
FAILY, S. and FLÉCHAIS, I. 2010. A meta-model for usable secure requirements engineering. In Proceedings of the
2010 ICSE workshop on software engineering for secure systems (SESS '10): co-located with the 32nd ACM/IEEE

international conference on software engineering (ICSE 2010), 2-8 May 2010, Cape Town, South Africa. New York:
ACM [online], pages 29-35. Available from: https://doi.org/10.1145/1809100.1809105

© ACM. Terms of use for this accepted manuscript are defined online:
https://www.acm.org/publications/openaccess#green

This document was downloaded from
https://openair.rgu.ac.uk

A meta-model for usable secure requirements
engineering.

FAILY, S. and FLÉCHAIS, I.

2010

https://doi.org/10.1145/1809100.1809105
https://www.acm.org/publications/openaccess#green

A Meta-Model for Usable Secure Requirements
Engineering

Shamal Faily
Oxford University Computing Laboratory

Wolfson Building
Oxford OX1 3QD, UK

Ivan Fléchais
Oxford University Computing Laboratory

Wolfson Building
Oxford OX1 3QD, UK

ivan.flechais@comlab.ox.ac.ukshamal.faily@comlab.ox.ac.uk

ABSTRACT
There is a growing recognition of the need for secure soft-
ware engineering approaches addressing both technical and
human factors. Existing approaches to secure software engi-
neering focus on the need for technical security to the detri-
ment of usability. This paper presents the IRIS (Integrating
Requirements and Information Security) meta-model, a con-
ceptual model for usable secure requirements engineering.
We describe a practical application of the meta-model through
a case study in the Critical Infrastructure domain.

1. INTRODUCTION
Human factors are still not sufficiently addressed in the

process of engineering secure software systems, and this is
not a new problem. Auguste Kerckoffs wrote in 1883 that
systems should be easy to use and require neither mental
strain nor the observance of many rules [1]. Over 35 years
ago, Saltzer & Schroeder [2] penned the principle of Psy-
chological Acceptability, stating that the human interface
should be designed such that users routinely and automat-
ically apply protection mechanisms correctly. More recent
work in HCISec (Human Computer Interaction in Security)
[3, 4] describes how unusable controls may introduce vulner-
abilities if circumvented or used incorrectly. In spite of this,
while it is accepted wisdom that security concerns should be
treated as early as possible (preferably when eliciting and
specifying requirements), usability concerns remain largely
ignored.

Considering human factors during secure systems engi-
neering requires additional attitudes and techniques. As-
sumptions which may seem reasonable from a security stand-
point may be unwarranted from a usability standpoint. For
example, when considering how to approach usability design
for security in the Critical Infrastructure (e.g. power, water
and gas utilities, etc.), Anderson et al. [5] argue that we
should think about designing security that Homer [Simp-
son] can use safely. While from a security standpoint this
highlights the importance of security in the face of incompe-

tence, it is counterproductive from a usability perspective.
It is important to ground usability decisions in information
gathered about real people, potentially including them in
the design process; comparing these stakeholders to Homer
marginalises them and undermines their contribution. These
caricatures may also introduce unwarranted biases into the
specification and design process.

As well as designing for the people who will use them, se-
cure systems also need to be designed for the environments
they will be used in. Even though environmental changes
may undermine the security in system designs, approaches
for specifying requirements remain grounded in the assump-
tion of a single environment representing the real world [6].
Unfortunately, the real world is complex: a system may be
situated in different countries, or be used by people with
different cultural backgrounds and different perceptions of
security and its importance. Environments within which
a system will run are often the least understood aspect of
a proposed design, and tools and techniques for reasoning
about these lack maturity [7].

Approaches to specifying requirements for systems which
are usable and secure need to align concepts from within
Usability Engineering and Security with those used to elicit
and specify requirements. Encapsulating these concepts and
their associations within a conceptual model is a first step
towards developing Requirements Engineering processes for
usable security, and tool-support for managing such a pro-
cess. This paper presents the IRIS (Integrating Require-
ments and Information Security) meta-model, a conceptual
model for Usable Secure Requirements Engineering. This
work builds upon practical work in usability design and
recent research on meta-models for Security Requirements
Engineering to help structure and manage usability, secu-
rity, and requirements engineering in different contexts. In
section 2, we describe the related work our meta-model is
founded upon. In section 3, we present the meta-model and
its component parts, which we validate in section 4 using a
Critical Infrastructure case study. In section 5, we briefly
describe how the meta-model supports inter-related qualita-
tive and quantitative analysis of risks and tasks.

