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Abstract—The rich spectral information provided by hyper-
spectral imaging has made this technology very useful in the
classification of remotely sensed data. However, classification of
hyperspectral data is typically affected by noise and the Hughes
phenomenon due to the presence of hundreds of spectral bands
and correlation among them, with usually a limited number of
samples for training. Linear discriminant analysis (LDA) is a
well-known technique that has been widely used for supervised
dimensionality reduction of hyperspectral data. However, the use
of LDA in hyperspectral remote sensing is limited due to its poor
performance on small training datasets and the limited number of
features that can be selected i.e., c − 1, where c is the number of
classes in the data. To solve these problems, this article presents
a folded LDA (F-LDA) for dimensionality reduction of remotely
sensed HSI data in small sample size scenarios. The proposed
approach allows many more discriminant features to be selected
in comparison to the conventional LDA since the selection is no
longer bound by the limiting factor, leading to significantly higher
accuracy in the classification of pixels under SSS restrictions. The
proposed approach is evaluated on five different datasets, where
the experimental results demonstrate the superiority of the F-LDA
to the conventional LDA in terms of not only higher classification
accuracy but also reduced computational complexity, and reduced
contiguous memory requirements.

Index Terms—Dimensionality reduction, folded linear
discriminant analysis (F-LDA), hyperspectral remote sensing,
small sample size (SSS) scenario, supervised feature extraction.

I. INTRODUCTION

THE past few years have witnessed the availability of images
with very high spectral resolution through the development

of Hyperspectral Imaging (HSI) sensors [1]. The rich spectral
information [2], [3] provided by these images has made them
very useful in remote sensing applications such as classification
and target detection. Recently, classification of hyperspectral
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remotely sensed images has received more attention due to their
major roles in precision agriculture [4], environment monitoring
[5], and national security [6], among others.

However, hyperspectral data classification is faced with the
problem of small sample size (SSS) scenario (limited number of
labeled samples for training) and the presence of many spectral
bands, usually in order of hundreds [7]–[9]. In addition, many
of these bands are highly correlated resulting in data redun-
dancy and noise [10], [11]. As a result of this lack of sufficient
samples for training and the high dimensionality of HSI data,
the performance of traditional machine learning classifiers in
HSI is often affected by the Hughes phenomenon [12]–[14].
The Hughes phenomenon is characterized by a decline in the
classification accuracy after it reaches a maximum following
an initial rise as more spectral bands are added [15]–[17]. The
Hughes phenomenon therefore limits the classifying ability of
conventional classification models leading to reduced accuracy
and increased computational complexity. Hence, the dimensions
of HSI data are often reduced through feature extraction tech-
niques before they are presented to the models for classification
[18]. Applying these techniques to transform the hyperspectral
data into a lower dimensional space is therefore capable of not
only increasing the classification accuracy but also reducing the
computational complexity and memory requirement.

Unlike deep learning-based classifiers, which require com-
plex parameter settings and involve feature extraction from
the raw hyperspectral data (feature extraction and classification
come in the same package) [12], [19], the traditional machine
learning classifiers require simple parameter settings and are
inputted the outputs of separate feature extraction techniques
[19]. These techniques can be categorized into supervised and
unsupervised approaches depending on whether the class labels
are included in the feature extraction process or not. Examples of
supervised feature extraction techniques are linear discriminant
analysis (LDA) [20], generalized discriminant analysis (GDA)
[21], and nonparametric weighted feature extraction (NWFE)
[22], while techniques, such as principal component analysis
(PCA) [23], singular spectral analysis (SSA) [24], independent
component analysis (ICA) [25], singular value decomposition
(SVD) [26], locally linear embedding [27], isometric mapping
[28], random projection [29], maximum noise fraction [30] and
wavelet dimensionality reduction [31] are unsupervised (they
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do not require labeled data to extract the features). While a
large part of the current state of the art is focusing on deep
learning-based approaches, significant attention is still being
directed to those more traditional methodologies for improved
feature extraction leading to better classification results. For
instance, a non-linear version of the PCA, known as Kernel
PCA (KPCA), was implemented in [32] where the HSI data was
transformed into a linearly separable feature space to capture
higher order statistics and extract the principal components for
classification. Also, in [33], the performance of the SSA was
optimized by applying SVD on a representative pixel as opposed
to every pixel in the hyperspectral data resulting in similar
classification results but reduced computational complexity. In
[34], the PCA was extended by folding each of the spectral
vectors in the hyperspectral data matrix, unfolding the projected
samples for classification. The increased accuracy and reduced
computational complexity achieved in [34] motivate us to extend
LDA using a similar mathematical trick.

LDA is a feature extraction technique that has found many
recent applications in HSI data classification [35], [36]. LDA,
as a supervised data reduction technique, aims to extract features
which maximize the separability among the different classes in
the data. LDA achieves this by using a transformation matrix to
project the original data unto a lower dimensional space. The
transformation matrix is computed to maximize the between-
class variance and minimize the within-class variance. The size
of the between-class matrix, the within-class matrix and the re-
sulting transformation matrix is dependent on the dimensionality
of the data. Specifically, their size is given as f ∗ f where f is
the number of features (spectral bands) in the data.

