification strength say about nutrient availability?
I would love to see regression between the stratification metrics and nutrient variables across

the lake depth types and region types to help the reader gain a more mechanistic
understanding of how stratification influences both the physical environment and nutrient
conditions that ultimately fuel phytoplankton growth.

We understand and agree on the potential of such relationship, although we do not see a
significant relationship between N? and TN or TP. Possibly the explanation lays within the
drawback of a snapshot survey. LightClimate*N2 interaction may better express nutrients
availability for Chl-a than nutrient concentration on a single time sample- especially for
shallow lakes.
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