2. BACKGROUND

2.1 Security Requirements Engineering Meta-
Models

Existing meta-models for Security Requirements Engineer-
ing [8, 9, 10] do not explicitly consider usability needs. It
is, therefore, important to determine the associations relat-

ing Security Requirements Engineering concepts with those
used in Usability Engineering. We cannot, however, devise
any rational conceptual model without thinking about the
techniques used to elicit and refine data into the requisite
concepts. A number of such techniques have been proven
useful in Usability Engineering as well as Security Require-
ments Engineering. Task analysis is a core technique for
understanding the impact of work performance on human
agents [11]. Tasks can be modelled using scenarios, which
are arguably the most common representation shared by Us-
ability and Requirements Engineering for eliciting empirical
data. Scenarios have been used extensively to help elicit
and model requirements [12], and have also been used to
describe how a system may be attacked or misused [13].
Closely allied to tasks are the goals a human agent wishes
to achieve by carrying out specific tasks. Goal Oriented Re-
quirements Engineering techniques are useful for validating
the completeness of requirements [14] and modelling stake-
holder rationale [15], as well as building threat trees [16] and
modelling vulnerabilities and their effect [17].

Mayer’s work on the Information System Security Risk
Management (ISSRM) modelling language [10] examines all
the stages of Information Systems development. This has
included work on aligning ISSRM concepts with techniques
such as scenario-based support for risk analysis [18], and
goal-modelling approaches [19]. This work has also attempted
to integrate existing efforts on meta-modelling for risk anal-
ysis. On first inspection, this helps capture contextual in-
formation – such as scenarios, and how stakeholder beliefs
and goals contribute to specification and design decisions
– implicitly supporting the capture of usability as well as
risk and requirements data. Closer inspection, however, in-
dicates that certain concepts are missing and others need
re-evaluating.

2.2 Contexts of Use
For systems to be situated in their environments, they

need to be designed with their contexts of use in mind; these
are the users, tasks, equipment, and social and physical en-
vironments where a system is used [20]. While the notion
of Context of Use is key within Usability Engineering, it is
largely unused in Requirements Engineering. For example,
Ali et al. [21] considered how the notion of context can be
used to integrate goal, Problem Frame, and feature models,
but this work is limited to using a textual context descrip-
tion to guide analysis decisions.

Attempts have been made by the HCI (Human Computer
Interaction) community to integrate data about context of
use into the larger design process [22]. This work found that
different models are better at representing different aspects
of context of use than others, and that contexts of use should
be modelled as entities in their own right.

2.3 Concept Alignment Challenges
A key issue in aligning Security Requirements Engineer-

ing with Usability Engineering is understanding how a given
concept may have a different importance or meaning de-
pending on whether a usability, security or requirements
perspective is taken. For example, we may agree that a goal
represents a statement of intent; but intent with respect to
what and whom? Does a goal represent the intentions of
somebody using the system, somebody designing the sys-
tem, or someone with the task of turning a goal into work-

ing software? Different levels of emphasis may be placed
on these potentially ambiguous terms. A security engineer
may be happy to assume that a user operates a control, a
requirements engineer may want to know more about the
roles fulfilled by that user, but a usability engineer needs to
understand the human characteristics of the user, his or her
behaviour, and the context within which the system is used.

A further area that needs clarification is the relationship
between people and their values, and goals. Contemporary
thinking in HCI [23] argues that while human values remain
core to usability, our changing relationship with technology
means determining what these might be is harder than ever.
The interaction between people and the system works on
many different levels, each of which provides different oppor-
tunities for interaction. These opportunities are, however,
deeply contextual and based not only on the person, but
the physical or social environment surrounding the interac-
tion. While goal-oriented approaches are useful for reasoning
about system requirements, they capture little contextual
information, and cast people as abstract actors and roles.
We would argue that this is a good state of affairs: goals
are a useful vehicle for refining and specifying requirements,
but we do not believe they are the right tool for capturing
empirical usability data.

Hinds [24] suggests that we should consider empirical data
as clues to the true nature of requirements; these require-
ments exist in the problem domain independently of stake-
holders. This position implies that concepts relating to the
elicitation of empirical data should be disjoint from those
used to specify goals and requirements. However, stakehold-
ers still need to understand the rationale behind requirement
specification decisions, which necessitates traceability from
empirical usability data to goals and requirements. There-
fore, we need to devise a conceptual model which describes
how usability artifacts relate to requirements artifacts.