It is well known that in LDA, the rank of the between-class
variance matrix imposes a limitation on the number of compo-
nents that can be extracted to c− 1 where c is the number of
classes in the data [37]–[39]. Also, due to the high dimensional
nature of the HSI data, the different stages of the LDA require
the processing and storage of very large matrices resulting in the
problem of large memory requirement and high computational
cost [40]–[42]. Finally, the traditional LDA as a dimensionality
reduction technique does not perform well when the number
of samples used to train the model is small as demonstrated in
related work [18], [20], [43]–[45]. The use of the traditional
LDA is therefore limited in hyperspectral remote sensing since
enough labeled data is usually not available for training.

In [46]–[48], 2-D LDA was used in an application involving
face recognition to solve the problem of SSS scenario. In a
more related work [49], 2-D LDA was applied to hyperspectral
data in where each of the pixels was transformed into feature
matrix to reduce the effect of the SSS on the classification
results. However, the concept of “folding the pixel,” introduced
for PCA in [34], was not considered, hence unfolding of the
projected samples was also not included. Instead, the authors
combined the eigenvectors into a single projection vector using
a weighted sum. This continues to limit the number of features
to be extracted to the number of columns in the feature matrices
(folded pixels). Also, the performance of the 2-D LDA features
was not benchmarked against the original feature space. Hence,
it is not fully clear how effective the 2-D LDA can be in

SSS scenarios since the goal of the feature extraction and data
reduction is to improve the performance of the classifier on the
original feature space. Furthermore, computational complexity
analysis and experiments to show the limit to which this folding
concept can be applied were not conducted.

Inspired by the folded PCA concept proposed in [34], this ar-
ticle presents an improved version of the LDA transform named
folded-LDA (F-LDA), which shares some concepts with the 2-D
LDA but improves it, further developing and analyzing the fold-
ing context. In the F-LDA, each pixel in the hyperspectral data is
folded from vector to matrix. Different matrices sizes (configu-
rations) were exploited and extensive experiments conducted to
explain the folding limits, particularly when the dimension of the
converted matrix is either f ∗ 1 or 1 ∗ f . Eigenvectors were dealt
with individually and the final features extracted following the
unfolding of the projected samples. Consequently, the number of
extracted features is no longer given as c-1 but the product of the
number of columns in the converted matrices (folded pixels) and
the rank of the between-class variance matrix. This gives room
for the selection of many more discriminant features thereby
making the proposed approach more flexible than the conven-
tional LDA, also leading to more informative features (capturing
local structure of the data thanks to the folded samples), and
targeting higher classification accuracy than LDA, 2-D LDA and
the original feature space. Computational complexity analysis is
also conducted to illustrate additional benefits of the proposed
approach which are summarized as follows.

1) The proposed approach requires less computational com-
plexity to calculate the within-class variance, between-
class variance, transformation matrix, and eigenvectors.
Also, the cost of projecting the hyperspectral data into
lower dimensional space is reduced.

2) The contiguous memory required for the proposed ap-
proach is much less than what is required for the con-
ventional LDA.

The rest of this article is organized as follows. Sections II and
III describe the related background and the proposed method,
respectively. Description of data and experimental settings are
presented in Section IV. Experimental results and performance
evaluation of the proposed approach are presented in Section V.
Finally, Section VI concludes this article.

II. RELEVANT BACKGROUND: CONVENTIONAL LDA
FOR HSI DATA

The conventional LDA is implemented in the following three
steps: within-class variance and between-class variance com-
putation; transformation matrix and eigenvectors computation;
and data projection. The following sections present the full
description of the traditional LDA implementation steps and
applications for feature extraction and data reduction of HSI
data.

A. Within-Class and Between-Class Variance Computation

The hyperspectral images are data cubes which consist of
a set of 2-D images I (of rows k and columns l) captured at
different wavelengths of the acquiring HSI sensors. Hence,
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Fig. 1. (a) Hyperspectral data. (b) Data matrix X where each row depicts
a spectra vector (sample), xn = [xn1 xn2 xn3 . . . . . . . . . xnf ]. (c) Spectral
vector xn is folded to form a 2-D matrix, Pn where n ∈ [1, s], G = 2,
B = 3 and f = G×B = 6.

TABLE I
ALGORITHMIC STEP CODE OF THE PROPOSED F-LDA

each pixel in the data cube is a set of bands of reflected light
in the range of the wavelengths of the sensors [50]–[52]. If the
dimension of the data cube is k × l × b , then b is the number
of spectral bands [53].

For linear discriminant analysis, the data cube, as shown in
Fig. 1, is converted into a data matrixX of s rows and f columns
where s = k × l and f = b are the number of samples and

Fig. 2. Comparing the within-class variance matrices constructed using the
F-LDA and the conventional LDA. The F-LDA matrix is based on the variance
matrices constructed using the accumulation of those blocks across the main
diagonal of the conventional LDA matrix, leading to a local extraction of
features.

features, respectively. Each sample in X , denoted by xn where
n ∈ [1, s], is a spectral vector of a pixel in the data cube. Let
the number of classes and jth class in X be c and cj respectively,
the number of samples in each class can be denoted as Nj and
the ith sample in class cj denoted as xij where i ∈ [1, Nj ].
The mean of the spectral vectors in each class cj , denoted as mj

where j ∈ [1, c], and the overall mean of the data matrix X ,
denoted as m, are then calculated using

mj =
1

Nj

Nj∑
i = 1

xij (1)

m =
c∑

j = 1

Nj

s
mj . (2)

The within-class variance VW and the between-class variance
VB of X are computed using

VW =
c∑

j=1

Nj∑
i=1

(xij − mj)
T (xij − mj) (3)

VB =

c∑
j=1

Nj(mj − m)T (mj − m) (4)

where VW ∈ �f ×f and VB ∈ �f ×f .