3. IRIS META-MODEL
The IRIS meta-model is a conceptual model for usable

secure requirements engineering. This meta-model extends
existing work in Security Requirements Engineering in two
ways. First, concepts are included which allow the usability
of tasks, and the usability impact of security design decisions
to be modelled. Second, the meta-model explicitly defines
concepts and associations which allow a context of use to be
modelled.

Two guiding principles were followed when devising the
IRIS meta-model. First, where possible, we extend related
meta-models in Security Requirements Engineering so as to
reuse existing concepts. Second, we apply as much parsi-
mony as possible when declaring model concepts; in some
cases, this involves simplifying relationships to make the
conceptual associations clearer. For example, in the risk
meta-model (section 3.3), we define a risk as a combination
of a single threat and vulnerability. This differs from the
ISSRM concept of risk, which combines a single cause with
one or more impacts, where a cause is associated with a sin-
gle threat and one or more vulnerabilities. As section 3.3
will illustrate, supplemental concepts are used to capture
the knowledge lost by removing these concepts.

For clarity, we have sub-divided the meta-model into five
views. Four of these – Task, Goal, Risk, and Responsibility
– correspond to different perspectives of a secure system’s
context of use. The fifth centres on the axial concept of En-

Figure 1: Task Meta-Model
Task

Scenario

Asset Persona

Usability
Attribute

**

4

1

1..**

1

1

vironment. By introducing the environment as a conceptual
type, and allowing other concepts to be associated with it,
we can develop complete models of a context of use.

Cross-cutting each of these views is the concept of As-
set, which represents artifacts which must be safeguarded
by the system being specified; these may also represent com-
ponents forming part of the system. Because stakeholders
value certain properties of an asset over others, we asso-
ciate one or more security attributes to each asset; these at-
tributes reflect the security properties that stakeholders wish
to preserve in the system being specified; these attributes
are Confidentiality, Integrity, Availability, and Accountabil-
ity. Each attribute is assigned a value of Low, Medium, or
High, and each type of value should be agreed before being
used. Closely associated with Asset is the additional cross-
cutting concept of Task, which represents work being carried
out within a context of use. Subsequent sections will illus-
trate how information about tasks can be used to measure
the usability impact of security design decisions.

3.1 Task Meta-Model
The Task Meta-Model, illustrated in figure 1, captures el-

ements describing how people carry out work in the system
being specified. Rather than a description of a system oper-
ative like user and administrator, IRIS characterises people
using personas. A persona is a descriptive model of how in-
dicative users behave, think, what they wish to accomplish,
and why [25]. Personas sensitise participants to the con-
text of use and, through the interplay between personas and
their tasks, help identify assets, threats, and vulnerabilities
which would otherwise be missed. Personas are developed
from rich empirical data about stakeholders and their con-
texts; this means few assumptions need to be made about
how people fulfil different roles, thereby reducing the risk of
ambiguity about operatives being introduced into the anal-
ysis process.

As well as an informal objective the persona wants to
meet, a task is composed of a textual scenario describing how
the persona carries out some work associated with the sys-
tem being specified. Each task aggregates one or more per-
sonas and, for each associated persona, usability attributes
are specified. These attributes are defined from the per-
spective of the persona, and describe how well the work in
the task meets implicit usability goals of efficiency (how ef-
ficient does the persona find the task), effectiveness (how ef-
fective is the task at meeting its objective), and satisfaction
(how happy does the persona feel about the task). These
attributes are elicited by assigning categorical values relat-
ing to task duration, task frequency, task demand, and the
task’s support for the persona’s intentions. When describing
tasks, it may become apparent that certain assets use or con-
strain tasks. To reflect this, the meta-model allows assets
to be associated with tasks, enabling traceability between
tasks and models where these assets are present.

Figure 2: Goal Meta-Model

Threat Vulnerability

Requirement

Asset

Environment

Goal *
*

*
* *

**
*

*
*

* *

*

*

*
*

Obstacle *
*

Task

*

*

*

*

Domain Property

*

*

3.2 Goal Meta-Model
Many concepts in the Goal Meta-Model, illustrated in fig-

ure 2, are based on the KAOS (Knowledge Acquisition in au-
tOmated Specification) method [26]. KAOS was chosen over
alternative goal-oriented notations for two reasons. First,
unlike i* [15] derived approaches, KAOS defines goals as
prescriptive descriptions of system intent. Because goal and
requirement analysis is already carried out in the context
of personas and tasks, we use goals as a vehicle for refining
requirements, rather than understanding the intent of ac-
tors. Second, as Van Lamsweerde reports [14], the KAOS
modelling notation is compliant with UML and, by exten-
sion, compatible with modelling notations commonly found
in industry.