B. Transformation Matrix, Eigenvectors Computation, and
Data Projection

The transformation matrix, T , is computed to maximize the
between-class variance, VB , and minimize the within-class vari-
ance, VW , using

T = VW
−1VB , T ∈ �f ×f . (5)
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TABLE II
CLASSIFICATION ACCURACY (%) RESULTS (BEST CASES) FOR THE BOTSWANA DATASET (14 CLASSES) USING ORIGINAL FEATURE SPACE, CONVENTIONAL LDA,

F-LDA (WITH DIFFERENT CONFIGURATIONS), 2-D LDA, GDA, NWFE, KPCA AND F-PCA

The eigenvalues λ and the eigenvectors v of T are computed.
The eigenvectors v are then ranked, starting from the highest to
the lowest, using their corresponding eigenvalues. The ranked
eigenvector v with a dimension of f ∗ f is later reduced to Vd of
f rows and d columns by selecting the first d columns of the
ranked v and discarding the remaining eigenvectors (with small
eigenvalues). It is worth stating here that the value of d is bound
by the number of non-zero eigenvalues, which is c− 1, and is
also given as the rank of the between-class variance matrix, VB

[37]–[39].
The data matrix X is then projected unto a lower dimensional

space Y using

Y = XVd, X ∈ �s ×f , Vd ∈ �f ×d (6)

where Y and X are the projected data and the original data,
respectively.

III. PROPOSED FOLDED-LDA

A. Concepts of the Proposed F-LDA

In our proposed F-LDA, each spectral vector (sample) in X
is folded into a matrix, as shown in Fig. 1. This is the main
difference from the conventional LDA, which treats the pixels
as spectral vectors. By folding the spectral vectors into matrices,
our approach can generate alternative variance matrices for
capturing information in a new and different way, where the

content across contiguous spectral bands (local structures) is
thus highlighted [33], [34].

In the proposed F-LDA, after converting all the spectral
vectors in the data matrix into matrices of the same configu-
ration (different sizes of the matrix will be exploited as will
be discussed in Section III-D), the data in a class becomes a
stack of matrices (folded samples) belonging to that class. With
these, the mean of each class and the overall mean of the data
are computed as matrices, from which the within-class variance,
between-class variance and the transformation matrix are also
computed.

The folding of each spectral vector, whose length is the
number of features in the data matrix, is done in such a way that
the folded samples are of size G×B, where G is the number
of groups and B is number of bands in each group, which is
common to all groups for simplicity. As will be shown later in
Section V, G = f is a special case of our F-LDA in which
the number of groups in the folded sample is f and F-LDA
simplifies to the conventional LDA. Similarly,G = 1 is another
special case where the number of groups in the folded sample is
1 and F-LDA simplifies to original data matrix. The final step in
the F-LDA is the unfolding of the projected samples which are
presented to classification models for discrimination.

The transformation matrix obtained using the stack of folded
samples provides an alternative but more effective way to extract
features, which are now many more than c− 1, from the HSI
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TABLE III
CLASSIFICATION ACCURACY (%) RESULTS (BEST CASES) FOR THE PAVIA CENTER DATASET (NINE CLASSES) USING ORIGINAL FEATURE SPACE, CONVENTIONAL

LDA, F-LDA (WITH DIFFERENT CONFIGURATIONS), 2-D LDA, GDA, NWFE, KPCA, AND F-PCA

data which in turn brings about improved classification results,
less computational complexity and reduced contiguous memory
requirement. It is worth noting that this improvement in the
classification results is dependent on the configuration of the
folded samples, G×B.

B. Implementation of the Proposed F-LDA

As shown in Fig. 1, denoting a spectral vector in the data ma-
trix as xn = [xn1 xn2 xn3 . . . . . . . . . xnf ] where n ∈ [1, s],
a folded sample (resulting matrix), Pn, of this vector can be
denoted using

Pn =

⎡
⎢⎣

pn(11) · · · pn(1,B))

...
. . .

...
pn(G,1) · · · pn(G,B)

⎤
⎥⎦ (7)

and each element in the matrix Pn, is denoted as pn(h+1, i) and
computed using

pn(h+1, i) = x(h∗B)+i (8)

where h ∈ [0, G− 1] and i ∈ [1, B].

The mean of the converted matrices in each class cj , denoted
asMj where j ∈ [1, c], and the overall mean of all the converted
matrices, denoted as M , are then calculated using

Mj =
1

Nj

Nj∑
i = 1

Pij , Mj ∈ �G ×B (9)

M =
c∑

j = 1

Nj

s
Mj , M ∈ �G ×B (10)

wherePij is the ith converted matrix in class cj and i ∈ [1, Nj ].
The within-class variance VPW and the between-class vari-

ance VPB of the data cube are computed using

VPW =

c∑
j=1

Nj∑
i=1

(Pij − Mj) (Pij − Mj)
T (11)

VPB =

c∑
j=1

Nj (Mj − M) (Mj − M)T (12)

where VPW ∈ �G ×G and VPB ∈ �G ×G.
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TABLE IV
CLASSIFICATION ACCURACY (%) RESULTS (BEST CASES) FOR THE SALINAS DATASET (16 CLASSES) USING ORIGINAL FEATURE SPACE, CONVENTIONAL LDA,

F-LDA (WITH DIFFERENT CONFIGURATIONS), 2-D LDA, GDA, NWFE, KPCA AND F-PCA

From the between-class variance VPB and the within-class
variance VPW the same approach in Section II-B is applied to
compute the transformation matrix TP the eigenvalues λP , the
eigenvectors VP and the selected eigenvectors VPd. The data are
then projected unto a lower dimensional space using (14) where
Yn is the projected matrix of each sample

TP = VPW
−1VPB , TP ∈ �G ×G (13)

Yn = Pn
T VPd, VPd ∈ �G ×d′

, Yn ∈ � G×d′
. (14)

Finally, the algorithmic step code for the proposed approach
is given in Table I. The dimensions of the between-class variance
VPB , and the within-class variance VPW , computed using the
F-LDA are G ×G while the dimensions of the between-class
variance VB and the within-class variance VW computed using
the conventional LDA is f × f or GB ×GB. Similarly, the
dimensions of the transformation matrix TP are G ×G while

the dimension of the transformation matrix from the conven-
tional LDA are f × f or GB ×GB. The computational com-
plexity of calculating the within-class variance, between-class
variance, transformation matrix, eigenvalues and eigenvectors
is therefore reduced significantly as will be shown in Section V.
The projected data are obtained by the multiplication ofPn

T and
VPd. These are two smaller matrices of size B ×G and G× d
respectively and contribute to the significant reduction in the
computational complexity.

C. Extraction of Local Structures Using the
Proposed Approach

This section explains how the proposed approach can capture
the local structure in the spectral vectors. Denoting each row
in each of the folded matrices Pij = Pn in (6) as pijk where
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TABLE V
CLASSIFICATION ACCURACY (%) RESULTS (BEST CASES) FOR THE INDIAN PINE DATASET (16 CLASSES) USING ORIGINAL FEATURE SPACE, CONVENTIONAL LDA,

F-LDA (WITH DIFFERENT CONFIGURATIONS), 2-D LDA, GDA, NWFE, KPCA, AND F-PCA

k ∈ [1, G], Pij can be expressed as

Pij =

⎡
⎢⎢⎢⎣

pij1
pij2

...
pijG

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p1
p2
...
pG

⎤
⎥⎥⎥⎦ . (15)

Each spectral vector in the data matrix can then be represented
as xij = xn = [ pn1 pn2 . . . pnG ]. If mj , the overall mean
of each class in the conventional LDA, is folded into a G ×B
matrix, mj can also be expressed using

MmJ =

⎡
⎢⎢⎢⎣

mj1

mJ2

...
mJG

⎤
⎥⎥⎥⎦ . (16)

The within-class variance VW in (3) as used in the conven-
tional LDA can then be formulated using (17), shown at the
bottom of the next page,

Also, let each row in Mj be denoted as tji where i ∈ [1, G],
MJ can be expressed as

MJ =

⎡
⎢⎢⎢⎣

tj1
tJ2

...
tJG

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

mj1

mJ2

...
mJG

⎤
⎥⎥⎥⎦ = MmJ . (18)

Finally, the within-class variance VPW in (11) as used in the
proposed approach can then be formulated using

VPW =

c∑
j=1

Nj∑
i=1

[
(p1 − tj1) (p1 − tj1) + (p2 − tj2)

(p2 − tj2) + · · ·+ (pG − tjG) (pG − tjG)

]
. (19)
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TABLE VI
CLASSIFICATION ACCURACY (%) RESULTS (BEST CASES) FOR THE PAVIA UNIVERSITY DATASET (9 CLASSES) USING ORIGINAL FEATURE SPACE, CONVENTIONAL

LDA, F-LDA (WITH DIFFERENT CONFIGURATIONS), 2D LDA, GDA, NWFE, KPCA, AND F-PCA

Diagonal elements ofVW in (17) are accumulated to construct
the within-class variance matrix, VPW in (11) as shown in
(19) and illustrated in Fig. 2. The local structures within the
group bands are therefore covered and features that improve
discrimination are extracted.