In IRIS, we define a goal as a prescriptive statement of in-
tent that the system should satisfy through the co-operation
of its agents [14]. This definition of a goal appeals to the
objectivity of the specification being developed as opposed
to the subjectivity of analysis which informs usability at-
tributes (section 3.1) and security attributes (section 3.3).
In KAOS, requirements are refined goals under the respon-
sibility of a single agent. We choose to make the distinction
between goal and requirement explicit by treating the latter
as an independent concept. This has a number of benefits.
First, requirements may arise during analysis independent
of any goal refinement or discussion about tasks. Second,
although not recommended, requirements and risk analysis
can be divorced from goal modelling; this may be useful if
neither analysts nor developers have any knowledge of goal-
oriented techniques.

Domain properties are descriptive statements about the
problem world [14]. In IRIS, we use these to capture as-
sumptions satisfied by the system, or requirements which
must hold to achieve requirements, but are outside of the
scope of the system being specified. Specifications derived
from IRIS are based on a fixed scope, but goal modelling
may lead to the elicitation of important out-of-scope require-
ments. If these requirements are not specified elsewhere, as-
suming these requirements must hold by defining them as
domain properties is useful for ensuring they are not forgot-
ten.

Assets or environments may be associated with zero or
more requirements. When associated with assets, the re-
quirements reference or constrain an asset; this is typically
the case when a security requirement acts as a constraint.
This is similar to the approach taken by the Problem Frames
approach where requirements reference certain phenomena
in problem diagrams [27]; this reference indicates that a re-
quirement references or constrains the related domain in the
context being modelled. In certain cases, however, require-

Figure 3: Risk Meta-Model

Risk

Threat Vulnerability

Misuse
Case

Attacker

Response Goal

CountermeasureAsset

Requirement

Security
Attribute

1..*

1..4

*

* 1 1

*

1

1
*1

1..*

* *

*
* *

*

*

*

*

Transfer MitigateAccept

*

*

Motive

Capability

1..*

1..*

*

0..4

*

Prevent

Detect React

Scenario
1 1

ments may be elicited which do not relate to assets. These
may be requirements refined from a goal, non-functional
requirements which affect the system in general, or a re-
quirement implying functionality which does not yet exist.
In such cases, associating a requirement with the environ-
ment stimulating its elicitation may be useful if the require-
ment needs to be categorised for some reason, e.g. a re-
quirement specification is generated and requirements need
to be grouped based on the environments they relate to.
By defining these associations as aggregations, we indicate
that tool-support implementing this meta-model should not
remove these requirements if the associated asset or envi-
ronment is removed; these requirements may be associated
with other assets or environments.

In addition to being refined to sub-goals, requirements,
and operationalised as tasks, goals in KAOS may conflict
with obstacles; obstacles are conditions representing unde-
sired behaviour and prevent an associated goal from being
achieved [28]. By refining obstacles, candidate threats and
vulnerabilities may be defined. This approach is similar,
but not identical to, Van Lamsweerde’s concept of anti-goals
[29]. While anti-goals arise exclusively from malicious intent,
obstacles may arise from accidental error as well.

3.3 Risk Meta-Model
The Risk Meta-Model, illustrated in figure 3, models the

elements contributing to the definition of risks; it also incor-
porates concepts for responding and mitigating these risks.

A single risk aggregates a single threat and vulnerabil-
ity. This reflects a threat exploiting a vulnerability; threats
target assets and vulnerabilities expose their weaknesses.
Threats arise from the motives and capabilities defined for
the attackers behind them. Many of these possible motives
and capabilities are known from the many reports in the
literature and media. The attackers behind a threat target
assets with respect to the properties they want to exploit.
When a threat is defined, security attributes are associated
with it depending on the assets the attacker wants to ex-
ploit and how much they want to exploit them by. For each
defined risk, a Misuse Case must also be specified; these are
used to describe risk impact. While the traditional view
of Misuse Cases is that they threaten Use Cases, this view
contests the idea that threats target assets, and not just con-
texts of use in general. By narrating a risk’s impact using

Figure 4: Responsibility Meta-Model

Dependency Goal

Asset

Task

Countermeasure

Role

*

*

Persona Attacker

*

* *

1..*1..*
1..*

*

1..*

Response

1..*

*

Usability Attribute
*

*

*

*

a scenario, Misuse Cases not only place the risk in a hu-
man context, it also sanity checks the analysis contributing
to the definition of a risk, justifying its threat and vulner-
ability, the related likelihood and severity values, and the
security attributes for these assets.