D. Different Configurations and Their Implications

In the proposed F-LDA, different configurations (G ×B)
of the matrices can be exploited for all the data utilized in this
article. The configurations were selected using the factors of
f , the number of features in the data matrix. The total number
of features extracted after applying the F-LDA in each case is
d and is given as B × dEVD , where dEVD is the number of
extracted components at the eigenvalue decomposition (EVD)

of the transformation matrix, TP . The number of discriminant
components extracted is bound by the number of nonzero eigen-
values, which is given as the rank of the between-class variance
matrix, VPB [37]–[39]. It is therefore required that the value of
dEVD be varied from 1 to r where r is the rank of VPB . The
value of r is different for different configurations as illustrated
in Tables II–VI. As can be seen in these tables, the value of r
is c− 1 for configurations (G × 1) where c is the number of
classes in the original data. This is the case where the proposed
F-LDA simplifies to the conventional LDA. Since the proposed
approach allows the use of different configurations G × B
which leads to different classification accuracies as will be
shown in Section V, this article therefore empirically exploits
different cases (configurations) and highlights the one that gives
the best classification result as the optimal parameters.

VW =

c∑
j=1

Nj∑
i=1

⎡
⎢⎢⎢⎣

(p1 −mj1) (p1 −mj1)
(p2 −mj2) (p1 −mj1)

...
(pG −mjG) (p1 −mj1)

(p1 −mj1) (p2 −mj2)
(p2 −mj2) (p2 −mj2)

...
(pG −mjG) (p2 −mj2)

. . .
· · ·
. . .
· · ·

(p1 −mj1) (pG −mjG)
(p2 −mj2) (pG −mjG)

...
(pG −mjG) (pG −mjG)

⎤
⎥⎥⎥⎦ (17)
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Fig. 3. Classification results for the Botswana dataset using F-LDA.

Fig. 4. Classification results for the Pavia Center dataset using F-LDA.

In a situation where f is a prime number, the configuration of
the folded matrices is in principle limited to f × 1 and 1 × f . In
order to explore other configurations (G ×B) while applying
our proposed F-LDA on the data, additional feature vectors of
zeros can be added to the data so that the empty spaces in the
folded matrices can be filled with zeros [34].

E. Classification

Support vector machine (SVM) is the machine learning model
selected for classification and performance comparison of the

proposed and the traditional approaches. The SVM finds an
optimal hyperplane in higher dimensional space using some
kernel functions to discriminate the different categories in the
data. SVM is adopted (and implemented in this article using the
Radial bias function) because of the satisfactory classification
performance it achieved in related works [54], [55].

The SVM classifier is trained using k-fold cross validation
(k = 5) to determine the optimal values of the parameters, the
penalty (c) and the gamma (g) using a grid search. The optimal
value of c and g are then used to obtain the SVM model for
final evaluation on the test set. This experiment is repeated ten



FABIYI et al.: FOLDED LDA: EXTENDING THE LINEAR DISCRIMINANT ANALYSIS ALGORITHM 12321

Fig. 5. Classification results for the Salinas dataset using F-LDA.

TABLE VII
COMPUTATIONAL COMPLEXITY FOR THE DIFFERENT STAGES OF THE PROPOSED

F-LDA AND THE CONVENTIONAL LDA

times and the classification results recorded in all the cases are
averaged and reported.

IV. DATASETS AND EXPERIMENTAL SETTINGS

A. Datasets

Five publicly available [56] and widely used datasets [12],
[18], [43], were selected for the performance evaluation of the

proposed technique. Each of the five datasets was split into
training and testing sets. In each case, the ratio of the training
and the testing sets was selected to simulate a SSS scenario for
training [43], [44]. The description of the selected datasets is
provided in the following sections.

1) Botswana: The Botswana hyperspectral data, with a spa-
tial dimension of 1476 × 256 pixels, were captured at the
Okavango Delta over the range of 400–2500 nm of the acquiring
Hyperion sensor on the NASA EO-1 satellite. There were 242
spectral bands in the data which contains 14 different classes.
A total of 97 uncalibrated and noisy bands were discarded
while the remaining 145 spectral bands were retained. In this
article, the data was split into training (5%) and testing (95%)
sets.

2) Pavia Center: The Pavia Center hyperspectral data, with
a spatial dimension of 1096 × 1096 pixels, were captured by
ROSIS sensor over in Pavia, northern Italy. There were 114
spectral bands in the data which has a geometric resolution of
1.3 m and contains 9 different classes. The number of noisy
bands which were discarded is 12 while the remaining 102
spectral bands were retained. In the experiments, 220 samples
are selected for training while the rest are used for testing.
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Fig. 6. Classification results for the Indian Pine dataset using F-LDA.

Fig. 7. Classification results for the Pavia University dataset using F-LDA.

3) Salinas: The Salinas hyperspectral image, which was cap-
tured by AVIRIS sensor over the Salinas Valley in California,
has a spatial dimension of 512 × 217 pixels and contains 224
spectral bands. A total of 20 noisy bands were discarded, and
the remaining 204 spectral bands retained. There are 16 different
classes in the data, where 250 samples are selected from the data
for training and the rest for testing.

4) Indian Pine: The Indian Pine hyperspectral data, with a
spatial dimension of 145 × 145 pixels, were captured at the
Indian Pine test site in North-western Indiana over the range

of 400-2500 nm of the acquiring AVIRIS sensor. There were
224 spectral bands in the data containing 16 different classes.
A total of 24 noisy bands were discarded while the remaining
200 spectral bands were retained. For the Indian Pine data, 16
samples were selected from each of the 16 classes (totaling 256
samples) for training while the rest are used for testing.