Risks may be treated in different ways. Risks can be ac-
cepted if we are prepared to accept the consequence of its
impact, transferred if the responsibility for dealing with it
is out of scope, or mitigated if treating the risk has a bear-
ing on the system specification. Strategies for mitigating a
risk may be preventing or avoiding it, detecting it, or react-
ing to it. Choosing to mitigate a response is synonymous
to intentionally specifying that the system shall manage the
risk as part of its design. Consequently, we can associate
goals with mitigating responses. As section 3.2 indicates,
these goals can be analysed and refined to requirements mit-
igating this goal. Countermeasures can then be defined to
meet these requirements, and, should we choose to incorpo-
rate them in the specification, assets can be associated with
these countermeasures. If countermeasures target threats,
and these countermeasures are considered effective at re-
ducing the value of the security attributes an attacker might
hold about the threatened assets, these can also be defined
at the countermeasure level.

3.4 Responsibility Meta-Model
Roles are a pervasive concept within IRIS. Attackers and

personas are associated with one or more roles. Roles may
also become responsible for risk responses transferred to
them, or countermeasures they are required to maintain.
These responsibility relationships are captured by the Re-
sponsibility Meta-Model, illustrated in figure 4.

IRIS distinguishes between representations of human per-
sonas & attackers and roles for two reasons. First, by al-
locating responsibilities to roles, we can identify personas
that may become overloaded with roles, or roles which may
be dispersed among several personas; these cases can lead
to security responsibilities becoming neglected. Second, at-
tackers and personas may share certain roles, allowing us to
consider the evolution of a lawful stakeholder to an inside
attacker.

Because countermeasures are assigned to roles, roles are
associated with personas, and personas participate in tasks,
the meta-model facilitates exploring the usability impact of
countermeasure design decisions. This is possible if a coun-
termeasure assigned to a role within a given context of use is

Figure 5: Environment Meta-Model

Environment

Goal

Obstacle

Asset

Threat

Vulnerability

Attacker

Response

Countermeasure

Task Persona

Misuse
Case

Risk

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

*

**

*

* *

*

*

*

*

*

*

shared by a persona participating in one or more tasks in the
same context of use. Where this occurs, usability attributes
may be associated with the persona-task pairing to indicate
how much the countermeasure helps or hinders the persona
in the associated task. This is described in more detail in
[30].

Although goals define how the intent of a system is refined
to a requirements specification, it is also important to un-
derstand how these goals laterally relate to other concepts;
this knowledge is captured using dependency relationships.
Ternary associations describe how one role (the depender),
relates on another (the dependee), for a task, goal, or asset
(the dependum). The dependency relationships in IRIS are
based on the dependency links used by i* [15]; Van Lam-
sweerde [14] describes how these relationships can also be
used in KAOS to supplement agent responsibility modelling.

3.5 Environment Meta-Model
Many concepts specified in the IRIS Meta-Model are sit-

uated within one or more environments as illustrated in fig-
ure 5. Together, these concepts represent a Context of Use.
Some of these concepts are defined explicitly within an en-
vironment; an asset may have different security attributes
based on the prevailing environment, and some goals may
exist in one environment and not in another. Other concepts
are implicitly situated within an environment by virtue of
their dependencies. For example, a risk may only be defined
if the contributing threat and vulnerability exist in the same
environments.

Some concepts are not situated within an environment.
A system is specified with a single set of requirements ir-
respective of the environments the system must operate in.
Similarly, we don’t assume a role fulfilled by a human agent
will vary by environment. While the role may not vary, the
perceptions of the human fulfilling it can; this explains why
a persona exists within an environment, but a role does not.

4. CASE STUDY
Water and sewage treatment is controlled by a substantial

amount of control software. This software runs on many dif-

ferent devices and locations across a wide geographic area.
As part of their responsibility for maintaining the water net-
work, instrument technicians often make software modifica-
tions to telemetry outstations, PLCs (Programmable Logic
Controllers), and SCADA (Supervisory Control and Data
Acquisition) workstations. Without a central strategy for
controlling such software, water treatment integrity may be
compromised if software is lost, or incorrect software is ac-
cidentally, or deliberately, installed on critical instrumenta-
tion. However, because maintaining the water network can
be physically and mentally demanding, any new technology
needs to be situated for the contexts within which these
technicians work.

We validated the IRIS Meta-Model by using it to support
the specification of requirements for a central repository for
control software; this repository will be used to support in-
strument technicians at a UK water company.

After holding an initial scoping workshop, empirical data
was collected by interviewing various stakeholders, and ob-
serving real instrument technicians. After analysing this
empirical data, the behavioural characteristics of potential
users were identified based on the work they need to use
the software repository for. Several participatory workshops
were then used to elicit the different elements of the meta-
model; participants included instrument technicians, soft-
ware engineers, IT support staff, and information security
officers. The elicited data was captured by a software tool
building upon this meta-model.

After analysing the empirical data, two different environ-
ments were elicited. The first of these, Planned, encapsu-
lated a repository context of use during working hours when
infrastructure modifications are scheduled in advance. The
second environment, Unplanned, encapsulated a repository
context of use when the infrastructure is modified due to an
out-of-hours emergency. For reasons of brevity, this section
focuses only on the Planned environment. Because the page
limit forbids a detailed report of the design process used, fur-
ther details of this case study will be elaborated in a future
publication.

4.1 Task Analysis
Based on the empirical data, three personas were elicited.

Barry represented an instrument technician who modifies
software as part of this day-to-day work. Alan represented
a commissioning engineer responsible for developing initial
releases of PLC software. Eric represented an engineer work-
ing in a 2nd line support capacity. Of these representations,
Barry was the primary persona the repository needed to be
designed for.

Several tasks in the case study involved Barry making in-
frastructure changes to plant equipment; this work led to
control software modifications and, consequently, interac-
tion with the software repository. Although conceptually
very similar, tasks were distinct enough for some to be less
usable than others. For example, from Barry’s perspective,
outstation modifications are easier, quicker, involve fewer
file changes, and considered less operationally critical than
changes to PLCs. Knowledge about these differences was
not initially known by many workshop participants. Con-
sequently, authoring the scenario for this task, and defining
the associated assets led to discussion on the usability im-
pact of some design decisions.

4.2 Goal and Requirement Elicitation
The scope of the case study was limited to configuration

management of control software, but the tasks assumed cer-
tain software tools were installed on laptops used by instru-
ment technicians. To ensure this interface requirement was
not lost, this was captured as a domain property. Require-
ments were also specified which were not directly associated
with an asset. For example, a requirement was specified
and associated with the Planned environment; this indicated
that software tools to interface with plant hardware – an out-
of-scope asset – needed to be installed as a pre-requisite for
repository access.

One of the goals the repository needed to support was the
download of particular items of control software; this refined
to a sub-goal stating that an instrument technician needs to
be authorised to download software for a given geographic
area. Participants chose to obstruct this goal by stipulating
that a user can download software he is not authorised for.
Refining this obstacle led to the identification of a number
of vulnerabilities; these included the sharing of login creden-
tials, and unwarranted access to a technician’s laptop.

Some goals were refined on a top-down basis. However,
many were refined by defining the tasks, followed by the
goals and requirements which have to be specified before
personas can carry them out securely and without undue
hindrance.

4.3 Risk Analysis
Before the assets were defined, values of Low, Medium,

and High were associated with No affect on performance,
quality, or pollution, Part failure does not affect quality of
site or flow, and Critical to the business or the quality of
the site respectively. Assets were elicited from task analysis,
goal modelling, and general discussion. Assets for different
types of software were associated with security attributes
based on their criticality; some software assets were associ-
ated with low integrity, availability, and accountability at-
tributes, while others were defined as being high.

Attackers were defined based on participants concerns.
For example, the fear of malicious insiders led to the defini-
tion of a disgruntled instrument technician attacker. Based
on their domain knowledge, several motives and capabilities
were associated with this inside attacker.

When the PLC software asset was originally defined, par-
ticipants indicated that the security attributes they wished
to preserve for this asset were integrity and availability.
Later in the analysis, a risk was defined which explored how
an inside attacker might plant a logic bomb in this software
to compromise the water treatment process. In addition to
tampering with the software, the attacker was keen on cov-
ering his tracks, thereby introducing an accountability at-
tribute to the related threat. When a risk incorporating this
threat was defined, together with its associated Misuse Case,
the importance of PLC software accountability was noted,
and an accountability attribute was retrospectively added
to it. This risk was treated with a detective mitigation re-
sponse, such that occurrences of this risk would be detected
after the event and, based on this, an associated goal was
defined. Following goal-refinement, requirements for peer-
reviewing PLC software changes were elicited. Based on
these requirements, a software component linking the work-
system to the repository was defined as a countermeasure;
this ensured that the instrument technician making these

change would not be assigned as a peer reviewer. A new
asset was defined based on this countermeasure, and an ac-
countability security attribute associated with it.