5) Pavia University: The Pavia University hyperspectral im-
age was captured by ROSIS sensor over Pavia, northern Italy.
The data has a spatial dimension of 610 × 340 pixels and a
geometric resolution of 1.3 m. There are nine different classes



FABIYI et al.: FOLDED LDA: EXTENDING THE LINEAR DISCRIMINANT ANALYSIS ALGORITHM 12323

Fig. 8. Botswana data’s. (a) Ground truth image. (b) Classification map using F-LDA (29 × 5). (c) Classification map using LDA (also showing the number of
samples in each class).

in the data. From the 115 spectra bands which were present in
the data, 12 noisy bands were discarded and the remaining 103
bands retained. A total of 220 samples are selected from the data
for training and the rest are selected for testing.

B. Experimental Settings

In this article, we adopted overall accuracy (OA), average
accuracy (AA) and kappa coefficient (k), which are widely used
in related fields [23], [32], [44] as metrics for performance eval-
uation of our proposed technique on the five publicly available
datasets previously described. To train the SVM classifier on
each of the datasets, we initially used three different feature

schemes: original feature space; LDA features; and F-LDA fea-
tures. The number of LDA features d extracted from each dataset
is varied from 1 up to the number of class in the dataset minus 1
(c− 1). For our proposed F-LDA, as explained in Section III-D,
the number of features d extracted is dependent on the values
of B and dEVD and is given as B × dEVD where dEVD is the
number of EVD components selected for projection (prior to
unfolding of the projected data).

For F-LDA, the number of features is also varied from 1 up
to r, the rank of the between-class variance matrix, VPB . For
the particular case of the Pavia University dataset, the number
of features is 103 which is a prime number and the size of the
converted matrices that can be obtained is limited to 1× 103 and
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Fig. 9. Pavia Center data’s. (a) Ground truth image. (b) Classification map using F-LDA (17×6). (c) Classification map using LDA (also showing the number of
samples in each class).

103 × 1, therefore, to apply our proposed F-LDA on the Pavia
University dataset using other configurations (see Table VI),
additional zeros are added to the data so that the empty spaces
in the converted matrices can be filled [33], [34].

The performance of the proposed approach is compared with
that of the 2-D LDA [49], GDA [21], and NWFE [22]. This
is necessary for fair comparisons since 2-D LDA, GDA and
NWFE are supervised techniques like the proposed approach.
The proposed approach is also compared with two unsuper-
vised techniques, namely KPCA [32] and F-PCA [34]. For
GDA and KPCA, the Gaussian kernel is selected as the ker-
nel function and its parameter (width) optimized in the range
[101, 102, . . . , 105] [21], [57]. Different configurations of the

converted matrices are also exploited when the 2-D LDA and F-
PCA are applied on the five datasets for comparison with the pro-
posed approach. In the 2-D LDA, data projection was done using
y = Pn

T vPd ,Pn ∈ � G×B , vPd ∈ �G ×1, where vPd is the
single projection vector and so the number of features that can be
extracted is limited toB, the number of columns in the converted
matrices [49].

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we investigate the effect of our proposed
method on the classification accuracy, computational complex-
ity, and contiguous memory requirement for all five datasets
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Fig. 10. Salinas data’s. (a) Ground truth image. (b) Classification map using F-LDA (17 × 12). (c) Classification map using LDA (also showing the number of
samples in each class).

Fig. 11. Indian Pine data’s. (a) Ground truth image. (b) Classification map using F-LDA (20×10). (c) Classification map using LDA (also showing the number
of samples in each class).

described in the previous section. The experimental results
and analysis are therefore presented in three separate sections
addressing each of these aspects.

A. Effect on Classification Accuracy

First, we trained the SVM classifier using the original feature
space available in each of the five datasets. Second, we applied
traditional LDA to reduce the dimensionality of the five datasets
and used the extracted LDA features to train the SVM classifier.

For each dataset, we obtained plots of the OA and AA against
the number of features extracted from the LDA and illustrate
the results in some figures. We then selected the maximum OA
and maximum AA from these plots and present these alongside
the results of using the original feature space in Tables II to VI.
The maximum kappa coefficients (k) in each of the considered
cases are given in Tables II–VI. As can be seen in these tables,
the classification accuracy of the SVM classifier is lower when it
was trained with the LDA features than when the original feature
space was utilized to train the SVM classifier for all the five
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Fig. 12. Pavia University data’s. (a) Ground truth image. (b) Classification map using F-LDA (8 × 13). (c) Classification map using LDA (also showing the
number of samples in each class).

datasets considered. These results are not unexpected since LDA
is known for producing suboptimal performance when applied
in SSS scenarios [18], [20], [43]–[45]. Finally, we applied our
proposed F-LDA to reduce the dimensionality of the five datasets
and used the outputs to train the SVM classifier, comparing with
the conventional LDA, and also other methods including 2-D
LDA, GDA, NWFE, KPCA, and F-PCA.