4.4 Responsibility Modelling
Because personas perform tasks, and certain roles took re-

sponsibility for implementing countermeasures, several role-
responsibility associations were present.

Based on the restricted scope of the system being speci-
fied, the roles in this study were limited to Instrument Tech-
nicians and Engineers providing 2nd-line support. Depen-
dency relationships were modelled where an Engineer de-
pends on an Instrument Technician for the different software
modification tasks. Engineers are responsible for perform-
ing the task of auditing software changes, but this is not
possible until an Instrument Technician completes the work
requiring audit.

The countermeasure defined in section 4.3 not only miti-
gated the logic bomb threat, it helped improve the usability
of the software modification task to Barry. This improve-
ment arose because submitting a software modification to
the repository also led to data being automatically updated
in the work scheduling system, thereby reducing the demand
of Barry’s software modification task.

5. CONCLUSION
There is a need for support when specifying systems which

need to be secure and situated for their many contexts of use.
Risk analysis supports the specification of such systems, but
this analysis needs to be better informed by human factors,
and better integrated into the requirements engineering pro-
cess. To meet this need, we have presented a meta-model
for usable secure requirements engineering. We have built
upon existing conceptual risk-based Security Requirements
Engineering meta-models by introducing concepts which fa-
cilitate the modelling of a system’s different contexts of use.
We have also validated this contribution by applying it to a
case study, which demonstrates how our work can be used
to tackle contemporary security problems of national and
international interest.

Although the results of risk mitigation in section 4 had a
positive outcome to the security and usability of the system,
assets arising from countermeasures may introduce new vul-
nerabilities, become open to new or existing threats, or com-
plicate other tasks. In related work [30], we have devised an
approach for qualitatively and quantitatively analysing the
results of risk and task analysis. By leveraging the concep-
tual relationships in the IRIS Meta-Model, together with
values assigned to tasks, assets, threats, vulnerabilities, and
countermeasures, we can infer qualitative categories for risk,
and quantitative scores for risks and tasks; these can be used
to support visualisation of on-going security and usability
analysis, especially as models become more developed.

6. ACKNOWLEDGEMENTS
The research described in this paper was funded by EP-

SRC CASE Studentship R07437/CN001. We are very grate-
ful to Qinetiq Ltd for their sponsorship of this work. We are
also grateful to the Oxford University Computing Labora-
tory Security Reading Group and the anonymous reviewers
for their insightful comments when reviewing this work.

7. REFERENCES
[1] A Kerckhoffs, “La cryptographie militaire”, Journal

des Sciences Militaires, pp. 5–38, 1883.

[2] J.H. Saltzer and M.D. Schroeder, “The protection of
information in computer systems”, Proceedings of the
IEEE, vol. 63, no. 9, pp. 1278–1308, Sept. 1975.

[3] A Adams and MA Sasse, “Users are not the enemy”,
Communications of the ACM, vol. 42, pp. 41–46, 1999.

[4] Alma Whitten and J. D. Tygar, “Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0”, in
SSYM’99: Proceedings of the 8th conference on
USENIX Security Symposium, Berkeley, CA, USA,
1999, pp. 14–14, USENIX Association.

[5] Ross Anderson and Shailendra Fuloria, “Security
economics and critical national infrastructure”, in
Eight Workshop on the Economics of Information
Security (WEIS 2009), 2009.

[6] Pamela Zave and Michael Jackson, “Four dark corners
of requirements engineering”, ACM Trans. Softw. Eng.
Methodol., vol. 6, no. 1, pp. 1–30, 1997.

[7] Betty H. C. Cheng and Joanne M. Atlee, “Research
directions in requirements engineering”, in FOSE ’07:
2007 Future of Software Engineering, Washington,
DC, USA, 2007, pp. 285–303, IEEE Computer Society.

[8] D. Firesmith, “Specifying reusable security
requirements”, Journal of Object Technology, vol. 3,
no. 1, pp. 61–75, 2004.

[9] Daniel Mellado, Eduardo Fernández-Medina, and
Mario Piattini, “A common criteria based security
requirements engineering process for the development
of secure information systems”, Computer Standards &
Interfaces, vol. 29, no. 2, pp. 244 – 253, 2007.