1) Classification Accuracy for the Botswana Dataset: We
applied F-LDA on the Botswana dataset and exploited differ-
ent configurations (G ×B). For each of the configurations,
we obtained plots of the OA and AA against the number of
components at the EVD, dEVD and illustrate these in Fig. 3. We
then extracted the maximum OA and AA from each of these
plots and present the classification results in Table II. From
Table II, we observed that OA, AA, and k were lowest when
we set the configuration to 145 × 1. This is the F-LDA case
whereG = f , which simplifies to the conventional LDA. Also,
from Table II, we observed that the maximum OA, AA and k was
highest when we set the F-LDA configuration to 29 × 5. This
is an improvement on the classification accuracy with relation
to not only the conventional LDA, but also to the case when the
SVM classifier was trained using the original feature space. At

the same time, the case where G = 1 simplifies our proposed
F-LDA to the original feature space. We went further to train the
SVM classifier using the outputs of the 2-D LDA, GDA, NWFE,
KPCA, and F-PCA on the Botswana dataset and present the best
OA, AA and k given in Table II. From this table, one can see that
the proposed approach consistently gives better OA, AA and k
than the other techniques used to benchmark its performance.

2) Classification Accuracy for the Pavia Center Dataset: We
repeated the F-LDA operation on the Pavia Center dataset. The
plots of OA and AA against dEVD obtained for each of the
configurations exploited when the Pavia center dataset was used
are presented in Fig. 4. We extracted the maximum OA and AA
from Fig. 4 and present the classification results including the
maximum k in Table III. We observed that the highest OA, AA,
and k were obtained when we set the configuration to 17× 6 ,
improving the classification accuracy obtained when the SVM
classifier was trained using the original feature space. The case
102× 1 simplifies the proposed F-LDA to the conventional
LDA, while when G = 1 (i.e., 1× 102), it simplifies to the
original feature space. We also used the features extracted when
we applied the 2-D LDA, GDA, NWFE, KPCA and F-PCA
on the Pavia Center dataset to train the SVM classifier and
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TABLE VIII
COMPUTATIONAL COMPLEXITY (CONTENT CONSUMPTION) FOR THE DIFFERENT STAGES OF THE PROPOSED F-LDA AND THE CONVENTIONAL LDA

TABLE IX
FEATURE EXTRACTION TIME (SECONDS) OF DIFFERENT TECHNIQUES (USING THE FIRST FIVE EVD COMPONENTS WHEN APPLICABLE, F-LDA AND 2-D LDA

INCLUDE RELATED CONFIGURATION)

TABLE X
DIFFERENT STAGES OF THE F-LDA AND LDA AND CORRESPONDING MEMORY

REQUIREMENTS

present the classification results given in Table III. It can be seen
that the proposed approach continues to give the best OA, AA,
and k.

3) Classification Accuracy for the Salinas Dataset: We also
applied the proposed F-LDA on the Salinas data and present
the plots of OA and AA against dEVD obtained for each of
the configurations exploited in Fig. 5. We went on to extract
the maximum OA and AA from these plots and present the
classification results including the maximum k in Table IV. For
the Salinas data, as can be seen in Table IV, the highest OA, AA
and k were achieved when the configuration was set to 17 × 12
(90.06%), higher than the 87.20% achieved when using the
original feature space to train the SVM classifier. Again, our
proposed F-LDA simplifies to the conventional LDA when the
configuration is set to 204 × 1 (i.e., when G = f ), and to the
original feature space when G = 1. Our F-LDA gives the best
OA, AA, and k as can given in Table IV.

4) Classification Accuracy for the Indian Pine Dataset:
Fig. 6 presents the plots of OA and AA against dEVD for each
of the configurations exploited when the F-LDA operation was
performed on the Indian Pine dataset, with related classification
results in Table V. Lowest OA, AA and k were obtained for the
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configuration 200× 1. The highest OA, AA and k were attained
when we set the configurations to 20× 10. The highest OA, AA
and k reported for the F-LDA are much higher than those attained
when we trained the SVM classifier using the features extracted
from the conventional LDA. As in the other three datasets, the
extreme case 200× 1 simplifies the proposed F-LDA to conven-
tional LDA while the other extreme case 1× 200 simplifies the
proposed F-LDA to the original feature space. We also applied
the 2-D LDA, GDA, NWFE, KPCA and F-PCA to reduce the
dimensionality of the Indian Pine dataset, where our proposed
approach achieves the best performance again.

5) Classification Accuracy for the Pavia University Dataset:
Finally, we also apply the outputs of the F-LDA on the Pavia
University dataset to train the SVM classifier and used the
classification results attained to obtain the plots of OA and
AA against dEVD which are presented in Fig. 7, with high-
est classification values reported and compared in Table VI.
The highest OA, AA and k were obtained for the configura-
tion 8× 13 , improving accuracies from the original feature
space. For this dataset, configurations 103× 1 and 1× 103
simplify the proposed F-LDA to conventional LDA and to the
original feature space, respectively. We also used the features
extracted when we applied the 2-D LDA, GDA, NWFE, KPCA
and F-PCA on the Pavia University data to train the SVM clas-
sifier and present the classification results obtained in Table VI.
It can be seen in Table VI that the proposed approach continues
to give the best OA, AA, and k.

Finally, we present the classification maps of all hyperspectral
data in Figs 8–12 to allow visualization and qualitative analysis
of the proposed F-LDA approach compared to traditional LDA
features when used for classification. As can be seen in Figs
8–12, the classification maps obtained using the F-LDA are, in
general, smoother than those obtained using the LDA for all the
five datasets used.

B. Effect on Computational Complexity

We illustrate and compare the computational complexity of
the different stages of the conventional LDA and our proposed
F-LDA in Table VII where c,Nj and d are the number of classes
in the data, the number of samples in each class and the number
of features extracted respectively.

In the conventional LDA, the computational complex-
ity of calculating the within-class variance VW and
between-class variance VB matrices in (3) and (4) are
o(cNjG

2B2) and o(cG2B2), respectively, where VW ∈
�GB ×GB , VB ∈ �GB ×GB , (xij − mj) ∈ �1 ×GB and
(mj − m) ∈ �1 ×GB . The complexity of computing VW

−1

is O(G3B3). O(G3B3) is also the computational complexity
of multiplying VW

−1 and VB . Hence, to compute the transfor-
mation matrix T and eigenvectors, the required computational
complexity is o(G3B3). The computational complexity of pro-
jecting the data using (6) is o(sGBd).

In the proposed F-LDA, the computational complexity of
calculating the within-class variance VPW and between-class
variance VPB matrices in (11) and (12) are o(cNjBG2) and
o(cBG2), respectively, where VPW ∈ �G ×G, VPB ∈

�G ×G, (Pij − Mj) ∈ �G ×B and (Mj − M) ∈ �G ×B .
The computational complexity of calculating VPW

−1 is
o( G3 ). To compute the product of VPW

−1 and VPB , the
required computational complexity is o(G3 ). Hence, to compute
the transformation matrixT and eigenvectors, the computational
complexity is o(G3). To project each sample using (14), the
required complexity is Gd where d = B × dEVD. Hence, the
computational complexity of projecting all the samples is sGd.

We also used the computational complexities presented in
Table VII to compute the content consumption for each dataset
and present the results in Table VIII. As can be seen in Tables
VII and VIII, F-LDA requires less computational complex-
ity to implement all stages. For the within-class variance and
between-class variance computation, the complexity is reduced
by a saving factor of B. A saving factor of B3 is reported
for the transformation matrix and eigenvectors computation. A
reduction in the cost of projecting the data byB is reported. This
reduction in the computational complexity is achieved thanks
to the new dimensions of the within-class variance, between-
class variance, and the transformation matrices in the proposed
approach which are now smaller than their counterparts in the
traditional approach. Instead of processing big matrices, we now
have a set of smaller ones to deal with.

We also present the feature extraction time of the proposed
approach on the datasets (using the first five EVD components
when applicable) and compare to the other techniques in Ta-
ble IX. In all cases, it can be seen that the conventional LDA
is faster than both the 2-D LDA and F-LDA. This is due to the
additional time used by the 2-D LDA and F-LDA for the feature
vector—feature matrix conversion. F-LDA can also be seen to
be slightly slower than the 2-D LDA in all cases because of
the additional time to consider the eigenvectors individually and
unfold the projected samples. The F-LDA can also be seen to
be slower than the K-PCA but faster than the NWFE, GDA, and
F-PCA in some cases. Overall, the range of the feature extraction
time reported for the proposed F-LDA is 0.084–2.059 s, slightly
slower than its counterparts but negligible considering its higher
classification accuracy.

C. Effect on Contiguous Memory Requirement

We illustrate the contiguous memory requirement for the
different stages of the conventional LDA and our proposed
F-LDA in Table X . We went further to use the results presented in
Table X to compute the content consumption for each dataset and
illustrate these in Table XI. From Tables X and XI, we observe
that the memory required for the within-class variance matrix,
between-class variance matrix and transformation matrix is less
in F-LDA than in LDA by a saving factor of B2. Also, for
the original data matrix and the projected data matrix, saving
factors of S and B2 are achieved respectively when the F-LDA
is utilized instead of the LDA. In general, the contiguous memory
required for the F-LDA is much less than what is required for
the conventional LDA. This is mainly due to the dimension of
the matrices at the different stages of the F-LDA which are now
smaller than those in the conventional LDA.
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TABLE XI
DIFFERENT STAGES OF THE F-LDA AND LDA AND CORRESPONDING MEMORY REQUIREMENTS (CONTENT CONSUMPTION)

VI. CONCLUSION

This article presents an F-LDA for effective and efficient fea-
ture extraction and dimensionality reduction of remotely sensed
hyperspectral data in SSS scenarios. The proposed F-LDA
replicates a simple, but effective mathematical “trick” (folding
the pixels) which was motivated by previous work to extend
PCA [34]. Now more informative features are produced by the
F-LDA (higher classification accuracy than the original feature
space, conventional LDA, 2-D LDA, and other state-of-the-art
methods) with reduced contiguous memory requirement and
reduced complexity. The performance of the proposed technique
is evaluated on five publicly available datasets from different
sensors (AVIRIS, ROSIS, Hyperion) and the experimental re-
sults demonstrate the superiority of the proposed technique to the
traditional approach when applied in SSS scenarios. Future work
will focus on proposing novel techniques to automatically select
the best parameters for the F-LDA configuration, including
combinations of G and B which lead to sparse 2-D matrices,
and exploring other related improvements, such as incorporating
spatial information and recent advances in deep learning.
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