[10] Nicolas Mayer, Model-based Management of
Information System Security Risk, PhD thesis,
University of Namur, 2009.

[11] D. Diaper, “Understanding Task Analysis for
Human-Computer Interaction”, in The Handbook of
Task Analysis for Human-Computer Interaction, Dan
Diaper and Neville A. Stanton, Eds., pp. 5–47.
Lawrence Erlbaum Associates, 2004.

[12] Ian. F. Alexander and Neil Maiden, Eds., Scenarios,
Stories, Use Cases: Through the Systems Development
Life-Cycle, John Wiley & Sons Ltd, 2004.

[13] Ian Alexander, “Negative scenarios and misuse cases”,
in Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle, Ian. F. Alexander and Neil
Maiden, Eds. John Wiley & Sons Ltd, 2004.

[14] A. van Lamsweerde, Requirements engineering: from
system goals to UML models to software specifications,
John Wiley, Hoboken, NJ, 2009.

[15] Eric Yu, Modeling Strategic Relationships for Process
Reengineering, PhD thesis, University of Toronto,
1995.

[16] Axel van Lamsweerde, “Elaborating security
requirements by construction of intentional
anti-models”, in ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
Washington, DC, USA, 2004, pp. 148–157, IEEE
Computer Society.

[17] Golnaz Elahi, Eric Yu, and Nicola Zannone, “A
vulnerability-centric requirements engineering
framework: analyzing security attacks,

countermeasures, and requirements based on
vulnerabilities”, Requirements Engineering, vol. 15, no.
1, pp. 41–62, 2010.

[18] R. Matulevičius, N. Mayer, and P. Heymans,
“Alignment of misuse cases with security risk
management”, Availability, Reliability and Security,
2008. ARES 08. Third International Conference on,
pp. 1397–1404, March 2008.

[19] Raimundas Matulevičius, Nicolas Mayer, Haralambos
Mouratidis, Eric Dubois, Patrick Heymans, and
Nicolas Genon, “Adapting Secure Tropos for Security
Risk Management in the Early Phases of Information
Systems Development”, in CAiSE ’08: Proceedings of
the 20th international conference on Advanced
Information Systems Engineering, Berlin, Heidelberg,
2008, pp. 541–555, Springer-Verlag.

[20] ISO/IEC 13407: Human-Centered Design Processes
for Interactive Systems, ISO/IEC, 1999.

[21] Raian Ali, Yijun Yu, Ruzanna Chitchyan, Armstrong
Nhlabatsi, and Paolo Giorgini, “Towards a Unified
Framework for Contextual Variability in
Requirements”, 3rd International Workshop on
Software Product Management (IWSPM09), Atlanta,
USA, 2009.

[22] Gilbert Cockton, “Grounded design: Integrating
models and evaluation”, Interacting in the large:
Developing a framework for integrating models in HCI,
ACM CHI’99 Workshop, 1999.

[23] Abigail Sellen, Yvonne Rogers, Richard Harper, and
Tom Rodden, “Reflecting human values in the digital
age”, Commun. ACM, vol. 52, no. 3, pp. 58–66, 2009.

[24] Chris Hinds, “The case against a positivist philosophy
of requirements engineering”, Requirements
Engineering, vol. 13, no. 4, pp. 315–328, 2008.

[25] Alan Cooper, Robert Reimann, and David Cronin,
About Face 3: The Essentials of Interaction Design,
Wiley, 2007.

[26] Anne Dardenne, Axel van Lamsweerde, and Stephen
Fickas, “Goal-directed requirements acquisition”,
Science of Computer Programming, vol. 20, no. 1-2,
pp. 3 – 50, 1993.

[27] M. A Jackson, Problem frames : analysing and
structuring software development problems,
Addison-Wesley/ACM Press, Harlow, England, 2001.

[28] A. van Lamsweerde and E. Letier, “Handling obstacles
in goal-oriented requirements engineering”, Software
Engineering, IEEE Transactions on, vol. 26, no. 10,
pp. 978–1005, 2000.

[29] Axel van Lamsweerde, “Elaborating security
requirements by construction of intentional
anti-models”, in ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
Washington, DC, USA, 2004, pp. 148–157, IEEE
Computer Society.

[30] Shamal Faily and Ivan Fléchais, “Analysing and
Visualising Security and Usability in IRIS”, in
Availability, Reliability and Security, 2010. ARES 10.
Fifth International Conference on, 2010.

	coversheet_template
	FAILY 2010 A meta-model for usable secure

